铜合金导线材料的滑动摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对电接触导线材料摩擦磨损行为的特殊性,为连续定向凝固技术生产新型电接触导线材料早日市场化提供可靠的实验和理论依据为背景,自行研制了一台新型的电接触滑动摩擦磨损试验机。本试验机即可测电接触材料的干滑动摩擦磨损特性,也可测电接触条件下的滑动摩擦磨损特性。该设备结构简单、操作方便,测量数据较准确,可在一定范围内实现电压、电流、载荷、速度的单、多因素控制,可有效地对不同的电接触材料进行摩擦学性能研究。在电接触滑动摩擦磨损试验机上,进行了一系列的电接触摩擦磨损实验,均取得了满意的效果,并将这些实验结果,用于提高铜接触导线的导电性和耐磨性,得到了较好的效果。
     本文对热型连铸生产的单晶铜、Cu-0.1Ag合金导线进行了电学性能测试;并且在自制的电接触滑动摩擦磨损试验机上,对单晶铜及Cu-0.1Ag合金在以黄铜为摩擦副的条件下,施加不同的载荷(0-40N)和速度(1-3m/s),进行了干滑动摩擦磨损实验,分析讨论了电接触导线材料在干滑动摩擦磨损条件下的质量磨损率及磨损表面的形貌。同时,对单晶铜及Cu-0.1Ag合金进行电接触滑动摩擦磨损实验,分析探讨了电流(0-20A)、电压(0-30V)作用下对电接触导线材料磨损性能的影响,并对磨损行为和机理进行了分析。另外对纯铜进行同样的实验,分析对比干滑动及电接触滑动摩擦磨损对不同材料的影响。
     实验结果表明:单晶铜、Cu-0.1Ag合金的质量磨损率与载荷基本上呈线性关系,并且随着载荷的增大,质量磨损率明显增加,在相同载荷作用下Cu-0.1Ag合金的抗磨性能明显优于单晶铜。滑动距离、滑动速度对金属的磨损也有较大的影响,而且Cu-0.1Ag合金的抗磨性能明显优于单晶铜。电流的增加使得Cu-0.1Ag合金的热效应急剧增大,表面温度增加的较快,导致材料的耐磨性能下降。单晶铜及Cu-0.1Ag合金的质量磨损率与电压都近似呈线性增加关系,随着电压的增加,单晶铜及Cu-0.1Ag合金的质量磨损率也随着增加。通过实验表明:在有电流的条件下Cu-0.1Ag合金比单晶铜更易氧化,塑性变形量较大,因此单晶铜的耐磨性能较好。
     采用连续定向凝固技术生产的单晶铜及铜合金导线材料,具有良好的导电性、高强度、耐磨性以及耐电蚀性等综合性能,是一种具有巨大应用前景的先进
According to the particularity of friction&wear behaviors of electro-contact lead materials, to provide reliable experimental&theoretical basis for general adoption of market principle of new-type electro-contact lead materials by continuously directional solidification technology, a new-style electro-contact sliding friction&wear testing machine has been successfully developped. Such new-type prototype not only can be used to measure unlubricated sliding frction&wear properties, but also can measure those properties under electro-contact conditions. The device structure is simple and easy to operate, moreover, the data acquired by test is proved to be exact. Single or multiple factors control on voltage, as well as on current、 Ioad、 velocity, to some extent, are promised to be realized. Consequently, research on tribological properties of different electro-contact materials could be effectively carried through. Currently, satisfactory effects have been obtained by a series of electro-contact friction&wear tests on such machine. Moreover, these experimental results have also been successfully used to improve conductivity and wear-resistance of copper-contact leads.
    In addition, testing has been done on the electrological properties of monocrystalline copper and Cu-0.lAg alloy by thermal continuous cast production. Unlubricated sliding experiments on monocrytalline copper and Cu-0.lAg alloy with brass as frictional pair have been made under loadcase of different load (0-40N) and speed (l-3m/s), mass wear rate and pattern of worn surface of such material under unlubricated sliding conditions have also been dicussed. According to the above experimental results, the influence of current (0-20A) and voltage (0-30V) on wear properties of electro-contact lead materials has analyzed, meanwhile, wear behaviors and mechanisms of such materials have also been discussed. Same experiment has been done on pure copper, influences of unlubricated sliding and electro-contact sliding friction&wear on different materials have been discussed as well.
    Experimental results have shown that the relationship between mass wear rate of monocrystalline copper or Cu-O.lAg alloy and load displays linear feature. With load increasing, mass wear rate dramatically increases. The wear-resistance property of Cu-O.lAg alloy is distinctly better than that of monocrystalline copper. Sliding distance and sliding speed
    also have greater influence on metal wear. The increasing current dramatically produces greater heat effect of Cu-0.lAgalloy, rapid increase of surface temperature will decrease wear-resistance property of such material. Meanwhile, the relationship between mass wear rate of monocrystalline copper or Cu-O.lAg alloy and voltage also approximately displays linear feature. Their mass wear rate increases with voltage. Experiments also show that Cu-0.lAgallloy is easier to be oxidized and plastically deformed under the function of current. Therefore, monocrystalline copper has better wear-resistance.
    The development of Monocrystalline copper and copper alloy lead materials, by continuous directional solidification, with cpmprehensive properties such as better electricity conductivity, wear resistance、 corrosion-resistance of electricity and higher strength, is an advanced manufacturing technology of great application promise.
引文
[1] 赵冬梅 铜合金引线框架材料的发展 材料导报 2001 第五期
    [2] 黄崇祺. 轨道高速电气化铁路接触网用接触线的研究 中国铁道科学,2001
    [3] 方正春. 耐热和导电铜合金发展现状 材料开发与应用,1997(4)
    [4] 杨卫贤. 银铜接触线的性能试验及比较 电线电缆,1999(2)
    [5] 张家涛.Cu-Cr自生复合材料研究进展.昆明理工大学学报.2002,27(3),130-133
    [6] 张化龙. 高强度高导电率Cu-Cr-Zr-Mg合金的熔炼 铸造技术 1996,(3),14-17
    [7] 冼爱平.大功率真空开关铜铬触头材料 材料研究现状及发展,第11卷第五期
    [8] 温宏全.铜电车线材料的研究进展 材料导报 1998,12(1)
    [9] 闵文辉 高强度导电铜基复合材料 功能材料 1997
    [10] (日本)青木 纯九等.析出强化铜合金在接触导线上的应用.国外机车车辆2000年第四期9~12
    [11] 齐增生.新型电接触材料Cu-Al_2O_3合金.天津大学硕士学位论文.1990.1
    [12] 凤仪等 功能材料
    [13] 崔建国等 微晶Cu-Cr50真空断路器触头材料的研制.粉末冶金技术,1997.15(1)
    [14] 张国峰等.机械合金化Cu-5Cr合金的组织性能研究.粉末冶金技术,1996.
    [15] 张家涛.Cu-Cr 自生复合材料研究进展.昆明理工大学学报.2002,27(3),130-133
    [16] 王深强.高强高导铜合金的研究现状及展望 材料工程,1995(7):3
    [17] 范炯等 多功能摩擦试验机的研制与应用.南京航天航空大学学报.Vol.32 No.4(2000)
    [18] 夏立明等 MP微量磨损试验机研制.理化检验-物理分册.Vol.31No.1(1995)
    [19] 丁霍林[英]摩擦学原理 机械工业出版社
    [20] 张永振 铸铁的干滑动摩擦磨损 现代铸造 2000,2
    [21] 陈跃 颗粒增强铝基复合材料干摩擦磨损研究进展 兵器材料科学与工程 1999 Vol.22
    [22] 李娜 受电工滑板-接触导线摩擦磨损机理与特性分析 中国铁道科学 1996,第4期17卷
    [23] 谢贤清 铸造法制备Tic/AZ43复合材料连续润滑摩擦行为研究 航空材料学报 2000,第4期20卷
    [24] Alpas A T and Zhang J. wear, 1992, 155: 83~104
    [25] Wang A and Rack HJ. Mater Sci Eng, 1991, A147: 211~224
    [26] Subramanian C. wear, 1991, 151: 97~110
    [27] 李鹏等.有无电流条件下铬青铜/纯铜摩擦副摩擦磨损性能 润滑与密封,2003(2)
    [28] Tung SC, Wang SS, In-sitn electro-charging for friction reduction and wear resistand film formation. Tribology Transaction, 1991, 34 (4), 478-488
    [29] 温试铸.摩擦学原理.清华大学出版社,1990.
    [30] 王知行.刘延荣.机械原理[M].北京高等教育出版社,2000
    [31] 徐双满等.往复式摩擦磨损试验机的研制.机车车辆工艺.Vol.6(1997)
    [32] 黄天铭等.机械系统学 重庆出版社,1994
    [33] 赵韩等.凸轮机构设计 高等教育出版社,1993
    [34] 汤从必等.凸轮与凸轮机构基础.国防工业出版社,1985
    [35] 王大康等.机械设计课程设计.北京工业大学出版社,2000
    [36] 乐樟等.Auto CAD 2002机械设计应用与实例.国防工业出版社,2002
    [37] 中国农业机械化科学研究院 实用机械设计手册.中国农业机械出版社,1984
    [38] 詹德隆 机械设计精度手册.机械技术出版社,1976
    [39] 林述温等.机电装备设计.机械工业出版社,2002
    [40] 张秉政等.非标准设备设计手册.国防工业出版社,1978
    [41] 苏翼林等.材料力学.高等教育出版社,12001
    [42] 李来军.硕士毕业论文.2004
    [43] 邵荷生等.技术的磨料磨损与耐磨材料.机械工业出版社,1988
    [44] 孙家枢.金属的磨损.北京;冶金工业出版社,1992
    [45] 齐卫笑.硕士毕业论文.2002
    [46] 齐卫笑,涂江平,杨有志等.摩擦学学报Vol.21,No.6,Nov.2001,405-409
    [47] 秦曾煌 电工学.高等教育出版社,1998
    [48] 吴宗泽等.机械设计课程设计手册.高等教育出版社,2001
    [49] 罗圣国等.机械设计课程设计指导书.高等教育出版社,2001
    [50] 孙继龙 硕士毕业论文.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700