以深蓝色聚芴衍生物主体的白光器件及通过平衡载流子实现高效电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光作为近年来的研究热点,一方面在科研方面有着重要意义,在有机材料合成以及器件物理上遇到许多新问题,创造了许多新知识,另一方面,作为液晶显示后的新一代平板显示技术,以及作为新型白光照明技术,具有诱人的应用前景。目前,部分的有机电致发光的技术已经进入商业化的阶段,如索尼公司已经推出了基于蒸镀小分子材料的OLED显示器,Lumiotec公司也推出了用于照明的OLED白光光源。但有机电致发光仍然存在着许多问题,诸如寿命和发光效率仍需要进一步的提升。
     PLED是“双载流子注入”型器件,在正向偏压的作用下电子和空穴分别从阴极和阳极注入,并由于电场的作用向对面电极迁移,在发光层中复合成激子,激子的辐射衰减得到发光。因此,器件的效率很大程度上取决于载流子的平衡与否。基于此思想,人们可以通过增加器件内少数载流子或者减少多数载流子的办法实现器件效率的提高。
     聚芴及其衍生物由于具有较低的三线态能级,其作为主体材料时候,若客体磷光材料的三线态能级高于主体三线态能级,会造成能量回转从而导致器件的发光淬灭。因此一般情况下,聚芴及其衍生物并不适合作为绿色磷光材料的主体。本论文中第3章中,我们通过在空穴注入层PEDOT:PSS和发光层中插入一层具有高三线态能级的PVK作为缓冲层,能成功的抑制发光层内的能量回转导致的发光淬灭,从而实现高效白光发射。通过插入电子注入材料PFN,器件效率进一步提高,实现在电流密度10 mA/cm2下色坐标为(0.262,0.310),最高电流效率为15.1 cd/A的白光发射。
     OLED的制备工艺主要有溶液加工和真空蒸镀两种,前者可以实现任意比例的精确掺杂,缺点是难以形成多层结构,成膜厚度比较难精确控制,后者可以实现厚度的精确的控制以及形成多层结构,但难以实现精确的微量掺杂。在本论文的第4章中,我们结合了两种制备工艺,在高效蓝光聚芴衍生物中掺杂红光材料MEH-PPV,在旋涂此发光层的基础上,再蒸镀绿光材料Alq3,通过调节Alq3的厚度,从而调节器件的发光颜色,并获得非常接近色坐标(0.33,0.33)的白光发射,通过加入缓冲层,实现了最高电流效率为7 cd/A,在10m A/cm2下色坐标为(0.35,0.37)的白光发射。
     通过掺杂的办法使得器件工作时候内部的载流子数趋于平衡是实现器件发光效率提高的一种行之有效的办法。在各种掺杂的办法中,掺入一维纳米线的办法属于一种比较少人涉足的领域。在Jian Wang的工作基础上,在本论文的第5章中,我们在含有不同BT含量的n型发光材料PFO-BT中掺入不同质量浓度的有机可溶液加工p型纳米线,在掺入比例为1%时候实现发光效率的最大提高。我们进一步采用交流阻抗的方法对此体系进行表征,从Cole-Cole图的结果,我们推断器件可以等效成一个固定小电阻和一个RC并联电路的串联,其中的小电阻对应于衬底的方块电阻和接触电阻的和,RC并联电路代表发光层,我们发现随着纳米线掺杂浓度微小增大,R值呈2到3个数量级的增大。说明纳米线在体系中起到阻碍电子电流的作用,这跟器件的J-V-L有很好的吻合。
     有机电致发光的效率的提高可以通过增加器件内少数载流子的办法实现。在本论文第6章中,我们在Xuihui Zhu的工作基础上,通过更换阴离子的办法,重新制备了3种新型可溶性有机小分子电解质作为电子注入材料。通过跟纯A1器件和以溴离子为阴离子的电子注入材料作对比,我们发现新制备的电子注入材料同样具有很好的电子注入能力,其中阴离子为四氟硼酸根的电子注入材料跟溴离子的注入能力相当,并且器件在高电流密度下仍然保持有较高的电流效率。通过OPV测试考察器件的内建电场,我们发现四氟硼酸根具有最大的内建电场,即具有最好的电子注入能力。
Organic Light-Emitting Diode has raised focus in scientific research since it encountered many new problems both in chemical synthesis and device physics, it also created much new knowledges. On the other hand, as a new generation display techonology after liquid crystal display and new technology in white light illumination, it shows attractive prospect. For example, Sony has its flat panal display product based on OLED and Lumiotec has its white light source product based on OLED. However, there still have many things to be improved, such as the lifetime and the efficiency of the devices.
     PLEDs are "dual injection" devices with electrons and holes injecting from the cathode and anode, respectively, under forward bias. Then, the carriers move in the emissive layer toward the opposite electrode, and form exciton with pairs of electron and hole. The radiant decay of exciton gives out light. So it is a key element wheather the carriers are balance for the efficiency of the devices. Based on this mechanism, people can enhance the efficiency of the devices by increasing the minority carriers or decreasing the majority carriers.
     Polyfluorene and its derivatives have relatively lower triplet level, when it is used as the host in phosphorescent OLED, if the gust materials has triplet level higher than the host, emission quench happened in the form of back energy transfer from the guest to host. This is why Polyfluorene and its derivatives are not suitable to be the host of the green phosphorescent materials. In chapter3 of this thesis, we successfully inhibit the energy back transfer from the green phosphorescent material to our polyfluorene derivative host by inserting a buffer layer between the hole injection layer PEDOT:PSS and the active layer and fabricated a highly efficient white polymer light emitting diode. By further inserted a water-acohol soluable electron injection layer PFN, we got white emission with CIE of (0.262,0.310) at the current density of 10mA/cm2, and the highest efficiency of 15.1 cd/A.
     There are mainly two proces to fabricate OLED i.e solution processing and vacuum deposition. The former can achieve an arbitrary ratio of precice doping and the disadvantage is that it is difficult to form multi-layer structure and difficult to control the film thickness accurately. The vacuum deposition allows precise control of thickness and formation of multi-layer structure, but it is difficult to achieve accurate trace dopping. In chapter 4 of this thesis, we first ly spin coated the high efficiency blue material dopped with red emission material MEH-PPV, then we deposited the green emission layer Alq3, by controlling the thickness of the Alq3, we successfully tuned the color of the devices and got white emission closed to CIE of (0.33,0.33). By insertin buffer layer TPBI and PVK, we realized the highest current efficiency of 7cd/A, and CIE of (0.35,0.37) white emission at the current density of 10mA/cm2.
     It is an effective way to enhance the efficiency of PLED by dopping. To dope one dimentional nanowires into the emitting materials is a relatively small area involved. Following the work of Jian Wang, in chapter5 of this thesis, we use PFO-BT with different BT ratios, and dopped with a soluable nanowire material in different ratios. We found that with dopping ratio of 1%, devices based on different BT ratio got the highest efficiency. We further characterize the devices with ic impedance spectro. From the Cole-Cole diagram, we infer that the devices can be equivalent to be a low resistance and a parallel RC circuit in series. The low resistance corresponds to the sum resistance of the substrate and the contact resistance, RC parallel circuit corresponds to the emitting layer. We found that the R in RC parallel increased 2-3 orders with small increase of the dopping ratio of nanowires, which means that the nanowires in the system enhanced the efficiency by stopping the electron crrurent in the devices and with good agreement with the J-V-L curves.
     We can enhance the efficiency of the OLED by increasing the minority carriers. In chapter 6 of this thesis, based on the work of Xuihui Zhu, we made 3 new small molecular soluable electrolytes as electron injection material by replacing the anion. By compareing with the bare Al and the reported electrolyte, we found that the new electrolytes also have good electron injection ability. Among them, the one with tetrafluoroborate as anion shows the best injection ability, the devices based on it remains highly efficient even at high current density. Further more, we carried the OPV measurement to determine the buit-in potential, we found the one with tetrafluoroborate as anion has the largest built-in potentials, which means the best electron injection ability.
引文
[1]陈昭博士毕业论文,高效磷光聚合物发光二极管研究, [D]华南理工大学2008
    [2]Pope, M., Kallmann, H. P., and Magnante, P. Electroluminescence in Organic Crystals. J. Chem. Phys.,1966,38:2042-2043
    [3]Roberts, G. G., McGinnity, M., Vincett, P. S., et al. Electroluminescence Photoluminescence and Electroabsorption of a Lightly Substituted Anthracene Langumuir Film. Solid State Commun.,1979,32:683
    [4]Vincent, P. S., Barlow, W. A., Hann, R. A., et al. Electrical Conduction and Low Voltage Blue Electroluminescence in Vacuum-Deposited Organic Films. Thin Solid Films,1982,94:476
    [5]Partridge, R. H. Electroluminescence from Polyvinylcarbazole Film:3. Electroluminescent devices. Polymer,1983,24:748-749
    [6]Tang, C. W., and Vanslyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987,51:913-915
    [7]Burroughes, J. H., Bradley, D. D. C., Brown, A. R., et al. Light-emitting diodes based on conjugated polymers. Nature (London, United Kingdom),1990,347:539-541
    [8]Braun, D., and Heeger, A. J. Visible light emission from semiconducting polymer diodes. Applied Physics Letters,1991,58:1982-1984
    [9]Friend, R. H., Gymer, R. W., Homles, A. B., et al. Electroluminescence in conjugated polymers. Nature (London),1999,397:121-128
    [10]Kraft, A., Grimsdale, A. C., and Homles, A. B. Electroluminscent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed.,1998,37:402-428
    [11]牛巧利博士毕业论文关于提高聚合物发光二极管和聚合物平板显示屏性能的研究,[D]华南理工大学2008
    [12]Patel N. K., Cina S., Burroughes J. H. High-Efficiency Organic Light-Emitting Diodes [J]. IEEE J Sele. Top. Quan. Elect.,2002,8:346-361
    [13]Braun D., Heeger A.J., Visible Light Emission from Semiconducting Polymer Diodes, Appl.Phys. Lett.,1991,58:1982
    [14]Cao Y., Yu G., Parker I.D., et al. Ultrathin Layer Alkaline Earth Metals as Stable Electron-Injecting Electrodes for Polymer Light Emitting Diodes, Appl. Phys. Lett., 2000,88:3618
    [15]Nakamura A., Tada T., Mizukami M., et al. Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode, Appl. Phys. Lett.,2004,84:130
    [16]Vincett P. S., Barlow W. A., Hann R. A., et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982, 94:171-183
    [17]Marks R.N., Bradely D.D.C., Jackson R.W., et al. Charge Injection Transport in Polymer (p-phenylene vinylene) Light-emitting Diodes [J]. Synth. Met.,1993,57: 4128
    [18]Parker I. D. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys.,1994,75 (3):1656-1666
    [19]Vestweber H., Pommerehne J., Sander R., et al. Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends [J]. Synthetic Met., 1995,68 (3):263-268
    [20]Eley D. D., Parfitt G. D. Perry M. J., et al., Semiconductivity of Organic Substances Ⅰ. [J]. Traps. Faraday Soc.1953,49:79-86
    [21]Eley D. D., Parfitt G. D. Semiconductivity of Organic Substances Ⅱ[J]. Traps. Faraday Soc.1955,51:1529-1539
    [22]Eley D. D., Spivey D. J. Semiconductivity of Organic SubstancesⅥ[J]. Traps. Faraday Soc.1960,56:1432-1442
    [23]樊美公,等.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001,2
    [24]Sheats J. R., Antoniadis H., Hueschen M., et al. Organic electroluminescent devices. Science,1996,273 (5277):884-888
    [25]Scott J. S., Kaminski J. P., Wanke M., et al. Terahertz frequency response of an In0.53Ga0.47As/AlAs resonant-tunneling diode [J]. Appl. Phys. Lett.,1994,64 (15): 1995-1997
    [26]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005
    [27]文尚胜,彭俊彪等渡越时间方法测量聚合物材料的载流子迁移率[J]激光技术29,2005,3
    [28]Sze S. M. Physics of Semiconductor Devices [M].2nd edition. New York:Wiley,1981
    [29]Kim J. S., Ho P. K. H., Murphy C. E., et al. Phase Separation in Polyfluorene-Based Conjugated Polymer Blends:Lateral and Vertical Analysis of Blend Spin-Cast Thin Films [J]. Macromolecules,2004,37 (8):2861-2871
    [30]Corcoran N., Arias A. C., Kim J. S., et al. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes [J]. Appl. Phys. Lett., 2003,82 (2):299-301
    [31]Xia Y. J., Friend R. H. Controlled Phase Separation of Polyfluorene Blends via Inkjet Printing [J]. Macromolecules,2005,38 (15):6466-6471
    [32]蒋昌云.高效磷光聚合物发光二极管及其三重态能量传递机制的研究[D].华南理工大学,2005
    [33]Lee T. W. Investigation on the low luminous efficiency in a polymer light -emitting diode with a high work-function cathode by soft contact lamination [J]. Adv. Funct. Mater.,2007,17 (16):3128-3133
    [34]Burroughes, J. H., Bradley, D. D. C., Brown, A. R., et al. Light-emitting diodes based on conjugated polymers. Nature (London, United Kingdom),1990,347:539-541
    [35]Braun, D., and Heeger, A. J. Visible light emission from semiconducting polymer diodes. Applied Physics Letters,1991,58:1982-1984
    [36]Greenham, N. C., Moratti, S. C., Bradley, D. D. C., et al. Efficient light-emitting diodes based on polymers with high electron affinities. Nature (London, United Kingdom) 1993,365:628-630
    [37]Ho, P. K. H., Kim, J.-S., Burroughes, J. H., et al. Molecular-scale interface engineering for polymer light-emitting diodes. Nature (London),2000,404:481-484
    [38]Perepichka, I. F., Perepichka, D. F., Meng, H., et al. Light-emitting polythiophenes. Advanced Materials (Weinheim, Germany),2005,17:2281-2305
    [39]Ohmori, Y., Uchida, M., Muro, K., et al. Visible-light electroluminescent diodes utilizing poly (3-alkylthiophene). Japanese Journal of Applied Physics, Part 2:Letters, 1991,20:L1938-L1940
    [40]Berggren, M., Inganas, O., Gustafsson, G., et al. Light-emitting diodes with variable colors from polymer blends. Nature (London),1994,372:444-446
    [41]Romero, D. B., Schaer; M., Leclerc, M., et al. The role of carbazole in organic light-emitting devices. Synthetic Metals,1996,80:271-277
    [42]Jiang, C., Yang, W., Peng, J., et al. High-efficiency, saturated red-phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex. Advanced Materials (Weinheim, Germany),2004,16:537-541
    [43]Gong, X., Ostrowski, J. C., Moses, D., et al. Electrophosphorescence from a polymer guest-host system with an iridium complex as guest:Forster energy transfer and charge trapping. Advanced Functional Materials,2003,13:439-444
    [44]Yang, X. H., Neher, D., Hertel, D., et al. Highly efficient single-layer polymer electrophosphorescent devices. Advanced Materials,2004,16:161
    [45]Morin, J.-F., Boudreault, P.-L., and Leclerc, M. Blue-light-emitting conjugated polymers derived from 2,7-carbazoles. Macromolecular Rapid Communications,2002, 23:1032-1036
    [46]Huang, J., Niu, Y., Yang, W., et al. Novel Electroluminescent Polymers Derived from Carbazole and Benzothiadiazole. Macromolecules,2002,35:6080-6082
    [47]Huang, J., Xu, Y., Hou, Q., et al. Novel red electroluminescent polymers derived from carbazole and 4,7-bis (2-thienyl)-2,1,3-benzothiadiazole. Macromolecular Rapid Communications,2002,23:709-712
    [48]Grem, G., and Leising, G. Electroluminescence of \"wide-bandgap\" chemically tunable cyclic conjugated polymers. Synthetic Metals,1993,57:4105-4110
    [49]Yang, Y., Pei, Q., and Heeger, A. J. Efficient blue polymer light-emitting diodes from a series of soluble poly(para-phenylene)s. Journal of Applied Physics,1996,79:934-939
    [50]Wu, Y., Zhang, J., Fei, Z., et al. Spiro-Bridged Ladder-Type Poly (p-phenylene) s: Towards Structurally Perfect Light-Emitting Materials. Journal of the American Chemical Society,2008,130:7192-7193
    [51]Becker, S., Ego, C., Grimsdale, A. C., et al. Optimisation of polyfluorenes for light emitting applications. Synthetic Metals,2001,125:73-80
    [52]Bernius, M. T., Inbasekaran, M., Woo, E. P., et al. Application of polyfluorenes and related polymers in light-emitting diodes. Proceedings of SPIE-The International Society for Optical Engineering,1999,3621:93-102
    [53]Yang, W., Hou, Q., Liu, C., et al. Improvement of color purity in blue-emitting polyfluorene by copolymerization with dibenzothiophene. Journal of Materials Chemistry,2003,13:1351-1355
    [54]Hou, Q., Xu, Y., Yang, W., et al. Novel red-emitting fluorene-based copolymers. Journal of Materials Chemistry,2002,12:2887-2892
    [55]Jiang, J., Xu, Y., Yang, W., et al. High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission. Advanced Materials (Weinheim, Germany),2006,18:1769-1773
    [56]Zhang, K., Chen, Z., Yang, C., et al. Saturated red-emitting electrophosphorescent polymers with iridium coordinating to b-diketonate units in the main chain. Macromolecular Rapid Communications,2006,27:1926-1931
    [57]Mariano. F, Mazzeo. M et al Very Low Voltage and Stable p-i-n oOrganic Light-emitting Diodes Using a Linear S,S-dioxide Oligothiophene as Emitting Layer [J]. Appl. Phys. Lett.,2009,94 (063510):063510
    [58]Jingsong. H, Martin P et al, Low-voltage Electroluminescent Devices Using pin Structures,Appl. Phys. Lett.,2002,80 (139)
    [59]Sebastian. R, Frank L et al White Organic Ligth-emitting Diodes With Fluorescent Tube Efficiency, Nature, dio:10.1038/nature 08003
    [60]Hongbin W, Jianhua Z et al,Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes
    [61]Hongbin. W, Guijiang. Z et al,Efficient White Polymer Light-emitting Devices for Solid-State Lighting
    [62]惠娟利,华玉林,张国辉等,柔性有机电致发光器件的寿命,液晶与显示,2007,22(2),156~161
    [63]张芳,柔性有机电致发光显示屏,新材料产业,2006,5,55~58
    [64]Yang Zhiwei, Han Shenghao, Yang Tianlin,et al. ITO films deposited on water-cooled flexible substrate by bias RF Magnetron Sputtering, Applied Surface Science, Volume 161, Issues 1-2,1 July 2000, Pages 279-285
    [65]Moro L, Krajewski T A, Rutherford N M, et al. Process and design of a multiplayer thin film encapsulation of passive matrix OLED displays [J]. Proc SPIE,2004,5214:832-93
    [66]Guenther E,Kumar R S,Zhu F,et al. Building blocks for ultra thin,flexible organic electro-luminescent devices[J]. Proc SPIE,2002,4464:23-33
    [67]Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers.. Nature [J],1992,357:477-479
    [68]李扬,王立铎,常春,等.氧化铟锡/银/氧化铟锡多层膜作为阳极的柔性有机电致发 光器件[J].科学通报,2004,49(9):850-853
    [69]Liao L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes [J]. Appl Phys Lett,2004,84 (2):167-169
    [70]Emery S B, Hubbley J L, Darling M A,et al. Chemical factors for chemical-mechanical and electrochemical-mechanical planarization of silver examined using potentiodynamic and impedance measurements [J]. Materials Chemistry and Physics,2005,89 (23):345-353.
    [71]Auch M D J, Soo O K,Ewald G,et al. Ultra-thin glass for flexible OL ED application [J]. Thin Solid Films,2002,417 (122):47-50
    [72]Armin Plichta, Andreas Weber, Andreas Habeck. et al. Ultra-thin flexible glass substrate [J]. Materials Research Society Symposium um Proceedings,2003, 769:273-282
    [73]Ong Kian Soo, Hu J ianqiao, Shrestha Roshan, et al. Flexible polymer light emitting devices using polymer-rein-forced ultrathin glass [J]. Thin Solid Films,2005,477 (1):32—37.
    [74]G. Gu, P. E. Burrows, S. Venkatesh, and S. R. Forrest, Vacuumdeposited nonpolymeric flexible organic light-emitting devices, Opt. Thin Solid Films,2002, 417,47-50
    [75]S. K. Park, J. I. Han, D. G. Moon, andW. K. Kim, Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates Jpn. J. Appl. Phys.,2003, vol. 42, pp.624-629
    [76]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films [J]. Thin Solid Films 1998,326,67.
    [77]J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Highly flexible transparent electrodes for organic light-emitting diode-based displays, Appl. Phys.Lett.2004,85, 3450.
    [78]G. Erlat, M. Schaepkens, T. W. Kim, C. M. Heller, M. Yan, and P. McConnelee, Ultra-high barrier coatings on polymer substrates for flexible optoelectronics:Water vapor transport and measurement systems, in 47th Annu. Technical Conf. Proc. Soc. Vacuum Coaters,2004, pp.654-663.
    [79]Gnade,, Dept. Mat. Sci., Univ. North Texas, Denton,2003.
    [80]Sugimoto, A. Ochi, H. Fujimura, S. et al. Flexible OLED displays using plastic substrates, IEEE Journal of Selected Topics In Quantum Electronics,2004,VOL.10, NO.1,107-114
    [81]Lueder, Passive and active matrix liquid crystal displays with plastic substrates, Electrochem. Soc. Proc.1998, vol.98-22, pp.336-354,
    [82]H. Kim, K.-H. Kim, H.-M. Koo, J.-K. Kim, and B.-K. Ju, Passivation properties of inorganic films for flexible OLEDs (F-OLED), Proc. Soc. Inform. Display Symp., Dig. Tech. Papers,2003, vol.34, pp.554-557.
    [83]K.-H. Kim, H. Kim, H.-M. Koo, J.-K. Kim, Y. C. Kim, and B.-K.Ju, Permeation properties of inorganic thin-film and its application to PM-OLED using electron beam evaporation system, Proc.Soc. Inform. Display Symp., Dig. Tech. Papers, vol.2003,34, pp.563-565.
    [84]K. Yamada K. amano T. Mo r i T. Mimtani M. Sugiyama, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials June 1-5,2003 Nagoya
    [85]W. Bijnens, J. Manca, T.D. Wu, M. D'Olieslaeger, D. Vandezande, J.Gelan, W. de Ceuninck, L. De Schepper, L.M. Stals, Imaging of the ageing on organic electroluminescent diodes, under different atmospheres by impedance spectroscopy, scanning electron microscopy and SIMS depth profiling analysis, Synth. Met.1996, 83,261.
    [86]A.S. da Silva Sobrinho, M. Latre'che, G. Czeremuszkin, J.E. Klemberg, M.R. Wertheimer, J. Vac. Sci. Technol.,1998, A 16,3190.
    [87]Milliron, D. J., Hill, I. G., Shen, C. A., et al. Surface oxidation activates indium tin oxide for hole injection. J. Appl. Phys.,2000,87:572-576
    [88]Adachi, C., Baldo, M. A., Thompson, M. E.et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics,2001,90:5048-5051
    [89]Kim, J.-S., Ho, K. H., Greenham, N. C., et al. Electroluminescence Emission Pattern of Organci Light-Emitting Diodes:Implications for Device Efficiency Calculations. J. Appl. Phys.,2000,88:1073-1075
    [90]许运华.高性能白光聚合物电致发光二极管的研究[D].华南理工大学,2008
    [91]应根裕,胡文波,邱勇,等.平板显示技术[M].北京:人民邮电出版社,2002:340-392.
    [92]许伟.聚合物电致发光器件稳定性的研究[D].华南理工大学,2007
    [93]Ishii, M., and Taga, Y. Influence of temperature and drive cunrent on degradation mechanisms in organic light-emitting diodes Appl. Phys. Lett.,2002,80:3430-3432
    [94]Burrows, P. E., Bulovic, V., Forrest, S. R., et al. Reliability and degradation of organic light-emitting devices. Appl. Phys. Lett.,1994,66:2922-2924
    [95]Sudhakar. M., Djurovich P. I., Hogen-Esch T. E, et al. Phosphorescence Quenching by Conjugated Polymers, J.AM.CHEM.SOC.2003,125,7796-7797
    [96]Liao H. H., Meng H. F., Horng S.F et al, Triplet exciton energy transfer in polyfluorene doped with heavy metal complexes studied using photoluminescence and photoinduced absorption, Physical Review B,2006,74,245211
    [97]Hongbin W et al, Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes,2008, Adv Mater.20,696-702
    [98]Hongbin W et al, Efficient White Polymer Light-emitting Devices for Solid-State Lighting, Adv Mater ASAP
    [99]Tae-Ho K et al, Enhanced electrophosphorescence via highly efficient energy transfer from conjugated polymer, Appl. Phys. Lett.2005,86,171108
    [100]Tae-Ho K et al, White-Light-Emitting Diodes Based on Iridium Compexes via Efficient Energy Transger from a Conjugated Polymer, Adv Funct Mater,2006,16,611-617
    [101]Ying. W, Dramatic effects of hole transport layer on the efficiency of iridium-based organic light-emitting diodes, Appl. Phys. Lett,2004,85,4848-4851
    [102]Zhao Chen et al, Enhanced green electrophosphorescence by using polyfluorene host via interfacial energy transfer from polyvinylcarbazole, Organic Electronics 2008,9, 1002-1009
    [103]Y. Y. Li, H. B. Wu, J. H. Zou, L. Ying, W. Yang, and Y. Cao, Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S,S-dioxide isomers into polyfluorene backbone, Org. Electron. 2009,10,901
    [104]H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng, and C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of the Sterically Hindered Spacers in Phosphorescence Molecules, Adv. Mater.2001,13:1245.
    [105]G. J. Zhou, W. Y. Wong, B. Yao, Z. Y. Xie, and L. X. Wang, Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs Angew. Chem. Int. Ed.2007,46,1149.
    [106]H. B. Wu, F. Huang, Y. Q. Mo, W. Yang, D. L. Wang, J. B. Peng, and Y. Cao, "Efficient Electron Injection from a Bilayer Cathode Consisitng of Aluminum and Alcohol/Water-Soluble Conjugated Polymers" Adv. Mater.2004,16,1826
    [107]H. H. Liao, H. F. Meng, S. F. Homg, W. S. Lee, J. M. Yang, C. C. Liu, J. T. Shy, F. C. Chen, and C. S. Hsu, Triplet exciton energy transfer in polyfluorene doped with heavy metal complexes studied using photoluminescence and photoinduced absorption, Phys Rev B 2005,74,245211
    [108]M. Sudhaker, P. I. Djurovich, T. E. Hogen-Esch, and M. E. Thompson, Phosphorescence Quenching by Conjugated Polymers J. Am. Chem. Soc.2003,125, 7796
    [109]J. Pina, J. Seixas de Melo, H. D. Burrows, A. P. Monkman, S. Navaratnam, On the triplet state of poly (N-vinylcarbazole), Chem. Phys. Lett.2004,400,441
    [110]Huang, J.; Liu, Q.; Zou, J. H.; Zhu, X.-H.; Li, A.-Y.; Li, J.-W.; Wu, S.; Peng, J. B.; Cao, Y.; Xia, R.; Bradley, D. D. C.; Roncali. J, Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole, Adv. Funct. Mater.2009, ASAP
    [111]Xu Y H, Peng J B, Mo Y Q, Hou Q and Cao Y, Efficient polymer white-light-emitting diodes,2005 Appl. Phys. Lett.86,163502
    [112]Zou J H, Tao H, Wu H B, Peng J B Acta. Phys. Sin.2009,58,1224 (in Chinese)[邹建华、陶洪、吴宏滨、彭俊彪2009物理学报58 1224]
    [113]Zhou Y, Sun Q J, Tan Z A, Zhong H Z, Yang C H and Li Y F, Double-Layer Structured WPLEDs Based on Three Primary RGB Luminescent Polymers:Toward High Luminous Efficiency, Color Purity, and Stability, J. Phys. Chem. C,2007,111,6862
    [114]Gong X, Wang S, Moses D, Bazan G C and Heeger A J, Multilayer Polymer Light Emitting Diodes:White-Light Emission with High Efficiency, Adv. Mater.2005,17, 2053.
    [115]Huang F, Shih P-I, Shu C-F, Chi Y, and Jen A K-Y, Highly Efficient Polymer White-Light-Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer, Adv. Mater.2009,21,361
    [116]Wu H B, Zhou G J, Zou J H, Ho C-L, Wong W-Y, Yang W, Peng J B and Cao Y, Efficient White Polymer Light-emitting Devices for Solid-State Lighting, Adv. Mater. 2009, DOI:10.1002/adma.200900638
    [117]Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y and Cao Y, "High-Efficiency White Light Emitting Devices from a single Polymer by Mixing Singlet ans Triplet Emission" Adv. Mater.2006,18,1769
    [118]Tu G L, Zhou Q G, Cheng Y X, Wang L X, Ma D G, Jing X B and Wang F S, White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties, Appl. Phys. Lett.2004,85,2172
    [119]Liu J, Chen L, Shao S Y, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B and Wang F S, Three Color White Electroluminescence from a Single Polymer System with Blue, Green and Red Dopant Units as Indicidual Emissive Species and Polyfluorene as Individual Polymer Host, Adv. Mater.2007,19,4224
    [120]Tsuji T, Naka S, Okada H, Onnagawa H, Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion, Appl. Phys. Lett.2002,81,3329
    [121]Choukri H, Fischer A, Forget S, Chenais S, Castex M-C, White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting, Appl. Phys. Lett.2006,89:183513
    [122]Elschner A, Bruder F, Heuer H-W, Jonas F, Karbach A, Kirchmeyer S, Thurm S, Wehrmann R. On the Delone Triangulation Numbers, Synthetic Metals,2000, 111-112:139
    [123]Heithecker D, Kammoun A, Dobbertin T, Riedl T, Berker E, Metzdorf D, Schneider D, Johannes H-H, Kowalsky W, Low-voltage organic electroluminescence devices with an ultrathin, hybrid structure, Appl. Phys. Lett.2003,82:4178
    [124]Liu Z T, Zou J H, Chen J W, Huang L, Peng J B, Cao Y, Largely enhanced LED efficiency of carbazole-fluorene-silole copolymers by using TPBI hole blocking layer, Polymer.2008,49:1604
    [125]Liu J, Zou J H, Yang W, Wu H B, Li C, Zhang B, Peng J B, Cao Y, Highly Efficient and Spectrally Stable Blue Light Emitting Polyfluorenes Containing a Dibenzothiophene-S,S-dioxide Unit, Chem. Mater.2008,20:4499
    [126]Zou J H, Liu J, Wu H B, Peng J B, Yang W and Cao Y, High-efficiency and good color quality white emitting devices based on polymer blend, Org. Electron 2009,10:843
    [127]Wu H B, Zou J H, Liu F, Mikhailovsky A, Bazan G C, Yang W, Cao Y, "Efficient single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes"Adv. Mater.2008,20:696
    [128]Gong X, Ma W, Ostrowski J C, Bazan G C, Moses D, Heeger A J, White Electrophosphorescence from Semiconducting Polymer Blends, Adv. Mater. 2004,16:615.
    [129]D'Andrade B W, Holmes R J, Forrest S R, Efficient Organic Electrophosphorescent White-Light-Emitting Devices with a Triple Doped Emissive Layer, Adv. Mater. 2004,16:624
    [130]Qingxin Tang, et al, Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. Adv. Mater.2006,18:65-68
    [131]Xiao, S.; Tang, J.; Beetz, T.; Guo, X.; Tremblay, N.; Siegrist, T.; Zhu, Y.; Steigerwald, M.; Nuckolls, C. Transferring Self-Assembled,Nanoscale Cables into Electrical Devices. J. Am. Chem. Soc.2006,128:10700-10701
    [132]Do Hwan Kin, et al, High-Mobility Organic Transistors Based on Single-Crystalline Microribbons of Triisopropylsilylethynyl Pentacene via Solution-Phase Self-Assembly. Adv. Mater.2007,19,678-682
    [133]Alejandro L. Briseno, et al, Fabrication of Field-Effect Transistors from Hexathiapentacene Single-Crystal Nanowires, NANO LETTERS 2007,Vol.7, No.3: 668-675
    [134]Alejandro L. Briseno, et al Perylenddiimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters NANO LETTERS 2007,7 (9):2847-2853
    [135]Yan Zhou, et al. Single Microwire Transistors of Oligoarenes by Direct Solution Process J. AM. CHEM. SOC.2007,129:12386-12387
    [136]Qianfei Xu, Jiangyong Quyang et al, Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification, Appl.Phys.Lett 2003,83,23:4695-4697
    [137]Yanqin L, Aurora R et al, Bright White-Emitting Device from Ternary Nanocrystal Composites, Adv Mater.2006,18:2545-2548
    [138]Cheng-Jun S et al, Enhancement of quantum efficiency of organic light emitting devices by doping magnetic nanoparticles Appl.Phys.Lett,2007,90:232110
    [139]C.M Aguirre et al, Carbon nanotube sheets as electrodes in organic light-emitting diodes, Appl. Phys.Lett.2006,88:183104
    [140]Niu Qiaoli, Zhou Yan, Wang Lei, Peng Junbiao, Pei Jian, Wang Jian, Cao Yong. Enhancing the Performance of Polymer Light Emitting Diodes by Integrating Organic Nanowires Self-Assembled in situ. Advanced Materials 2008,20:964-969
    [141]Miyaura N., Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds [J]. Chem. Rev.,1995,95(7):2457-83
    [142]Alasdair J, Campbell et al, Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by current intergration time-of-flight method, Appl. Phys.Lett,2001,79(14) 2133-2135
    [143]交流阻抗谱原理及应用史美伦2001年
    [144]黄文波,彭俊彪.高分子发光二极管载流子注入过程研究,物理学报,2007,56,2974-05
    [145]Huang, H.B Wu, D.L. Wang, W. Yang, Y. Cao, High-Efficiency, Environment-Friendly Electroluminescent Polymers with Stable High Work Function Metal as a Cathode:Green- and Yellow-Emitting Conjugated Polyfluorene Polyelectrolytes and Their Neutral Precursors J. Am. Chem. Soc.2004,126:9845
    [146]W.L.Ma, P.K.Iyer, X.Gong, B.Liu et al, Water/Methanol-Soluble Conjugated Copolymer as an Electron-Transport Layer in Polymer Light-Emitting Diodes, Adv. Mater.2005,17:274
    [147]R.Q.Yang, H.B.Wu, Y.Cao, G.C.Bazan, Control of Cationic Conjugated Polymer Performance in Light Emitting Diodes by Choice of Counterion J.Am.Chem.Sco. 2006,128,14422
    [148]W. J. Zeng, H.B.Wu et al, Polymer Light-Emitting Diodes with Cathodes Printed from Conducting Ag Paste, Adv Mater.2007,19,810
    [149]J. Huang, X.F. Qiao, Y.J.Xia et al, A Dithienybenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Self-Confinement for Nondoped Organic Red Light Emitting Diodes, Adv.Mater.2008,20,4172
    [150]L.Zhao, J.H.Zou, J.Huang et al, Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses, Org. Electron. 2008,9,649
    [151]Gang Liu, Aiyuan Li, Ding An, Hongbin Wu, Xuhui Zhu, Yuan Li, Xinrui Miao, Wenli Deng, Wei Yang, Yong Cao, Jean Roncali, An Ionic Molecular Glass as Electron Injection Layer for Efficient Polymer Light-Emitting Diode, Macromolecular Rapid Communications,2009,20 (17):1484-1491

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700