环保水乳型功能胶乳的制备表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调节丙烯酸酯类单体的种类及组分可以弹性设计聚丙烯酸酯胶乳(PA)的分子结构,乳胶膜从软到硬。乳胶膜具有优异的耐候性、耐水性、耐化学品性。在内外墙涂料、水性胶粘剂、纺织助剂等领域有着广泛的应用。为了进一步开拓聚丙烯酸酯胶乳的新用途,用其它性质的材料或者其它高分子材料对其化学改性,制备聚丙烯酸酯基复合胶乳是近年来研究较为热门的课题之一。本文分别研究三种体系的复合胶乳:第一种是无机纳米二氧化硅/聚丙烯酸酯杂化复合乳液,第二种是聚氨酯/聚丙烯酸酯复合胶乳(PUA),第三种是聚丙烯酸酯接枝环氧树脂复合胶乳(EPA)。
     (1)纳米SiO_2具有优异的光、热、电、磁和机械性能等,制备含纳米SiO_2的PA胶乳,可望提高乳胶膜的耐热性、综合机械力学性能、防紫外线以及耐化学品性。但纳米SiO_2由于具有高表面能,在水介质中易聚集,制备稳定的SiO_2/聚合物复合乳液是较为困难的。因此,本文首先用油酸表面修饰纳米SiO_2(M-SiO_2)以引入可聚合的双键,同时提高纳米SiO_2在水相体系中的悬浮稳定性。然后在M-SiO_2表面进行乳液聚合,制备苯乙烯-丙烯酸丁酯-甲基丙烯酸甲酯共聚物/二氧化硅(PSBM-g-SiO_2)以及苯乙烯-甲基丙烯酸甲酯共聚物/二氧化硅(PSM-g-SiO_2)杂化复合乳液。重点研究了复合乳胶粒子的形貌、粒径大小及其分布和纳米二氧化硅含量对乳胶膜的热性能、流变性能、界面形貌的影响,揭示了复合乳胶粒子的形成机理。结果表明,纳米SiO_2与PSBM之间以化学键相连,粒子为规则的球形形貌,粒径在50-80nm,SiO_2的复合提高了PSBM的热分解温度。稳态粘度与动态模量取决于纳米SiO_2在PSBM聚合物基中的含量和分散均匀性。将PSM-g-SiO_2杂化纳米粒子填充到PBSA胶乳中,以制备填充性复合胶乳,考察了杂化纳米粒子的填充量对填充型复合PBSA的耐水性、粘度及对网格布的粘结强度的影响。结果表明填充有1 wt.%杂化纳米粒子的PSBA乳液的玻璃纤维的单根丝的节点强度最大,同时复合胶膜的耐水性能显著提高。
     (2)通过丙烯酸酯类的单体与聚氨酯(PU)乳液聚合的方法成功地制备了聚氨酯/聚丙烯酸酯(PUA)复合胶乳,采用衰减全反射傅立叶红外光谱法(ATR-FTIR)、透射电镜(TEM)、动态光散射(DLS)、热重(TGA)等技术对纳米复合胶乳的结构、尺寸和性能进行表征。结果表明,复合胶乳的表面为PU中的亲水基团,内部为PU中的疏水区域与PA形成的IPN结构,并揭示了复合胶乳的形成机理。与水性PU相比,复合乳胶膜的耐水性及耐热性显著提高。应用于聚氯乙烯(PVC)片材的聚偏二氯乙烯(PVDC)阻隔涂层的底涂剂,对比水性聚氨酯PVDC底涂剂,分析PVC片材表面PVDC涂层表面外观、剥离强度、性价比等参数,指出PUA复合胶乳是一种性能优异、价格低廉的新型水性PVDC底涂剂。
     (3)采用两种功能单体甲基丙烯酸(MAA)和丙烯酰胺(AM)及乳液聚合方法成功制备了高环氧树脂含量的环氧树脂接枝聚丙烯酸酯胶乳(EPA),采用DSC、萃取法及铅笔硬度法对接枝共聚的乳胶膜进行结构与性能的表征。通过研究功能单体种类与用量对乳液聚合稳定性及胶乳贮存稳定性的影响,揭示接枝聚合机理。系统研究了EPA乳胶膜中环氧树脂的含量对交联度、玻璃化温度(Tg)、硬度以及交联固化后的乳胶膜的耐水性能的影响。结果表明,MAA和AM两种功能单体共同使用,使羧基(-COOH)、酰胺基(-CONH2)与环氧基团发生交联反应形成自交联结构,是制备高环氧树脂含量的EPA的关键因素,EPA接枝共聚胶乳中环氧树脂含量从10 wt.%~60 wt.%可调。共聚乳胶膜的自交联度、Tg和硬度随着环氧含量的增加而降低,而交联固化的胶乳膜耐水性能随环氧树脂量的增加而提高。
The polyacrylate latex (PA) of molecular structure was designed changeably by varying the types and component of acrylic monomers. And thus the latex film from soft to hard with distinct weather-resistant, water-resistant and chemical resistant. The PA latex has been widely used in interior and exterior wall coating, water-based adhesive, textile auxiliaries and other fields. In resent years, it is one of the more popular subjects of preparing polyacrylate complex latex with other properties of materials and other polymer materials to modify PA latex by chemical method to develop the novel application. Three kinds of complex latex system were studied in this paper, the first is inorganic nano-silica/polyacrylate hybrid complex latex, the second is polyurethane/ polyacrylate complex latex (PUA), and the third is epoxy graft polyacrylate complex latex (EPA).
     Nano silica exhibits attractive thermal, optical, electrical, magnetic and mechanical properties. Preparation of nano-SiO_2 in the PA latex expected to improve the heat resistance, comprehensive mechanical properties, UV and chemical resistance. However, due to the large surface and strong aggregation of nanosilica, the synthesis of stable nanosilica/polymer complex latex is difficult. Thus, nanosilica particles were modified by oleic acid (M-SiO_2) in order to introduce the polymerization active vinyl groups and improve the suspension stability of nano-SiO_2 in aqueous solution. Then, emulsion polymerization was done in the presence of M-SiO_2 nanoparticles to obtain styrene-n-butyl acrylate-methyl methacrylate copolymer/silica (PSBM-g-SiO_2) and styrene-methyl methacrylate copolymer/silica (PSM-g-SiO_2) complex nanoparticles. The morphology, size and size distribution of the complex latex particles and the effect of silica content in latex film on the thermal behavior, rheological behavior and interfacial morphology were investigated in detail. A reasonable mechanism for the preparation of nanoscale complex latex was described. The results indicated that the chemical bond was formed between PSBM and nanosilica, the complex particles had a regular spherical morphology with a diameter ranging from 50 to 80 nm, the addition of nanosilica could improve the pyrolyze temperature of PSBM. The steady viscosity and dynamic modulus were strongly dependent on the content and distribution of nanosilica in PSBM matrix. The obtained PSM-g-SiO_2 complex nanoparticles were subsequently filled in the poly (n-butyl acrylate-styrene) (PBSA) latex to preparation of composite latex. The effect of hybrid nanoparticle filling on the water resistant, viscosity and the adhesive strength of the fibre glass gridding cloth was studied. The result showed that the node strength/monofilanment of the fibre glass gridding cloth coated with the PBSA latex filled with 1.0 wt.% complex nanoparticles demonstrated greatest improvement. Moreover, the water-resistance property of complex latex film was enhanced distinctively.
     (2) Polyurethane/polyacrylate(PUA) complex emulsion was prepared by emulsion polymerization of acrylate monomers and water-based polyurethane. The structure, size and property of the complex latex were characterization by Attenuated total reflectance FTIR spectroscopic (ATR-FTIR), Transmission electron microscope (TEM), Dynamic light scattering (DLS) and Thermal gravimetric analysis (TGA). The results indicated that the surface of the complex latex is hydrophilic moieties of PU, while the interior of the latex is IPN structure formed by the hydrophobic domain of PU and PA. A reasonable mechanism for the preparation of the complex latex was given. In comparison with that of water-based PU, the water resistance and heat resistance of PUA films were improved. The resulting latex was then applied in pre-adhesive of Polyvinylidene Chloride (PVDC) to endue the barrier property of Polyvinyl Chloride (PVC) sheets. The appearance, peel strength of PVDC from PVC sheet, and performance price ratio of PUA complex latex are better as compared with the water-based PU pre-adhesive. Therefore, PUA complex latex is a novel pre-adhesive for PVDC with high performance in properties and low cost.
     (3) Epoxy-g-polyacrylate (EPA) latex with a high content of epoxy resin was prepared by emulsion polymerization with using two kind of functional monomers methacrylic acid (MAA) and acrylamide (AM), and the structure and property of graft copolymerization latex films were characterization by differential scanning calorimetry (DSC), cross linking degrees, water absorption and pencil hardness, respectively. The effect of the type and amount of functional monomers on polymerization stability and storage stability was investigated and the mechanism of graft polymerization was revealed. The effect of epoxy resin content in EPA latex film on the cross-linking degrees, glass transition temperature (Tg), rigidity and water resistant was discussed in detail. The results indicated that the usage of the MAA and AM functional monomers at the same time to make carboxyl group (-COOH) amide group (-CONH2) cross linking react with epoxy group and form self cross linking structure is the important factor to the prepare EPA with high content of epoxy resin. The epoxy resin content of graft copolymerization EPA latex ranges from 10 wt.% to 60 wt.%. The self-crosslinking degrees, Tg and rigidity of copolymerization latex films decreased with increasing epoxy resin content, while the water resistant increased with increasing epoxy resin content after the latex film was cured.
引文
[1] S. Muroi. Some challenging applications of latex technologies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153(1-3): 3-10
    [2]孔志元.中国水性涂料的现状及发展[J].涂料技术与文摘, 2008,(010): 10-13
    [3] G. E. Fonseca, T. F. McKenna, A. Dub Marc. Miniemulsion vs. conventional emulsion polymerization for pressure-sensitive adhesives production[J]. Chemical Engineering Science, 2010, 65(9): 2797-2810
    [4] G. Kim, S. Lim, B. H. Lee, et al. Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: Soap-free emulsion polymerization versus dispersion polymerization[J]. Polymer, 2010, 51(5): 1197-1205
    [5]曹同玉,胡金生,刘庆普.聚合物乳液合成原理性能及应用[M].化学工业出版社, 2007.
    [6]郭俊杰,张宏元.乳液聚合技术现状及应用前景[J].粘接, 2006, 27(001): 44-47
    [7] J. Bentley, G. P. A. Turner. Introduction to paint chemistry and principles of paint technology[M]. CRC, 1997.
    [8]陈立军,陈丽琼,张欣宇, et al.超低VOC内墙涂料用核壳结构苯丙乳液的制备研究[J].新型建筑材料, 2007, 34(003): 57-62
    [9] P. Satraphan, A. Intasiri, V. Tangpasuthadol, et al. Effects of methyl methacrylate grafting and in situ silica particle formation on the morphology and mechanical properties of natural rubber composite films[J]. Polymers for Advanced Technologies, 2009, 20(5): 473-486
    [10] A. Bandyopadhyay, M. De Sarkar, A. K. Bhowmick. Effect of reactionparameters on the structure and properties of acrylic rubber/silica hybrid nanocomposites prepared by sol-gel technique[J]. Journal of Applied Polymer Science, 2005, 95(6): 1418-1429
    [11] L. Bokobza, G. Garnaud, J. E. Mark, et al. Effects of filler particle/elastomer distribution and interaction on composite mechanical properties[J]. Chemistry of Materials, 2002, 14(1): 162-167
    [12] G. M. Odegard, T. C. Clancy, T. S. Gates. Modeling of the mechanical properties of nanoparticle/polymer composites[J]. Polymer, 2005, 46(2): 553-562
    [13] G. Ragosta, M. Abbate, P. Musto, et al. Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness[J]. Polymer, 2005, 46(23): 10506-10516
    [14] T. Mizutani, K. Arai, M. Miyamoto, et al. Application of silica-containing nano-composite emulsion to wall paint: A new environmentally safe paint of high performance[J]. Progress in Organic Coatings, 2006, 55(3): 276-283
    [15] K. Zheng, L. Chen, Y. Li, et al. Preparation and thermal properties of silica-graft acrylonitrile-butadiene-styrene nanocomposites[J]. Polymer Engineering and Science, 2004, 44(6): 1077-1082
    [16] C. L. Chiang, C. C. Ma. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites[J]. Polymer Degradation and Stability, 2004, 83(2): 207-214
    [17] Y. W. Wang, C. T. Yen, W. C. Chen. Photosensitive polyimide/silica hybrid optical materials: Synthesis, properties, and patterning[J]. Polymer, 2005, 46(18): 6959-6967
    [18] Y. Wang, X. Wang, J. Li, et al. Conductive polyaniline/silica hybrids from sol-gel process[J]. Advanced Materials, 2001, 13(20): 1582-1585
    [19] V. Salgueirino-Maceira, M. A. Correa-Duarte, M. Spasova, et al. Composite silica spheres with magnetic and luminescent functionalities[J]. AdvancedFunctional Materials, 2006, 16(4): 509-514
    [20] T. Kashiwagi, A. B. Morgan, J. M. Antonucci, et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite[J]. Journal of Applied Polymer Science, 2003, 89(8): 2072-2078
    [21] Z. Peng, L. X. Kong, S. D. Li, et al. Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization[J]. Composites Science and Technology, 2007, 67(15-16): 3130-3139
    [22] F. Mammeri, L. Rozes, E. Le Bourhis, et al. Elaboration and mechanical characterization of nanocomposites thin films. Part II. Correlation between structure and mechanical properties of SiO2-PMMA hybrid materials[J]. Journal of the European Ceramic Society, 2006, 26(3): 267-272
    [23]邱权芳,彭政,罗勇悦, et al.“胶乳共混法”制备天然橡胶/二氧化硅纳米复合材料及其性能[J].广东化工, 2009, 36(004): 7-9
    [24]石智强,李赛,刘孝波.溶胶-凝胶法制备聚氨酯/二氧化硅杂化材料[J].四川大学学报, 2004, 36(003): 60-63
    [25] X. Tong, T. Tang, Q. Zhang, et al. Polymer/silica nanoscale hybrids through sol-gel method involving emulsion polymers. I. Morphology of poly (butyl methacrylate)/SiO2[J]. Journal of Applied Polymer Science, 2002, 83(2): 446-454
    [26] A. P. Zhu, A. Y. Cai, Z. Y. Yu, et al. Film characterization of poly (styrene-butylacrylate-acrylic acid)–silica nanocomposite[J]. Journal of Colloid and Interface Science, 2008, 322(1): 51-58
    [27] A. P. Zhu, Q. P. Rong, R. Chen. The preparation of core shell P(St-MMA) SiO2 hybrid nanoparticles and filling in the styrene/n-butyl acrylate adhesive[J]. Journal of Adhesion Science and Technology, 2010, 24(2): 267-280
    [28]童筱莉,邬润德.聚丙烯酸酯原位乳液聚合包覆SiO2的研究[J].有机硅材料, 2002, 16(004): 1-4
    [29] X. F. Wen, M. Z. Li, P. H. Pi, et al. Study of the physicochemical properties of silica powder and the stability of organic-inorganic hybrid emulsion in the presence of ethanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 327(1-3): 103-110
    [30] T. E. Cauffman. Formulating urethane acrylate coatings to reduce degradation[J]. Paint Coatings, 1995, 85(6): 32
    [31] M. Hirose, J. Zhou, K. Nagai. The structure and properties of acrylic-polyurethane hybrid emulsions[J]. Progress in Organic Coatings, 1999, 38(1): 27-34
    [32]胡国文,沈慧芳,陈焕钦. PU/PA共混乳液的合成与性能[J].中国皮革, 2007, 36(021): 30-33
    [33] Y. Okamoto, Y. Hasegawa, F. Yoshino. Urethane/acrylic composite polymer emulsions[J]. Progress in Organic Coatings, 1996, 29(1): 175-182
    [34]陈俊,闫福安.水性双组分氟丙烯酸——聚氨酯涂料的研制及性能测试[J].中国涂料, 2009,(003): 24-28
    [35]张磊,卢赟,谭惠民.聚氨酯/聚甲基丙烯酸酯IPN的合成及性能的改善[J].化工新型材料, 2006, 34(008): 49-52
    [36]瞿金清,陈焕钦.亲水单体对聚氨酯丙烯酸复合乳液性能的影响[J].精细化工, 2004, 21(004): 292-296
    [37]王德中.环氧树脂生产与应用[M].北京:化学工业出版社, 2001.
    [38] P. Khurana, S. Aggarwal, A. K. Narula, et al. Studies on the curing kinetics of epoxy resins using silicon containing amide-amines[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 613-622
    [39] F. Schubert, T. LoBuglio. Epoxy Polymerization[J]. Journal of Chemical Education, 2000, 77(11): 1409-1421
    [40] Z. W. Wicks, F. N. Jones, S. P. Pappas. Organic Coatings: Applications, properties, and performance[M]. Wiley-Interscience, 1994.
    [41] X. M. Shi, T. A. Nguyen, Z. Y. Suo, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface and Coatings Technology, 2009, 204(3): 237-245
    [42] S. Ahmad, A. P. Gupta, E. Sharmin, et al. Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Progress in Organic Coatings, 2005, 54(3): 248-255
    [43] T. V. Thanikai Velan, I. Mohammed Bilal. Aliphatic amine cured PDMS-epoxy interpenetrating network system for high performance engineering applications - development and characterization[J]. Bulletin of Materials Science, 2000, 23(5): 425-430
    [44] D. A. Dubowik, P. A. Lucas. A novel waterborne epoxy resin for zero-VOC, two-component coatings[J]. Surface Coatings International Part A, 2001, 3: 126-130
    [45]施雪珍.水性环氧树脂乳液的研制[J].功能高分子学报, 2002, 15(003): 306-310
    [46] J. Wang, Z. Du, C. Li, et al. A study on formation and stability of epoxy resin inverse concentrated water/oil emulsion[J]. Journal of Applied Polymer Science, 2009, 111(2): 746-752
    [47] Z. Z. Yang. Progress in phase inversion emulsification for epoxy resin waterborne dispersions[J]. Chinese Journal of Polymer Science (English Edition), 2007, 25(2): 137-143
    [48]张肇英,黄玉惠,廖兵, et al.环氧树脂水性化改性及其固化[J].高分子通报, 2000, 3: 77-81
    [49] J. T. K. Woo, V. Ting, J. Evans, et al. Water dispersible epoxy-g-acrylic copolymer for container coating[M]. American Chemical Society, 1983.
    [50] J. T. K. Woo, A. Toman. Water-based epoxy-acrylic graft copolymer[J]. Progress in Organic Coatings, 1993, 21(4): 371-385
    [51]林子云.有机硅改性的涂料印花粘合剂的研制[J].胶体与聚合物, 2004, 22(002): 4-6
    [52]殷锦捷,李宁,张树.新型增韧阻燃环氧树脂胶黏剂的研究[J].化学与粘合, 2008,(001): 21-23
    [53]段明,胡星琪.核—壳乳液聚合及其在涂料中的应用[J].西南石油学院学报, 2002, 24(002): 59-62
    [54] D. A. Dubowik, P. A. Lucas. A novel waterborne epoxy resin for zero-VOC, two-component coatings[J]. 2001, 3: 126-130
    [55]沈球旺,刘忠,周荣华.高固体分丙烯酸改性聚氨酯涂料的研制[J].现代涂料与涂装, 2009,(009): 14-18
    [56]王宗君.改性型丙烯酸树脂防腐蚀涂料的研制[J].广西轻工业, 2009, 25(001): 16-17
    [57]吴文兵,杨婉身.免疫微球及其在生物化学领域中的应用[J].生命的化学, 2006, 26(005): 457-459
    [58] F. Caruso, M. Spasova, A. Susha, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach[J]. Chemistry of Materials, 2001, 13(1): 109-116
    [59]胡艳秋.医用聚氨酯胶粘剂[J].中国胶粘剂, 2006, 15(009): 5-5
    [60]曹丰,李东旭,管自生.生物模板法制备具有特殊表面形貌的二氧化硅中空微球[J].无机材料学报, 2009, 24(003): 501-506
    [61]赵俊亮,付涛,魏建华, et al.羟基磷灰石/环氧树脂复合材料的制备与性能[J].生物医学工程学杂志, 2005, 22(002): 238-241
    [62]田涛,段惠莉,吴金辉, et al.织物用水性聚氨酯的制备及其性能[J].纺织学报, 2009, 30(1): 72-76
    [63]张晓镭,李海燕,杨德瑞.有机硅丙烯酸酯聚氨酯三元共聚乳液的研究[J].中国皮革, 2003, 32(023): 5-7
    [64] Y. Okamoto, Y. Hasegawa, F. Yoshino. Urethane/acrylic composite polymeremulsions[J]. Progress in Organic Coatings, 1996, 29(1-4): 175-182
    [65] X. F. Ding, J. Z. Zhao, Y. H. Liu, et al. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization[J]. Materials Letters, 2004, 58(25): 3126-3130
    [66]周铭,侯翠红,章亚东, et al.丙烯酸酯改性聚氨酯水性分散体的结构形态特征[J].化学建材, 2003, 19(006): 4-6
    [67]孙培勤,王志强,孙绍晖, et al.合成聚丙烯酸作乳化剂丙烯酸-环氧树脂的乳液聚合研究[J].郑州大学学报(工学版), 2006, 27(001): 98-102
    [68] S. X. Li, W. F. Wang, L. M. Liu, et al. Morphology and characterization of epoxy-acrylate composite particles[J]. Polymer Bulletin, 2008, 61(6): 749-757
    [69]穆锐,阎惠至,邓爱民.一种丙烯酸改性乳化环氧树脂的制备与研究[J].化学与粘合, 2008,(001): 62-64
    [1] C. Shifu, Z. Wei, Z. Sujuan, et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder[J]. Chemical Engineering Journal, 2009, 148(2-3): 263-269
    [2] M. R. Meng, Q. Dou. Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites[J]. Journal of Macromolecular Science, Part B: Physics, 2009, 48(2): 213-225
    [3] X. Zhu, B. Wang, S. Chen, et al. Synthesis and non-isothermal crystallization behavior of PET/surface-treated TiO2 nanocomposites[J]. Journal of Macromolecular Science, Part B: Physics, 2008, 47(6): 1117-1129
    [4] J. Yun, H. Kim. Control of release characteristics in pH-sensitive poly(vinyl alcohol)/poly(acrylic acid) microcapsules containing chemically treated alumina core[J]. Journal of Applied Polymer Science, 2010, 115(3): 1853-1858
    [5] A. P. Zhu, Z. H. Shi, A. Y. Cai, et al. Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension-dispersion-polymerization in an aqueous system and its effect on mechanical properties of PVC composites[J]. Polymer Testing, 2008, 27(5): 540-547
    [6] T. Kashiwagi, A. B. Morgan, J. M. Antonucci, et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite[J]. Journal of Applied Polymer Science, 2003, 89(8): 2072-2078
    [7] Z. Peng, L. X. Kong, S. D. Li, et al. Self-assembled natural rubber/silicananocomposites: Its preparation and characterization[J]. Composites Science and Technology, 2007, 67(15-16): 3130-3139
    [8] F. Mammeri, L. Rozes, E. Le Bourhis, et al. Elaboration and mechanical characterization of nanocomposites thin films. Part II. Correlation between structure and mechanical properties of SiO2-PMMA hybrid materials[J]. Journal of the European Ceramic Society, 2006, 26(3): 267-272
    [9] H. Sugimoto, K. Daimatsu, E. Nakanishi, et al. Preparation and properties of poly (methylmethacrylate)-silica hybrid materials incorporating reactive silica nanoparticles[J]. Polymer, 2006, 47(11): 3754-3759
    [10]张启卫,章永化.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能[J].应用化学, 2002, 19(009): 874-877
    [11] L. Bokobza, G. Garnaud, J. E. Mark, et al. Effects of filler particle/elastomer distribution and interaction on composite mechanical properties[J]. Chemistry of Materials, 2002, 14(1): 162-167
    [12] M. J. Percy, J. I. Amalvy, D. P. Randall, et al. Synthesis of vinyl polymer-silica colloidal nanocomposites prepared using commercial alcoholic silica sols[J]. Langmuir, 2004, 20(6): 2184-2190
    [13] J. Z. Ma, J. Hu, Z. J. Zhang. Polyacrylate/silica nanocomposite materials prepared by sol-gel process[J]. European Polymer Journal, 2007, 43(10): 4169-4177
    [14] M. Alexandre, P. Dubois. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials[J]. Materials Science and Engineering: R: Reports, 2000, 28(1-2): 1-63
    [15] E. P. Giannelis, R. Krishnamoorti, E. Manias. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes[J]. Advances in Polymer Science, 1999: 107
    [16] X. F. Ding, J. Z. Zhao, Y. H. Liu, et al. Silica nanoparticles encapsulated bypolystyrene via surface grafting and in situ emulsion polymerization[J]. Materials Letters, 2004, 58(25): 3126-3130
    [17] H. Xia, C. Zhang, Q. Wang. Study on ultrasonic induced encapsulating emulsion polymerization in the presence of nanoparticles[J]. Journal of Applied Polymer Science, 2001, 80(8): 1130-1139
    [18] E. Ruckenstein, J. S. Park. Stable concentrated emulsions as precursors for hydrophilic-hydrophobic polymer composites[J]. Polymer, 1992, 33(2): 405-417
    [19] E. Tang, G. Cheng, Q. Shang, et al. A novel approach to the preparation of powder coating-Manufacture of polyacrylate powder coatings via one step minisuspension polymerization[J]. Progress in Organic Coatings, 2006, 57(3): 282-287
    [20] G. Tsagaropoulos, A. Eisenberg. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers[J]. Macromolecules, 1995, 28(18): 6067-6077
    [1] W. J. Guo, H. Q. Fu, H. Huang. Waterborne polyurethane adhesive modified by rosin for laminated package films[J]. Packaging engineering, 2007, 28(1): 33-34
    [2]修玉英,李雯静,罗强.水性聚氨酯胶粘剂在复合薄膜制造上的应用[J].中国胶粘剂, 2004, 13(003): 55-59
    [3] M. M. El-Molla. Synthesis of polyurethane acrylate oligomers as aqueous UV-curable binder for inks of ink jet in textile printing and pigment dyeing[J]. Dyes and Pigments, 2007, 74(2): 371-379
    [4] L. K. Massey. Polyvinylidene chloride coated films (PVDC) coated polyester films[M]. Norwich, NY: William Andrew Publishing, 2002.
    [5] P. Krol. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers[J]. Progress in Materials Science, 2007, 52(6): 915-1015
    [6] W. C. Jiang, Y. G. Huang, G. T. Gu, et al. A novel waterborne polyurethanecontaining short fluoroalkyl chains: Synthesis, characterization and its application on cotton fabrics surface[J]. Applied Surface Science, 2006, 253(4): 2304-2309
    [7] C. Y. Bai, X. Y. Zhang, J. B. Dai, et al. Water resistance of the membranes for UV curable waterborne polyurethane dispersions[J]. Progress in Organic Coatings, 2007, 59(4): 331-336
    [8] H. Y. Jeong, M. H. Lee, B. K. Kim. Surface modification of waterborne polyurethane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290(1-3): 178-185
    [9] X. Cui, S. Zhong, J. Xu, et al. Synthesis of polytetrafluoroethylene/polyacrylate core-shell nanoparticles via emulsifier-free seeded emulsion polymerization[J]. Colloid and Polymer Science, 2007, 285(8): 935-940
    [10] T. Y. Guo, J. C. Liu, M. D. Song, et al. Effects of carboxyl group on the ambient self-crosslinkable polyacrylate latices[J]. Journal of Applied Polymer Science, 2007, 104(6): 3948-3953
    [11]曾晓翘,范慧俐,杨敏, et al.丙烯酸酯系互穿网络聚合物乳液的微观形貌[J].北京科技大学学报, 2009,(005): 612-617
    [12] A. C. Aznar, O. R. Pardini, J. I. Amalvy. Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders[J]. Progress in Organic Coatings, 2006, 55(1): 43-49
    [13] V. D. Athawale, M. A. Kulkarni. Preparation and properties of urethane/acrylate composite by emulsion polymerization technique[J]. Progress in Organic Coatings, 2009, 65(3): 392-400
    [14] M. Yue, K. S. Chian, P. C. Nicholas. Properties and applications of thermoplastic polyurethane blends[M]. Burlington: Gulf Professional Publishing, 1996.
    [15] R. A. Brown, R. G. Coogan, D. G. Fortier, et al. Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends ofurethane dispersions and acrylic emulsions[J]. Progress in Organic Coatings, 2005, 52(1): 73-84
    [16] U. B. S. Sebenik, J. Golob, M. B. S. Krajnc. Comparison of properties of acrylic-polyurethane hybrid emulsions prepared by batch and semibatch processes with monomer emulsion feed[J]. Polymer International, 2003, 52(5): 740-748
    [17] E. Tang, B. Tian, C. Fu. Apparent kinetic study of latex interpenetrating polymer networks P(ethyl acrylate)/P(styrene) and P(styrene)/P (ethyl acrylate) by two stage emulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333(1-3): 7-11
    [18] U. Sebenik, M. Krajnc. Seeded semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate using polyurethane dispersion: effect of soft segment length on kinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233(1-3): 51-62
    [19]刘艳辉,邓爱民.聚氨酯-聚丙烯酸互穿网络聚合物乳液的合成[J].电镀与精饰, 2009, 31(001): 34-37
    [20]张辉,沈慧芳,张心亚, et al.影响聚氨酯-丙烯酸酯复合乳液性能的因素[J].化工学报, 2005, 56(009): 1777-1782
    [21]黄洪,傅和青,张心亚, et al.丙烯酸酯改性的水性聚氨酯胶粘剂的合成[J].包装工程, 2006, 27(005): 93-94
    [22] J. S. Lee, J. H. Shin, B. K. Kim, et al. Modification of aqueous polyurethanes by forming latex interpenetrating polymer networks with polystyrene[J]. Colloid & Polymer Science, 2001, 279(10): 959-965
    [23]蔡栋宇,项尚林,刘荣榕, et al.丙烯酸酯对水性聚氨酯乳液及其塑料凹版油墨的性能的影响[J].包装工程, 2006, 27(003): 10-13
    [24] R. Satguru, J. McMahon, J. C. Padget, et al. Aqueous polyurethanes: polymer colloids with unusual colloidal, morphological, and application characteristics[J].Journal of coatings technology, 1994, 66(830): 47-55
    [25] Y. Lu, R. C. Larock. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization[J]. Biomacromolecules, 2007, 8(10): 3108-3114
    [26] J. S. Jung, J. H. Kim, M. S. Kim, et al. The properties of reactive hot melt polyurethane adhesives with acrylic polymer or macromonomer modifications[J]. Journal of Applied Polymer Science, 2008: 45-48
    [27] Y. Wei, Y. Luo, B. Li, et al. Polyurethane acrylate microgel synthesized by emulsion polymerization using unsaturated self-emulsified polymer[J]. Colloid & Polymer Science, 2006, 284(10): 1171-1178
    [1] P. Khurana, S. Aggarwal, A. K. Narula, et al. Studies on the curing kinetics of epoxy resins using silicon containing amide-amines[J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 613-622
    [2] F. Schubert, T. LoBuglio. Epoxy polymerization[J]. Journal of Chemical Education, 2000, 77(11): 1409-1421
    [3] Z. W. Wicks, F. N. Jones, S. P. Pappas. Organic Coatings: Applications, properties, and performance[M]. Wiley-Interscience, 1994.
    [4] X. M. Shi, T. A. Nguyen, Z. Y. Suo, et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface and Coatings Technology, 2009, 204(3): 237-245
    [5] S. Ahmad, A. P. Gupta, E. Sharmin, et al. Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Progressin Organic Coatings, 2005, 54(3): 248-255
    [6] T. V. Thanikai Velan, I. Mohammed Bilal. Aliphatic amine cured PDMS-epoxy interpenetrating network system for high performance engineering applications - development and characterization[J]. Bulletin of Materials Science, 2000, 23(5): 425-430
    [7]朱国民,王善琦.环氧酯―丙烯酸接枝共聚物水性化的研究[J].涂料工业, 1994,(005): 3-6
    [8]朱方,赵宝华,裘兆蓉.环氧树脂水性化体系研究进展[J].高分子通报, 2006,(001): 53-57
    [9]邱东,杨振忠.相反转乳化技术制备环氧树脂交联多孔微球[J].高分子学报, 2002, 5: 699-702
    [10]孙培勤,王志强,孙绍晖, et al.合成聚丙烯酸作乳化剂丙烯酸-环氧树脂的乳液聚合研究[J].郑州大学学报(工学版), 2006, 27(001): 98-102
    [11] S. X. Li, W. F. Wang, L. M. Liu, et al. Morphology and characterization of epoxy-acrylate composite particles[J]. Polymer Bulletin, 2008, 61(6): 749-757
    [12]穆锐,阎惠至,邓爱民.一种丙烯酸改性乳化环氧树脂的制备与研究[J].化学与粘合, 2008,(001): 62-64
    [13]陈少鹏,俞小春,林国良.水性环氧丙烯酸接枝共聚物的合成及固化[J].厦门大学学报:自然科学版, 2007, 46(001): 63-66
    [14] A. Mirmohseni, S. Zavareh. Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers[J]. Materials and Design, 2010, 31(6): 2699-2706
    [15] H. C. Kuan, J. B. Dai, J. Ma. A reactive polymer for toughening epoxy resin[J]. Journal of Applied Polymer Science, 2009, 115(6): 3265-3272
    [16]雷克林,周立新,黄培.聚丙烯酸酯-水性环氧树脂共混乳液涂膜性能的研究[J]. 2006, 28(008): 27-30
    [17] J. T. K. Woo, A. Toman. Water-based epoxy-acrylic graft copolymer[J]. Progressin Organic Coatings, 1993, 21(4): 371-385
    [18] J. T. K. Woo, V. Ting, J. Evans, et al. Water dispersible epoxy-g-acrylic copolymer for container coating[M]. American Chemical Society, 1983.
    [19]阎惠至,穆锐.环氧-丙烯酸胶乳型互穿聚合物网络稳定性的研究[J].沈阳理工大学学报, 2006, 25(006): 76-79
    [20]柯跃虎,曹燕芬,王佛松.纳米级高固含量室温交联型丙烯酸酯微乳液的研制[J].涂料工业, 2006, 36(011): 33-37
    [21] F. Chu, T. F. McKenna, Y. Jiang, et al. A study of the preparation and mechanism of the ambient temperature curing of acrylic latex with epoxy resins[J]. polymer, 1997, 38(25): 6157-6165
    [22]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社, 2003.
    [23] M. Niknahad, S. Moradian, S. M. Mirabedini. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy[J]. Corrosion Science, 2010, 52(6): 1948-1957
    [24] S. C. Misra, J. A. Manson, L. H. Sperling. Network morphology and its relationship to mechanical behavior of epoxies[M]. Miami Beach, FL, USA: Am Chem Soc, Div Org Coatings and Plast Chem, 1978.
    [25] S. C. Misra, J. A. Manson, J. W. Vanderhoff. Mechanical properties of films based on novel epoxy/polyamide emulsions[J]. Division of Organic Coatings and Plastics Chemistry, 1977, 38: 213-218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700