大视场航天相机遥感图像复原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对宽覆盖地面卫星图像需求的不断增加,大视场航天相机成为航天技术领域研究的重点和热点。大视场航天相机的研制要耗费巨大的人力物力资源,其主要目的是获取高质量宽覆盖的遥感图像,因此图像质量是大视场航天相机成败的关键。
     大视场航天相机通过多片CCD拼接和多通道成像的设计来获取宽覆盖的地面图像,每一片CCD作为一个成像通道单独生成一幅数字图像。由于各片CCD之间存在拼接重叠像元,因此地面获取的各通道图像之间不连续,相邻通道图像之间有一定的重叠区域。在大视场航天相机的成像过程中,由于CCD传感器性能、卫星平台振动、成像系统离焦、大气湍流作用等因素的影响,会造成遥感图像退化,在现有的技术条件下,无法在相机上附加完善的星上图像处理系统,因此地面获取的各通道图像均存在退化变模糊现象。为了获得覆盖整个大视场的连续无缝宽覆盖图像,并尽可能提高宽覆盖图像的质量,必须对各通道图像进行质量退化复原和连续无缝拼接复原。
     结合大视场航天相机各通道图像不连续且存在质量退化的特点,本文从两个方面进行图像复原研究,首先针对各通道图像的退化问题进行图像质量退化复原,以得到细节更清晰的图像,使感兴趣的目标更易识别;其次对提升清晰度后的各通道图像进行连续无缝的自动拼接以得到最终的高质量宽覆盖图像。本文所处理的遥感图像数据量巨大,在保证图像质量提升效果的前提下,时间开销是设计图像复原算法过程中需考虑的一个关键问题。
     针对各通道图像退化问题的质量退化复原是本文的研究重点。详细分析了大视场航天相机遥感图像质量退化的原因,建立了图像退化和复原的模型,将其复原过程分为去噪处理和反卷积处理两个步骤实现。去噪处理过程中,提出结合奇异点检测的改进陷波滤波器法和自适应小波软阈值去噪法实现了遥感图像中条带噪声的消除,在去除噪声的同时尽可能地保留了图像的边缘特征信息。反卷积处理过程的关键是在轨点扩散函数(Point Spread Function, PSF)的估计。本文采用刀刃法利用遥感图像中具有刀刃特征的子图像来估计成像系统的在轨PSF,提出对边缘扩散函数(Edge Spread Function, ESF)进行Fermi拟合来保证PSF估计的精度。得到成像系统的在轨PSF后,以它为参数,采用性能良好且时间开销小的维纳滤波算法进行反卷积处理,提出基于边缘检测的最优窗维纳滤波算法克服了直接维纳滤波导致的寄生波纹和振铃波纹现象,质量退化的各通道图像经该算法处理后,清晰度明显提升,视觉效果良好。实验表明,复杂地形遥感图像被复原后,其清晰度评价指标灰度平均梯度(Gray Mean Grads,GMG)从4.755提高到11.333,拉普拉斯和(Laplacian Sum, LS)从18.676提高到58.493,图像质量得到大幅提升。
     经过去噪处理和反卷积处理后,各通道图像的质量退化现象被复原,图像清晰度提高,特征更易提取和识别,提高了各通道图像连续无缝自动拼接的成功率和效率。本文将各通道图像连续无缝的自动拼接过程分为图像配准和图像融合两个步骤实现。提出基于轮廓的最优步进模板匹配算法实现配准,该算法执行时间约为传统模板匹配算法的0.85%和SSDA算法的1.3%,是一种适合大视场航天相机遥感图像的快速配准算法。融合算法采用渐入渐出法,该方法实现简单,计算速度快,消除拼接接缝的效果好,适合数据量巨大的遥感图像融合处理。
With the increasing demand for ground images with wide coverage, the spacecamera with wide field of view becomes the focus and the hot spot in the field ofspace technology. Its development costs enormous human and material resources. Itsmain products are high-quality remote sensing images with wide coverage, so theimage quality is the key to the success of the space camera with wide field of view.
     The space camera with wide field of view obtains ground images by multi-chipCCD mosaic and multiple imaging channels. Because of the overlapped pixelsbetween the stitching CCDs, the multi-channel images are discontinuous. There isan overlapped region between the images of adjacent channels. In the imagingprocess, many factors will result in image degradation, such as the CCDperformance, the vibration of the satellite, the defocus of the imaging system andatmospheric turbulence. Because the space camera can’t attach a perfect imageprocessing system in the existing condition, the acquired multi-channel images areblurry due to degradation. In order to obtain a continuous and seamless widecoverage image which covers the entire field of view and maximize the quality ofthe wide coverage image, the image degradation of each channel needs to berecovered. At the same time, the multi-channel images need to be stitched toacquire a continuous and seamless wide coverage image.
     Due to the discontinuity of multi-channel images and image degradation of each channel, this paper deals with image restoration of the space camera with wide fieldof view in two aspects. First of all, the image degradation of each channel needs tobe recovered to get clearer images, making the interested targets easier to identify.Secondly, the multi-channel images whose clarity is enhanced need to be stitchedautomatically to get a high quality continuous and seamless wide coverage image.The data amount of the remote sensing images dealt in this paper is huge. Therefore,the time overhead of the restoration algorithms is a key issue to consider in thecondition that the enhancement of image quality is ensured.
     Restoration on image degradation is the focus of this paper. The degradationreasons of the remote sensing images are analyzed detailedly. Image degradation andrestoration models are built. The recovered process is divided into denoising anddeconvolution. In the denoising step, the improved notch filtering method withsingular point detection and wavelet method with adaptive soft threshold areproposed. The two methods not only remove almost all the strip noise in the remotesensing images but also retain the edge information well. The core of thedeconvolution step is estimation of the on-orbit point spread function. Theknife-edge method is adopted to estimate the on-orbit point spread function of theimaging system. In order to ensure the accuracy of the point spread functionestimation, the Fermi fitting is done to the edge spread function. Due to the wellperformance and small time overhead, the Wiener filtering algorithm is used torestore the degraded images with the estimated point spread function as a parameter.In order to overcome the parasitic ripple and ringing phenomenon caused by thetraditional Wiener filtering, the optimal window and edge detection are combinedwith the Wiener filtering to restore images. The clarity of the degraded imagesprocessed by this method is significantly improved. After the remote sensing imagewith complex terrain is recovered, its gray mean grads (GMG) increases form4.775to11.333, and its Laplacian Sum (LS) increases form18.676to58.493.
     After image degradation of each channel is recovered, the clarity is improvedand the features are easier to extract. All this are benefit to the continuous and seamless automatic mosaic of the multi-channel images. The automatic mosaic isdivided into image registration and image fusion. The template matching algorithmwith optimal steps is proposed as image registration algorithm. The execution timeof this algorithm is approximately0.85%of the traditional template matchingalgorithm and1.3%of SSDA algorithm. It is a fast image registration algorithmwhich is suitable for the space camera with wide field of view. The fade-in andfade-out method is used to complete image fusion. It is a simple and fast algorithmwith wonderful effect in eliminating the stitching seams. It is suitable for the remotesensing images with a huge amount of data.
引文
[1]胡君,王栋,孙天宇.现代航天光学成像遥感器的应用与发展[J].中国光学与应用光学,2010,3(6):519-533
    [2]韩昌元.空间光学讲义[S].长春:中国科学院长春光学精密机械与物理研究所.
    [3]白杉,杨秉新.航天侦察相机的发展和研发[J].影像技术,2006(2):3-6
    [4]韩昌元.航天相机成像质量评价[J].光电工程,2002,29:19-24
    [5]王文华.大视场遥感相机成像均匀性研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010
    [6]张晓辉,韩昌元,潘玉龙,韩冰,金辉.传输型CCD相机综合像质评价方法的研究[J].红外与激光工程,2008,37(4):697-701
    [7]宋岩峰,邵晓鹏,徐军.离轴三反射镜光学系统研究[J].红外与激光工程,2008,37(4):706-709
    [8]常军,翁志成,姜会林,从小杰.宽覆盖离轴空间相机光学系统的设计[J].光学精密工程,2003,11(1):55-58
    [9]任建伟,刘则洵,万志,李宪圣,任建岳.离轴三反宽视场空间相机的辐射定标[J].光学精密工程,2010,18(7):1491-1497
    [10]史黎丽,左保军,郑国宪,范俊玲.航空遥感相机光学系统设计[J].应用光学,2007,28(6):724-727
    [11]张星祥,任建岳. TDICCD焦平面的机械交错拼接[J].光学学报,2006,26(5):740-745
    [12]杨桦,郭悦,伏瑞敏. TDICCD的视场拼接[J].光学技术,2003,29(2):226-228
    [13]李朝辉,王肇勋,吴克用.空间相机CCD焦平面的光学拼接[J].光学精密工程,2000,8(3):213-216
    [14]袁金国.遥感图像数字处理[M].北京:中国环境科学出版社,2006.
    [15]梁巍,周润松.国外侦察卫星最新进展[J].航天器工程,2007,16(3):30-40.
    [16]天兵.超级侦察兵中的大哥大——美国照相侦察卫星[J].中国国家宇航,2009,9:68-73
    [17]Mark R. Banham, Aggelos K. Katsaggelos. Digital Image Restoration [J]. IEEESignal Processing Magazine,1997,14(2):24-41
    [18]Viviana Sandor. Wavelet-based digital image restoration [D]:[Paper for Degreeof Doctor]. Virginia: The College of William and Mary,1998
    [19]李云飞,李敏杰,司国良,郭永飞. TDI-CCD图像传感器的噪声分析与处理[J].光学精密工程,2007,15(8):1196-1202
    [20]童子磊. CCD相机的像移补偿技术[J].激光与红外,2005,35(9):628-632
    [21]刘明.基于图像复原的航空摄影前向像移检测及补偿技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005
    [22]董涛,董慧颖.基于大气调制传递函数的天气退化图像复原方法研究[J].沈阳理工大学学报,2006,25(5):39-42
    [23]李刚.航空成像去运动模糊技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [24]Matthew Elemer Goda. Wavelet domain image restoration and super-resolution
    [D]:[Paper for Degree of Doctor]. The University of Arizona,2002
    [25]Zou Mou-yan, Unbehauen R. On the computational model of a kind ofdeconvolution problem [J]. IEEE Image Processing,1995,4(10):1464-1467
    [26]Zou Mou-yan, Unbehauen R. Circulant and aperiodic models of deconvolution: Acomparison [J]. Signal Processing,1998,64:185-192
    [27]Emiliano Bernues, Guillermo Cisneros. Improvement of aperiodic models ofdeconvolution using an extend size deconvolution method [J]. Signal Processing,2001,81:699-711
    [28]翟建雄,刘政凯.数字图像恢复与重建[M].合肥:中国科学技术大学出版社,1999.
    [29]Tikhonov A N, Arenin V Y. Solutions of ill-posed problem [M]. New York:Winston-Wiley,1977.
    [30]Andrews H C, Hunt B R. Digital Image Restoration [M]. Englewood Cliffs, NJ:Prentice-Hall,1977.
    [31]Cherry Wang, Huipin Zhang, Ardrew Doram. Image restoration [EB/OL].http://www.owlnet.rice.edu/`elec539/Projects99/BACH/proj2/intro.html,1999
    [32]C W Heltrom. Image restoration by the method of least squares [J]. J. Opt Soc.Am.,1967,57(3):297-303
    [33]Rafael C. Gonzales, Richard E. Woods.数字图像处理(第二版)[M].阮秋琦,阮宇智等译.北京:电子工业出版社,2010.
    [34]Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2008.
    [35]阮秋琦.数字图像处理学(第二版)[M].北京:电子工业出版社,2010.
    [36]Phillips D L. A technique for the numerical solution of certain integral equationsof the first kind [J]. A.C.M.,1962,9:84-97.
    [37]Hunt B. R. The application of constrained least squares estimation to imagerestoration by digital computer [J]. IEEE Computers,1977,26:219-229
    [38]Charalambouns C, Ghaddar F. K, Kouris K. Two iterative image restorationalgorithms with application to nuclear medicine [J]. IEEE Medical Imaging,1992,11(1):2-8
    [39]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2004.
    [40]L B Lucy. An iterative technique for the rectification of observed distributions [J].The Astronomical Journal,1974,79(6):745-754.
    [41]闫河,闫卫军,李唯唯.基于Lucy-Richardson算法的图像复原[J].计算机工程,2010,36(5):204-210
    [42]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008.
    [43]Hunt B R. Bayesian methods in nonlinear digital image restoration [J]. IEEEComputers,1973,22(9):805-812
    [44]William Hadley Richardson. Bayesian-based iterative method for imagerestoration [J]. Journal of the Optical Society of America,1972,62(1):55-59
    [45]Lagendijk R L, Biemond J. Identification and restoration of noisy blurred imagesusing the expection-maximization algorithm [J]. IEEE Trans. Speech SignalProcessing,1990,38(7):1180-1191
    [46]魏政刚,袁杰辉,蔡元龙.图像质量评价方法的历史、现状和未来[J].中国图像图形学报,1998,3(5):386-389
    [47]Zhou Wang, A C Bovik, H R Sheikh, E P Simoncelli. Image quality assessment:from error visibility to structural similarity [J]. IEEE Transactions on Imageprocessing,2004,13(4):600-612
    [48]Zhou Wang, A C Bovik. A universal image quality index [J]. IEEE SignalProcessing Letters,2002,9(3):81-84
    [49]Zhou Wang, A C Bovik, H R Sheikh. The SSIM index for image qualityassessment [EB/OL]. http://ece.uwaterloo.ca/`z70wang/research/ssim/,2003
    [50]张明宇. TDICCD相机图像采集与处理系统研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [51]从玉良,王宏志.数字信号处理原理及其MATLAB实现[M].北京:电子工业出版社,2006.
    [52]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [53]葛哲学,沙威.小波分析理论与MATLAB2007实现[M].北京:电子工业出版社,2007.
    [54]Horn B K P, Woodham R J. Destriping Landsat MSS imagery by histogrammodification [J]. Compute Graph&Image Process,1979,10:69-83.
    [55]Weinreb M P, Xie R, Lienesch J H, Crosby D S. Destriping GOES images bymatching empirical distribution functions [J]. Remote Sens. Envion.,1989,29:185-195.
    [56]Wegener M. Destriping multiple sensor imagery by improved histogram matching[J]. Int. J. Remote Sensing,1999,11(5):859-875.
    [57]宋燕,刘团结,丁赤飚.一种CBERS-02星CCD原始条带噪声处理方法[J].遥感技术与应用,2008,23(4):457-761
    [58]Gadallah F L, Csillag F, Smith E J M. Destriping multisensor imagery withmoment matching [J]. Int. J. Remote Sensing,2000,21(12):2505-2511
    [59]刘正军,王长耀,王成.成像光谱仪图像条带噪声去除的改进矩匹配方法[J].遥感学报,2002,6(4):279-284.
    [60]郑逢斌,支晶晶,高海亮等.一种高光谱图像条带噪声去除改进算法[J].计算机科学,2010,37(5):265-267
    [61]Simpson J J, Gobat J I, Frouin R. Improved destriping of GOES images usingfinite impulse response filters [J]. Remote Sens. Envion,1995,52:15-35
    [62]Simpson J J, Stitt J R, Leath D M. Improved finite impulse response filters forenhanced destriping of geostationary satellite data [J]. Remote Sens. Envion,1998,66:235-249
    [63]陈劲松,邵芸,朱博勤.中分辨率遥感图像条带噪声的去除[J].遥感学报,2004,8(3):227-233
    [64]石光明,王晓甜,张犁等.基于方向滤波器消除遥感图像孤立条带噪声的方法[J].红外与毫米波学报,2008,27(3):214-218
    [65]D L Donoho, I Johnstone. Ideal spatial adaptation via wavelet shrinkage [J].Biometrika,1994,81:425-455
    [66]姜三平.基于小波变换的图像降噪[M].北京:国防工业出版社,2009.
    [67]蒋耿明,牛铮,阮伟利等. MODIS影像条带噪声去除方法研究[J].遥感技术与应用,2003,18(6):393-398
    [68]修吉宏,翟林培,刘红. CCD图像条带噪声消除方法[J].电子器件,2005,28(4):719-725
    [69]修吉宏.基于图像功率谱的航空图像质量判别技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2005
    [70]杨忠东,张文建,李俊等.应用小波收缩方法剔除MODIS热红外波段数据条带噪声[J].遥感学报,2004,8(1):23-30
    [71]顾行发,李小英,闵祥军等. CBERS-02卫星CCD相机MTF在轨测量及图像MTF补偿[J].中国科学E辑信息科学,2005,35:26-40
    [72]陈强,戴奇燕,夏德深.基于MTF理论的遥感图像复原[J].中国图像图形学报,2006,11(9):1299-1305
    [73]张朋,刘团结,王宏琦.线阵CCD相机MTF的系统模型估计法与图像复原[J].光学技术,2009,35(3):394-398.
    [74]Taeyoung Choi. IKONOS Satellite on Orbit Modulation Transfer Function (MTF)Measurement using Edge and Pulse Method [D]. South Dakota State University,2002
    [75]K Bensebaa, G J F Banon, L M G Fonseca. On-orbit spatial resolution estimationof CBERS-1CCD system from bridge images [C]. Proceedings of InternationalSociety for Photogrammetry and Remote Sensing (ISPRS), Istanbul, Turkey.2004:36-41
    [76]Hyundeok Hwang, Young-Wan Choi, Sunghee Kwark, Moongyn Kim, WonKyuPark. MTF assessment of high resolution satellite image using ISO12233slanted-edge method [J]. Proc. of SPIE, Image and Signal Processing for RemoteSensing XIV,2008,7109:710905-1~710905-9.
    [77]Tiecheng Li, Huajun Feng, Zhihai Xu, Xiaotong Li, Zhaofeng Cen, Qi Li.Comparison of different analytical edge spread function models for MTF calculationusing curve-fitting [J]. Proc. of SPIE,7498:7498H-1~7498H-9
    [78]Elisa H. Barney Smith. PSF estimation by gradient descent fit to the ESF [J]. Proc.of SPIE, Image Quality and System Performance III,2006:1-9.
    [79]James C. Storey. Landsat7on-orbit modulation transfer function estimation [J].Proc. of SPIE, Sensors, System, and Next-Generation Satellites V,2001,4540:50-61
    [80]Francoise Viallefont-Robinet, Dominique Leger. Improvement of the edgemethod for on-orbit MTF measurement [J]. Optics Express,2010,18(4):3531-3545
    [81]Francoise Viallefont-Robinet. Edge method for on-orbit defocus assessment [J].Optics Express,2010,18(20):20845-20851
    [82]周松涛,宣家斌.基于景物灰度分布特征的影像恢复技术[J].武汉测绘科技大学学报,1999,24(3):230-234,239
    [83]张宇.宽视场大面阵CCD相机图像采集与处理系统研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010
    [84]谢凤英,赵丹培.Visual C++数字图像处理[M].北京:电子工业出版社,2008.
    [85]朱孔凤,姜威,王端芳等.一种新的图像清晰度评价函数[J].红外与激光工程,2005,34(4):464-468
    [86]赵志彬,刘晶红.基于图像处理的航空成像设备自动调焦设计[J].液晶与显示,2010,25(6):863-868
    [87]Brown L G. A survey of image registration techniques [J]. ACM ComputingSurvey,1992,24(4):326-376
    [88]陈显毅.图像配准技术及其MATLAB编程实现[M].北京:电子工业出版社,2009.
    [89]M K Hu. Visual pattern recognition by moment invariant [C]. IEEE Trans onInformation Theory,1962, IT-8:179-187
    [90]A Goshtasby, C Stockman, C V Page. Template matching in Rotated images [J].IEEE Trans on PAMI,1985,7(3):338-344
    [91]Xiaowei Han, Lei Yan, Hongying Zhao. An approach of fast image mosaic basedon binary region segmentation [C].27th International Congress on High-SpeedPhotography and Photonics, Proc. SPIE,2007,6279:57-1
    [92]HARRIS C, STEPHENS M. A combined corner and edge detector [C]. Proc ofthe4th Alvey Vision Conference, Manchester:[s. n.],1988:147-151
    [93]赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19
    [94]BROWN M, LOWE D G. Invariant features from interest point groups [C]. Procof British Machine Vision Conference. Cardif, Wales:[s. n.],2002:656-665
    [95]LOWE D G. Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision,2004,60(2):91-110
    [96]HongyaTuo, Zhongfiang Jing, Tinghou Zhang. Aerial sequence image mosaicusing reduced sift descriptors [C]. Automatic Target Recognition and Image Analysisand Multispectral Image Acquisition, Proc. SPIE.2007,6786:67862V1-9
    [97]C. Kuglin, D. Hines. The Phase Correlation Image Alignment Method [C].Proceedings IEEE International Conference on Cybernetics and Society, l975,(3):163-165
    [98]B S Reddy, B N Chatterji. An FFT-based technique for transactions, rotation andscale invariant image registration [C]. IEEE Transaction on Image Processing,1996,5(8): l266-1271
    [99]肖鹏,殷实,刘平平等.基于序贯相似性测算法的图像模板配准算法[J].湖北工业大学学报,2010,25(1):99-101
    [100]闫小超,魏生民,汪焰恩等.基于序贯相似度的AGV图像配准方法[J].科学技术与工程,2010,10(3):697-699
    [101] Shum H Y, Szeliski R. Panoramic image mosaics [S]. Technical ReportMSR-TR-97-23,Microsoft research, l997:4-20
    [102] Pert J B, Edward H A. A multiresolution spline with application to imagemosaics [J]. ACM Transactions on Graphics,1983,2(4):217-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700