N-端聚乙二醇化L-门冬酰胺酶的制备、纯化及鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左旋门冬酰胺酶(L-ASP)是一种白色或微黄色冻干粉未,无嗅、无味,由4个亚基组成的同型四聚体,其相对分子量为133000±5000,主要作用是把血清中的门冬酰胺水解为门冬氨酸和氨,临床上主要用于治疗急性淋巴细胞性白血病(简称急淋)。急性白血病等肿瘤细胞会因既不能从血中取得足够门冬酰胺,亦不能自身合成,使其蛋白质合成受障碍,增殖受抑制,细胞大量破坏而不能生长、存活;正常细胞有自身合成门冬酰胺的功能而不受影响。本品亦能干扰细胞DNA、RNA的合成,可能作用于细胞G1增殖周期中。在临床应用上,重组L-ASP与其它的重组制品一样具有半衰期短、有较强的免疫原性、毒副作用大等缺点。由于体内半衰期较短,需要每天注射才能维持有效的血药浓度。结果长期而频繁的注射,增加了治疗成本,给患者带来严重的痛苦和不便,降低了依从性,加重了病人的经济负担。
     为了克服L-ASP在临床用药上的限制,本课题选择单甲氧基聚乙二醇丙醛(mPEG-ALD)对左旋门冬酰胺酶(L-ASP)进行N-末端定位修饰,通过增大其分子量,降低肾脏消除率,提高药物体内半衰期;偶联PEG的立体屏蔽效应,减缓了胰蛋白酶的降解,同时也使其免疫原性大大降低;由于PEG的生物相容性好、药物半衰期的延长,可以减少用药次数,也相应的降低了其毒副作用。
     本课题具体研究内容如下:
     一、通过对PEG修饰反应的主要影响因素摩尔比、反应温度、反应时间、反应pH值的筛选,建立了一种优化的PEG-L-ASP的制备及纯化工艺,其优化的修饰条件为L-ASP:mPEG=1:10,温度37℃,时间6h,pH=5.0,酶溶液浓度为5.0mg/ml,该优化条件下L-ASP的修饰转化率为87.94%;建立了离子交换色谱和凝胶过滤色谱联用的分离纯化工艺,并用其分离纯化了优化修饰条件下制备的PEG-L-ASP,得到了修饰产物均一、且纯度在95%以上的修饰酶。
     二、为了考察修饰产物PEG-L-ASP的理化性质及确证其一级结构,采用紫外扫描、IEF电泳、荧光胺法测修饰度、Western Blot免疫印迹、肽图分析等方法对偶联终产物PEG-L-ASP进行了分析。结果发现,纯化后的PEG-L-ASP的效价为134.076单位/mg,而L-ASP原酶的效价为373.670单位/mg,其修饰酶的活性保留为原酶的35.88%,修饰酶PEG-L-ASP与L-ASP原酶的最大吸收峰一样都在278nm的位置,等电点也都位于4.65~4.75之间,获得修饰酶PEG-L-ASP的PEG化率为3.27%,PEG-L-ASP修饰带与L-ASP未修饰带在Western Blot免疫印迹时都呈阳性反应,但PEG-L-ASP修饰带与抗体结合能力很弱,初步说明其免疫原性低,胰
The L-asparaginase (L-ASP) is one kind of white or light yellow freeze-dry dust, smell-less and tasteless. It is composed of homeotype tetramer and its relative molecular weight is 133000±5000. The main function is to hydrolyze aspartamic acid in blood serum to aspartic acid and the ammonia. L-ASP in clinical is mainly used to treat the acute lymphocyte leukemia (abbreviation AL). And the aspartamic acid is a must for cell protein synthetic and proliferation. Normal cells can synthesize aspartamic acid, but tumor cells of acute leukemia etc do not have that function. Thus when L-ASP causes the aspartamic acid sudden missing, the tumor cell cannot obtain enough aspartamic acid from the blood, and cannot synthesize either. Then massive tumor cells will be destructed because the protein synthesis is blocked and the proliferation is suppressed. L-ASP can also disturb the process of DNA and RNA synthesis in cells, possibly by affecting the G1 multiplication cycle of cells. In clinical practice, reorganized L-ASP also has short half-life, strong immunogenicity and poisonous side effect as other reorganized products. Because its half-life is short, it must be injected every day to maintain effective blood concentration. As a result, long-term and frequent injection increases the treatment cost, brings serious pain and inconvenience to patients, reduces the compliance and aggravate patients’economical burden.
     In order to overcome the clinical limit of L-ASP, this research chose the single methoxy polyethylene glycol propylaldehyde (mPEG-ALD) to carry out localized modification on the N-terminal of the laevo-rotatory asparaginase. By increasing its molecular weight, the kidney elimination rate was reduced and in vivo half-life was enhanced; Because of stereo barrier effect of coupling PEG three-dimensional, the trypsin degradation was slowed down and its immunogenicity was also greatly reduced simultaneously; and because of the PEG biological good compatibility and lengthening of half-life, the injection amount of L-ASP was reduced, which correspondingly reduced its poisonous side effect.
     The detailed contents of research were described as the following:
     1 This research established one optimized PEG-L-ASP preparation system by screening proper mole ratio, reaction temperature, reaction time, pH value of the modification reaction of PEG. The optimized preparation condition was: mPEG was 1:10;temperature was 37 centigrade; time was 6 hours; pH value was 5; enzyme solution
引文
[1] 程玉华、曹淑华、赵秋宇、王树歧、田洁. 无抗原性L-天冬酰胺酶的制备.中国,CN 1009277B,1990.
    [2] 姜忠义,高蓉,许松伟,王艳强.药物蛋白的聚乙二醇修饰[J]. 中国药学杂志,2002,37(6):409-412.
    [3] Sidney Shifrin, Barbara G. Solis. L-Asparaginase from Escherichia coli B Chemical Modification of tyrosyl Residues[J]. The Journal of Biological Chemistry, 1972, 13(247) : 4121-4125.
    [4] Vaulont S, Cognet MV, Kahn A. Glucose Regulation of Gene Transcription[J]. J Biol Chem, 2000, 275(41): 31555-31558.
    [5] Takagaki K, Katsuma S, Horio T. cDNA microarray analysis of altered gene expression in Ara-C-treated leukemia cells[J]. Bioch Biophys Res Commun, 2003, 309(5): 351-358.
    [6] Zhong C, Chen C, Michael S. Characterization of nutrientsensing response unit in the human asparagines systhetase promoter[J]. Biochem J, 2003, 372(2):603-609.
    [7] Krejci O, Starkova J, Otova B, et al. Upregulation of asparagines synthetase fails to avert cell cycle arrest induced by L-asparaginase in TEL/AML1-posisitive leukaemic cells[J]. Leukemia, 2004,18(3): 434-441.
    [8] 王钦超. L-天冬胺酰酶Ⅱ的发酵及分离纯化工艺研究[M]. 华东理工大学,2005.
    [9] 杭长标,刘景晶. 工业化生产L-门冬酰胺酶发酵条件的研究[J]. 中国生化药物杂志,2001,22(6):309-310.
    [10] 刘茂柏,郑斌,张进华. 左旋门冬酰胺酶的不良反应及防治措施[J]. 海峡药学,2003,15(5):119-120.
    [11] 王 忠,陈 玲.左旋门冬酰胺酶治疗小儿急性淋巴细胞白血病致不良反应分析[J].现代中西医结合杂志,2004,13(21):2881-2882.
    [12] Inada Yuji, Furukawa Makoto, Sasaki Hideyuji, et al. Biomedical and biotechnological applications of PEG- and PM-modified proteins[J]. Tibtech, 1995,13:86-91
    [13] 吴洁,刘景晶,胡卓逸. 蛋白质药物的聚乙二醇修饰[J]. 药学进展,2002,26(3):146-151.
    [14] Kinstler OB, Brems DN, Lauren SL, el al. Characterization and stability of N-terminally PEGylated rhG-CSF [ J ].Pharm Res, 1996, 13(7):996-1002.
    [15] Olaf B K, Darid N B, Scott L L. Characterization and stability of N-terminally pegylated rhG-CSF[J]. Pharm Res, 1996,13(7): 996-1002.
    [16] 姜忠义,许松伟,王艳强. 蛋白质和肽类分子的聚乙二醇化化学[J]. 有机化学,2003,23(12):1340-1347.
    [17] 梁宋平. 生物化学与分子生物学实验教程. 高等教育出版社[M],2003.
    [18] 张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版). 高等教育出版社[M],2003.
    [19] 国家药典编委会.中华人民共和国药典(2005 版).化学工业出版社[M],2005.
    [20] 夏其昌,曾嵘. 蛋白质化学与蛋白质组学. 科学出版社[M],2004.
    [21] 赵亚力,王学斌,韩为东.分子生物学基本实验技术.清化大学出版社[M],2006.
    [22] 周笑艳,刘景晶.聚乙二醇对大肠杆菌 L-天冬酰胺酶的化学修饰[J]. 中国药科大学学报,2000,31(3):230-233.
    [23] 林菊生,冯作化.现代细胞分子生物学技术.科学出版社[M],2004.
    [24] 胡小剑. 聚乙二醇衍生物的制备及其对蛋白质的修饰.北京化工大学[M], 2003.
    [25] 张翊,韩春梅,高凯,丁有学,饶春明,王军志. 聚乙二醇化重组人粒细胞集落刺激因子的质量标准和质控方法研究[J]. 中国药品标准, 2004,5(2):10-12.
    [26] 曾文珊,刘景晶,杨仲元,徐康森. 重组人甲状旁腺素 1-34 胰蛋白酶切肽图谱分析[J].中国药科大学学报,2005,36(1):86-89.
    [27] 董标,梁月琴,王杰,董方霆. 单克隆抗体-白介素 2 融合蛋白一级结构的确证[J]. 分析测试学报,2005,24(6):125-127.
    [28] 方开泰,马长兴.正交与均匀设计实验.科学出版社[M],2001.
    [29] Swain A L, Housset D, Wlodawer A, et a1. Crystal structure of Escherichia coli L-asparaginase, an erzyme used in cancer therapy[J]. Proc Natl Acad Sci, 1993, 90(4):1474-1478.
    [30] Kozak M, Jask61ski M, R61un K H. Preliminary crysta1lographic studies of Y25F mutant of periplasmie Escherichia coli L-asparaginase[J]. Acta Biochimiea Polonica, 2000, 47(3): 807-814.
    [31] Derst C, Wehner A, Rohm K H, et a1. Smtes and functions of tyrosine residues in Escherichia coli asparaginase Ⅱ[J]. Eur J Biochem, 1994, 224(2): 533-540.
    [32] Harms E, Wehner A, Rohm K H, et a1. A catalytic role for threonine-l2 of E.coli asparaginaseⅡ as established by site-directed mutagenesis[J]. FEBS Lett, 1991, 285(1): 55-58.
    [33] Aung P H, Bocola M, Rohm K H, et a1. Dynamics of a mobile loop at the active site of Escherichia coli asparaginase[J].Biochim Biophys Acta, 2000, 1481(2):349-359.
    [34] Ordund E, Lacount M W, Lewinski K, et a1. Reactions of Pseudomons 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagines result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu[J]. Biochemistry, 2000, 39(6): 1199-1204.
    [35] Palm G J, Lubkowski J, Wlodawer A, et a1. A covalently bound catalytic intermediate in Escherichia coli asparaginase: Crystal structure of a Thr-89-Val mutant [J].FEBS Lett, 1996, 390(2):211-216.
    [36] Kozak M, Jaskolski M. Crystallization and preliminary crystallographic studies of a new crystal form of Escherichia coli L-asparaginase Ⅱ (Ser 58 Ala mutant)[J].Acta Crystallogr D Biol Crystallogr, 2000, 56(4): 509-511.
    [37] Derst C, Henseling J, Rohm K H. Engineering the substrate pecificity of Escherichia coli asparaginaseⅡ .Selective reduction of glutaminase activity by amino acid replacements at position 248[J]. Protein Sci, 2000, 9(10):2009-2017.
    [38] 吴敬,吴梧桐.99绿环跨世纪生物与医药产业发展研究[M].北京:中国农业科技出版社,1999.80.
    [39] 吴敬,吴梧桐,王德育,蒋笃孝,袁春伟.L-天冬酰胺酶B细胞表位研究[J].药物生物技术,2002,9(4):196-199.
    [40] 韦玉军,陈建华,吴梧桐.E.coli L-天冬酰胺酶结构与功能及其纯化工艺[J].药学进展,2005,29(9):397-404.
    [41] Zhang,Jian-Feng; Shi,Ling-Yang; Wei,Dong-Zhi. Chemical modification of l-Asparaginase from Escherichia coli with a modified polyethyleneglycol under substrate protection conditions[J]. Biotechnology Letters, 2004, 26(9): 753-756.
    [42] 辛秀鹃,魏东芝,董常松,周文瑜,刘建文.壳聚糖修饰L-天门冬酰酶对酶活及抗原的影响[J].华东理工大学学报,2002,28(4):380-382.
    [43] Guoqiang Qian, Jianbiao Ma, Juyan Zhou, Binglin He. Chemical modification of E.coli L-asparginase with poly(N-vinylpyrrolidone-co-maleic anhydride) [J].Reactive & Functional Polymers, 1997, 32:117-121.
    [44] 王树岐,赵秋宇,王波,程玉华,张培因,王悦. PEG2 修饰 125I-L-天冬酞胺酶在小鼠体内的分布与代谢[J]. 药物生物技术,1996,3(1):18-21.
    [45] 孟宪台,彭滢,孙飘扬,周云曙. 聚乙二醇修饰门冬酰胺酶的制备方法.中国,CN 1498965A,2002.
    [46] Veronese, Francesco M, Monfardini, Cristina, Caliceti, Paolo, Schiavon, Oddone, Scrawen, Michael D, et. Al. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol) [J]. Journal of Controlled Release, 1996, 3(40): 199-209.
    [47] Hubert F. Gaertner* , Robin E. Offord. Site-Specific Attachment of Functionalized Poly(ethylene glycol) to the Amino Terminus of Proteins[J] .Bioconjugate Chem., 1996, 7 (1):38 -44.
    [48] Li G, Qian S J, Meng G Z, et a1. Construction and structural modehng of a single-chain Fv-asparaginase fusion proteinresistant to proteolysis[J]. Biotechnol Bioeng, 2000, 70(4):456-463.
    [49] 王弘,吴梧桐, 顾学裘,郭青龙. 重组 L2 门冬酰胺酶前体脂质体对急性淋巴白血病小鼠的治疗效果[J]. 药物生物技术,2000,7(1):19-22.
    [50] 徐慧显,李民勤,潘再群,马建标,何炳林.葡聚糖磁性毫微粒固定化 L-天冬酰胺酶的研究[J].生物化学杂志,1996,12(6):744-746.
    [51] 钱国强,周菊岩,马建标,王道宾,何炳林.壳聚糖微球固定化 L-天冬酰胺酶研究[J].高等学校化学学报,1996,17(7):1147-1150.
    [52] 毛益斌,张蓓蕾.单甲氧聚乙二醇化学修饰药物酶的研究进展[J]. 中国医药工业杂志,2003,34 (5):250-254.
    [53] 张修建,王清明,陈惠鹏,陈吉中,范国才,刘刚. 药物的聚乙二醇修饰研究进展[J]. 解放军药学学报,2003,19(3):213-216.
    [54] Kinstler OB, Brems DN, Lauren SL, el al. Characterization and stability of N-terminally PEGylated rhG-CSF [J]. Pharm Res, 1996, 13(7):996-1002.
    [55] Kinstler 0, Molineux G, Treuheit M, et al. Mono-N-terminal poly(ethylene glycol)-protein conjugates[J].Advanced Drug Delivery Reviews, 2002, 54(4):477-485.
    [56] 王良友,刘克良. 多肽和蛋白质的聚乙二醇化修饰方法[J]. 有机化学,2003,23(11):1320-1323 .
    [57] 胡永祥,牛津梁,张文博,高林.聚乙二醇修饰药物技术的研究进展[J].中国生化药物杂志,2004,25(6):369-373.
    [58] 印春华,张敏. 蛋白质和多肽类药物的聚乙二醇结合物——一种新型给药系统[J].中国药学杂志,2001,36(5):292-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700