族群进化算法及其在全局函数优化和电力经济负荷分配中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力经济负荷分配问题(economic load dispatch,简称ELD)是电力系统运营中面临的一类优化问题。由于该问题可归为一类高维、非线性、多约束的函数优化问题,因此寻找一种高效的函数优化算法成为了求解这类问题的关键。进化算法(evolutionary algorithms,简称EAs)是一种模拟自然进化过程的全局优化方法,实践证明EA是一种有效的函数优化算法,但其收敛速度慢,容易早熟等缺点严重影响着EA的实用效果。本文通过引入族群进化的思想和方法,设计了一种新的进化算法-族群进化算法(ethnic group evolution algorithm,简称EGEA)。通过对大量无约束最优化问题和约束最优化问题的优化实验证明EGEA具有较好的搜索效率和抗早熟能力,是一种有效的函数优化算法。在此基础上,本研究成功将EGEA应用到了电力经济负荷分配中。主要工作包括以下内容:
     提出了族群进化的基本概念和方法,并首先从二进制编码这个角度来尝试进行族群聚类,实现了一种族群进化算法-EGEA/Binary。该算法使用竞争指数作为评估个体价值的指标,并基于族群组织来控制群体的繁殖过程,同时利用族群的分类能力来筛选典型个体并挖掘蕴含于其中的经验性知识。族群的繁殖和自学习过程形成了一种互补的进化模式,本研究称之为双轨协同进化机制。通过对18个各种类型UCOP的优化实验表明EGEA/Binary不仅是可行的,而且是有效的。
     由于EGEA/Binary具有特殊的群体结构,常规的选择方式并不完全适合于EGEA/Binary的迭代过程,因此提出了一种基于竞争指数的模拟退火排序选择算子,通过对12个高维UCOP的优化实验证明该算子是一种适合于EGEA/Binary的选择模式,它不仅易于操作而且能够在保证EGEA/Binary收敛稳定性的同时显著提高该算法的收敛速度。
     通过分析交叉点规模对交叉算子空间搜索能力的影响,发现随群体状态的演变交叉算子对交叉点规模的选择是一个需要动态优化的过程。针对此问题提出了使用分阶段调整策略、随机分配策略以及白适应进化策略三种方法来对交叉点规模进行动态调控,并提出利用自适应进化策略来发现交叉点规模控制知识,而将产生的知识应用于随机分配策略中作为实际应用的方法。对多个UCOP的实验也证明了这种交叉模式的优越性能。将这种交叉模式应用于EGEA/Binary的实验结果显示,它能够显著提高EGEA/Binary的搜索效率。
     针对二进制编码的缺陷提出将族群进化机制扩展到基于实数编码的进化算法,并设计了一种利用层次聚类过程针对实数编码个体进行的族群聚类方法,同时实现了另一种族群进化算法-EGEA/Hierarchic。使用10个高维UCOP和6个混合函数以及13个标准COP来测试EGEA/Hierarchic的性能,实验结果与权威文献中其它典型算法实验数据的比较显示EGEA/Hierarchic是一种有竞争力的函数优化算法。
     提出应用EGEA/Binary与EGEA/Hierarchic两种有效的EGEA来求解ELD问题,并对IEEE的3机6母线系统、3机系统、6机系统、15机系统以及20机系统5个仿真系统进行了测试实验。在对IEEE的3机6母线系统和20机系统的实验中,EGEA/Binary与EGEA/Hierarchic搜索到的结果非常接近于现有文献中的最佳结果,而对IEEE的3机系统、6机系统、15机系统这三个的优化结果则要优于已报道的最佳结果。综合以上实验结果,可以说EGEA是一种对ELD问题非常有效的优化方法。
The economic load dispatch (ELD) problem is one of the important optimization problems in power systems that has the objective of dividing the power demand among the online generators economically while satisfying various constraints. Since ELD problem belongs to a kind of multidimensioned, discrete, nonlinear constrained numerical optimization problem, so the key of solving ELD problem is to find an effective numerical optimization algorithm. The practices prove that evolutionary algorithms (EAs) are good at global numerical optimization, which are simulated by the evolution process of nature. But some defects of EAs, such as premature convergence or converging slowly, have a heavily negative impact on the application of EAs for global numerical optimization. Enlightened by the conception of ethnic group in social science and making use of ethnic group as a view to analyze the structure and evolutionary tendency of population, a novel evolution algorithm, ethnic group evolution algorithm (EGEA), is proposed. The simulation tests prove EGEA is good at global numerical optimization. So we apply EGEA to solve ELD problem and get a good effort. The main achievements are so follows:
     Firstly, a kind of ethnic group evolution algorithm (EGEA/Binary), with a dual track co-evolution process and special ethnic group operators, is designed for binary coding. Race exponent, a new evaluation criterion, is designed to measure the competitive capacity of individual, which develops from the idea of keeping population balance between fitness growth and individual diversity. The simulation tests of classical function and challenging composition test function show that the EGEA/Binary can restrain premature convergence phenomenon effectively during the evolutionary process while increasing the search efficiency greatly.
     For the evaluation indicator and searching mechanism is different to conventional evolutionary algorithm, so it is necessary to research the selection mechanism of EGEA/Binary. We compare and analyze the performance of EGEA/Binary with several conventional selection operators for high dimensions numerical optimization problem, which make use of population and ethnic group as the selection unit and make use of fitness and race exponent as the selection indicator parameter separately, and find the capabilities of selection operator to adjust ethnic group convergence pressure are influence on the performance of EGEA/Binary heavily. Then, a novel selection operator, race exponent based annealing rank selection, is proposed, and the simulations show this selection operator can improve the search efficiency of EGEA/Binary greatly.
     Based on the analysis of relationship between crossover scale and reachable subspace of crossover operator, we find the crossover scale should be dynamically adjusted to population structure. Three control mechanisms, the well-phased control strategy, the random distribution strategy and the adaptation evolution strategy, are built up to adjust the crossover scale. The simulation tests of classical function show these optimization mechanisms are availably, and a kind of valuable control knowledge of crossover scale for multi-dimension functions have been generated by the adaptation evolution strategy.
     For binary code has some defects, so we transplant the ethnic group evolution mechanism into real code population and design another kind of ethnic group evolution algorithm--EGEA/Hierarchic. In EGEA/Hierarchic, a kind of ethnic group clusting methond based on hierarchy clustering process is used to create ethnic group organization. The comparisons between EGEA/Hierarchic and other typical algorithm for 10 typical UCOPs,6 composition functions and 13 typical COPs show EGEA/Hierarchic is a competent algorithm for solving global numerical optimization problem.
     Finally, we use EGEA/Binary and EGEA/Hierarchic to solve ELD problem. Five IEEE simulation system, including 3 thermal units and 6 buses system,3 thermal units system,6 thermal units system,15 thermal units system,20 thermal units system whose incremental fuel cost function took into account the valve-point effects, transmission loss and other constrains, which have been used to test the performance of EGEA/Binary and EGEA/Hierarchic. The simulation results show that EGEA/Binary and EGEA/Hierarchic have more superior performance when compared with other algorithms in the newest literatures.
引文
[1]蔡洋.电网经济调度应立即开展起来[J].电网技术,1994,18(1):47-49.
    [2]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [3]Holland J H. Adaptation in Nature and Artificial Systems [M]. Ann Arbor:The University of Michigan Press,1975.
    [4]Shiu Yin Yuen, Chi Kin Chow. A Genetic Algorithm That Adaptively Mutates and Never Revisits [J]. IEEE Transactions on Evolutionary Computation,2009,13(2):454-472.
    [5]Walker J.A, Miller J.F. The Automatic Acquisition, Evolution and Reuse of Modules in Cartesian Genetic Programming [J]. IEEE Transactions on Evolutionary Computation,2008,12(4):397-417.
    [6]Vladislavleva E.J, Smits G.F, den Hertog, D. Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming [J]. IEEE Transactions on Evolutionary Computation,2009,13(2):333-349.
    [7]Day P, Nandi A.K. Binary String Fitness Characterization and Comparative Partner Selection in Genetic Programming [J]. IEEE Transactions on Evolutionary Computation,2008,12(6):724-735.
    [8]Gustafson S, Vanneschi L. Crossover-Based Tree Distance in Genetic Programming [J]. IEEE Transactions on Evolutionary Computation,2008,12(4):506-524.
    [9]Sobester A, Nair P.B, Keane A.J. Genetic Programming Approaches for Solving Elliptic Partial Differential Equations [J]. IEEE Transactions on Evolutionary Computation,2008,12(4):469-478.
    [10]Gang Chen, Chor Ping Low, Zhonghua Yang. Preserving and Exploiting Genetic Diversity in Evolutionary Programming Algorithms [J]. IEEE Transactions on Evolutionary Computation,2009, 13(3):661-673.
    [11]Deb K, Prata PA, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6 (2):182-197.
    [12]Jin Y, Branke J. Evolutionary Optimization in Uncertain Environments A Survey [J]. IEEE Transactions on Evolutionary Computation,2005,9 (3):303-317.
    [13]Paenke I, Branke J, Jin Y. Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation [J]. IEEE Transactions on Evolutionary Computation,2006,10(4):405-420.
    [14]Lo C C, Hus C C. Annealing Framework with Learning Memory. IEEE Transactions on System, Man, Cybernetics, Part A [J].1998,28(5):1-13.
    [15]Rutenbar R.A. Simulated annealing algorithms:an overview [J]. IEEE Circuits and Devices Magazine,1989,5(1):19-26.
    [16]Krishna K, Ganeshan K, Ram D.J. Distributed simulated annealing algorithms for job shop scheduling [J]. IEEE Transactions on Systems, Man and Cybernetics,1995,25(7):1102-1109.
    [17]Hopfield J H. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences [J],1982,79:2554-2558.
    [18]Shubao Liu, Jun Wang. A Simplified Dual Neural Network for Quadratic Programming With Its KWTA Application [J]. IEEE Transactions on Neural Networks,2006,17(6):1500-1510.
    [19]Zeng-Guang Hou, Gupta M.M, Nikiforuk P.N, Min Tan, Cheng L. A Recurrent Neural Network for Hierarchical Control of Interconnected Dynamic Systems [J]. IEEE Transactions on Neural Networks, 2007,18(2):466-481.
    [20]Wei Bian, Xiaoping Xue. Subgradient-Based Neural Networks for Nonsmooth Nonconvex Optimization Problems [J]. IEEE Transactions on Neural Networks,2009,20(6):1024-1038.
    [21]Yi Shen, Jun Wang. Almost Sure Exponential Stability of Recurrent Neural Networks With Markovian Switching [J]. IEEE Transactions on Neural Networks 2009,20(5):840-855.
    [22]Forti M, Nistri P, Papini D. Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain [J]. IEEE Transactions on Neural Networks,2005,16(6): 1449-1463.
    [23]Licheng Jiao, Lei Wang. A Novel Genetic Algorithm Based on Immunity [J]. IEEE Transactions on System, Man, and Cybernetics-Part A:Systems and Humans,2000,30(5):552-561.
    [24]Cutello V, Nicosia G, Pavone M, Timmis J. An Immune Algorithm for Protein Structure Prediction on Lattice Models [J]. IEEE Transactions on Evolutionary Computation,2007,11(1):101-117.
    [25]Zhuhong Zhang; Tu Xin. Immune Algorithm with Adaptive Sampling in Noisy Environments and Its Application to Stochastic Optimization Problems [J]. IEEE Computational Intelligence Magazine, 2007,2(4):29-40.
    [26]Glover F. Tabu Search-Part I. ORSA Journal on Computing [J],1998,1 (3):190-206.
    [27]Glover F. Tabu Search-Part II. ORSA Journal on Computing [J],1990,2(1):4-32.
    [28]Idoumghar L, Raminosoa T, Miraoui A. New Tabu Search Algorithm to Design an Electric Motor [J]. IEEE Transactions on Magnetics,2009,45(3):1498-1501.
    [29]Hajji O, Brisset S, Brochet P. A new tabu search method for optimization with continuous parameters [J]. IEEE Transactions on Magnetics,2004,40(2):1184-1187.
    [30]Storm R, price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization,1997,11(4):341-359.
    [31]Qin A.K., Huang V.L, Suganthan P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization [J]. IEEE Transactions on Evolutionary Computation,2009,13(2): 398-417.
    [32]Das S, Abraham A, Konar A. Automatic Clustering Using an Improved Differential Evolution Algorithm [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A,2008,38(1):218-237.
    [33]Noman N, Iba H. Accelerating Differential Evolution Using an Adaptive Local Search [J]. IEEE Transactions on Evolutionary Computation,2008,12(1):107-125.
    [34]Colormi A, Dorigo M, Manieaao V. Distributed Optimization by Ant Colonies [C]. Varela F and Bourgine P. Proc of the First European Conf On Artificial Life. Paris, France:Elsevier Publishing, 1991,134-142.
    [35]Dorigo, Gambardella L M. Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem [J. IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
    [36]Dorigo M, Di Caro G. The Ant Colony Optimization Meta-heuristic [C]. Corne D, Dorigo M, Glover F. New Ideas in Optimization. London, UK, McGraw-Hill,1999,11-32.
    [37]Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2004,34(2):1161-1172.
    [38]Dorigo M, Birattari M, Stutzle T. Ant colony optimization Computational Intelligence [J]., IEEE Magazine 2006 1(4):28-39.
    [39]Leguizamon G, Coello C.A.C. Boundary Search for Constrained Numerical Optimization Problems With an Algorithm Inspired by the Ant Colony Metaphor [J]. IEEE Transactions on Evolutionary Computation,2009,13(2):350-368.
    [40]Ho S.L, Shiyou Yang, Guangzheng Ni, Machado J.M. A modified ant colony optimization algorithm modeled on tabu-search methods [J]. IEEE Transactions on Magnetics,2006,42(4): 1195-1198.
    [41]Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc. IEEE Int. Conf. on Neural Networks. Perth, Wa, Australia,1995,1942-1948.
    [42]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995,39-43.
    [43]Ratnaweera A, Halgamuge S.K, Watson H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation,2004, 8(3):240-255.
    [44]Jang-Ho Seo, Chang-Hwan Im, Chang-Geun Heo, Jae-Kwang Kim, Hyun-Kyo Jung, Cheol-Gyun Lee. Multimodal function optimization based on particle swarm optimization [J]. IEEE Transactions on Magnetics,2006,42(4):1095-1098.
    [45]Liang J.J, Qin A.K, Suganthan P.N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation, 2006,10(3):281-295.
    [46]Langdon W.B, Poli R. Evolving Problems to Learn About Particle Swarm Optimizers and Other Search Algorithms [J]. IEEE Transactions on Evolutionary Computation,2007,11(5):561-578.
    [47]Shor P W. Algorithms for quantum computation:Discrete logarithms and factoring [C]. Proc of 35thSymposium:Foundation of Computer Science. Santa Fe,1994:20-22.
    [48]Han K H, Kim J H. Quantum-inspired evolutionary algorithm with a new termination criterion,H gate and two-phase scheme [J]. IEEE Trans on Evolutionary Computation,2004,8 (2):156-169.
    [49]Wang L, Wu H, Tang F, et al. A hybrid quantum-inspired genetic algorithm for flow shop scheduling [J]. Lecture Notes in Computer Science,2005,3645(1):636-644.
    [50]Wang L, Tang F, Wu H. Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation [J]. Applied Mathematics and Computation,2005,171(2): 1143-1158.
    [51]Li B B, Wang L. A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling [J]. IEEE Trans on Systems, Man and Cybernetics - Part B:Cybernetics,2007,37(3): 576-591.
    [52]Wang Y, Feng X Y, Huang Y X, et al. A novel quantum swarm evolutionary algorithm and its application [J]. Neurocomputing,2007,70 (426):633-640.
    [53]张力,冉竟煜.火电厂实时调峰负荷的优化运行的研究[J].电站系统工程,1999,15(4):11-14.
    [54]David C Walters, Gerald B Sheble. Genetic algorithm solution of economic dispatch with valve point loading [J]. IEEE Trans on PS,1993,8(3):1325-1332.
    [55]Yuan Zhiqiang, Hou Zhijian, Jiang Chuanwen. Economic dispatch and optimal power flow based on chaotic optimization [C]. Power System Technology, Proceedings PowerCon,2002. International Conference, IEEE, Kunming, China,2002,4:2313-2317.
    [56]ELhawary M E, Christenses G S. Optimal economic operation of electric power system [M]. Academic Press, New Tork,1979.
    [57]Allen J W, Bruce F W. Power generation, operation, and control [M]. John Wiley&Sons, New York,1984.
    [58]S. R. Huang, S. S. Wu, C. C. Yu et al. Economic Dispatch With Minimization of Power Transmission Losses Using Penalty-Function Nonlinear Programming Neural Network [J]. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences,2003, E86A (9):2303-2308.
    [59]T. Jayabarathi. Combined Environmental/Economic Dispatch Using an Evolutionary Programming Approach [J]. Engineering Intelligent Systems for Electrical Engineering and Communications,2003, 11(2):95-99.
    [60]L. D. Arya, S. C. Choube, D. P. Kothari. Emission Constrained Secure Economic Dispatch [J]. International Journal of Electrical Power& Energy Systems,1997,19(5):279-285.
    [61]Shoults R R, Chang S K, Helm ick S, et al. A Practical Approach to Unit Commitment, Economic Dispatch, and Savings Allocation for Multiple-Area Pool Operation with Import/Export Constraints [J]. IEEE Trans on PAS,1980,99 (2):625-635.
    [62]柳焯.最优化原理及其在电力系统中的应用[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [63]Mechraoui A, Thomas D W P. A New Blocking Principle with Phase and Earth Fault Detection During Fast Power Swing Blocking Scheme for Distance Protection [J]. IEEE Trans on PWRD,1995, 10 (3):1242-1248.
    [64]王承民,郭志忠,于尔铿.电力市场中一种基于动态规划法的经济负荷分配算法[J].电力系统自动化,24(21),19-22.
    [65]Ross D W, Kim S. Dynamic economic dispatch of generation [J]. IEEE Trans on PAS,1980,99: 2060-2068.
    [66]Liang Z X, Glover D. A zoom feature for a dynamic programming solution to economic dispatch including transmission losses [J]. IEEE Trans on Power Systems,1992,7(2):544-550.
    [67]Farag A, Al-Baiyat S, Cheng T C. Economic load dispatch multiobjective optimization procedures using linear programming techniques [J]. IEEE Trans on PS,1995,10 (2):731-738.
    [68]Rabin A, Alun H, Brian J. A homogenous linear programming algorithm for the security constrained economic dispatch problem [J]. IEEE Trans on Power Systems,2000,15(3):930-936.
    [69]Chao-Lung Chiang. Improved Genetic Algorithm for Power Economic Dispatch of Units With Valve-Point Effects and Multiple Fuels [J]. IEEE Trans on Power Systems,2005,20(4):1690-1699.
    [70]Gerald B Sheble, Kristin Britting. Refine genetic algorithm-economic dispatch example [J]. IEEE Trans on PS,1995,10(1):117-123.
    [71]N. Sinha, R. Chakrabarti, P. K. Chattopadhyay. Evolutionary programming techniques for economic load dispatch [J]. IEEE Trans. Evol. Comput,2003,7(1):83-94.
    [72]G Zwe-Lee. Particle swarm optimization to solving the economic dispatch considering the generator constraints [J], IEEE Trans. Power System,2003,18(3):1187-1195.
    [73]Leandro dos Santos Coelho, Chu-Sheng Lee. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches [J]. Electrical Power and Energy Systems 2008,30:297-307.
    [74]唐巍,李殿璞.电力系统经济负荷分配的混沌优化方法[J].中国电机工程学报,2000,20(10):36-40.
    [75]王爽心,韩芳,朱衡君.基于改进变尺度混沌优化方法的经济负荷分配[J].中国电机工程学报,2005,25(24):90-95.
    [76]侯云鹤,熊信艮,吴耀武,等.基于广义蚁群算法的电力系统经济负荷分配[J].中国电机工程学报,2003,23(3):59-64.
    [77]毛亚林,张国忠,朱斌,等.基于混沌模拟退火神经网络模型的电力系统经济负荷分配[J].中国电机工程学报,2005,25(3):65-70.
    [78]Leandro dos Santos Coelho, Viviana Cocco Mariani. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints [J]. Energy Conversion and Management 2007,48:1631-1639.
    [79]Ji-Pyng Chiou. Variable scaling hybrid differential evolution for large-scale economic dispatch problems [J]. Electric Power Systems Research 2007,77:212-218.
    [80]刘自发,张建华.一种求解电力经济负荷分配问题的改进微分进化算法[J].中国电机工程学报.2008,28(10):100-105.
    [81]Bagley J D. The behavior of adaptive system which employ genetic and correlation algorithm [D]. Ph.D. Dissertation, University the Michigan, No.68-7556,1967.
    [82]Booker L B, Goldberg D E. Classifier systems and genetic algorithm [J]. Artificial Intelligence. 1989,40:235-282.
    [83]De Jong K A. An analysis of behavior of a class of genetic adaptive systems [D]. Ph.D. Dissertation, University of Michigan, No.76-9381,1975.
    [84]Goldberg D E. Genetic Algorithm in Search, Optimization and Machine Learning [M]. Reading, MA:Addison-Wesley Publish Company,1989.
    [85]Daris L. Handbook of Genetic Algorithms [M]. New York:van Nostrand Reinhold,1991.
    [86]Mchelewicz Z. Genetic Algorithms+Data Structure= Evolutionary Programming [M]. Springer-Verlag,1996.
    [87]Fogel L J, et al. Artificial Intelligence through Simulation Evolution [M]. Chichester:John Wiley, 1966.
    [88]Fogel D B. Evolutionary Computation:Toward a New Philosophy of Machine Intelligence [M]. IEEE Press,1995.
    [89]Rechenberg I. Cybernetic solution path of an experimental problem [M]. Royal Aircraft Establishment. Library Translation 1122,1965.
    [90]Koza J R. Genetic Programming:On the Programming of Computers by Means of Natural Selection [M]. Cambridge, MA:MIT Press,1992.
    [91]Jiao L C, Wang L. A novel genetic algorithm based on immune [J]. IEEE Trans. Syst., Man, Cybern. A.2000,30(9):1-10.
    [92]Cohn H, Fielding M. Simulated annealing:searching for optimal temperature schedule [J]. SIAM Journal Optimization.1999,9:779-802.
    [93]Kazarlis S A, Papadakis S E, Theocharis J B, Petridis V. Microgenetic algorithms as generalized hill-climbing operators for GA optimization [J]. IEEE Trans. Evolutionary Computation,2001,5(3): 204-217.
    [94]Salomon R. Evolutionary algorithms and gradient search:similarities and differences [J]. IEEE Trans. Evolutionary Computation,1998,2(2):45-55.
    [95]Baraglia R, Hidalgo J I, Perego R. A hybrid heuristic for the traveling salesman problem [J]. IEEE Trans. Evolutionary Computation.2001,5(6):613-622.
    [96]Tanese R. Parallel genetic algorithm for a hypercube [C]. In:the Proceedings of the Second International Conference on Genetic Algorithms.1987:177-183.
    [97]Cohoon J P, Martin W N, Richards D S. A mufti-population genetic algorithm for solving the K-partition problem on hyper-cubes [C]. In:the Proceedings of the Fourth International Conference on Genetic Algorithm.1991:244-248.
    [98]Prahlada B B, Hansdah R C. Extended distributed genetic algorithm for channel routing [J]. IEEE Trans. Neural Networks.1993:726-733.
    [99]Sannier A V, Goodman E D. Genetic learning procedures in distributed environments [C]. In:the Proceedings of the Second International Conference on Genetic Algorithms.1987:162-169.
    [100]Manderick B, Spiessens P. Fine-grained parallel genetic algorithms [C]. In:the Proceedings of the Third International Conference on Genetic Algorithms.1989:428-433.
    [101]Cantu-Paz E. Markov chain models of parallel genetic algorithms [J]. IEEE Trans. Evolutionary Computation.2000,4(3):216-225.
    [102]Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization [J]. The Parallel Problem Solving From Nature. Jerusalem, Israel, Springer-Verlag,1994:249-257.
    [103]Potter M A, De Jong K A. Cooperative coevolution:an architecture for evolving coadapted subcomponents [J]. Evolutionary Computation.2000,8(1):1-29.
    [104]Paredis J. Coevolutionary computation [J]. Artificial Life.1995,2(4):355-375.
    [105]Deb K, Beyer H G. Self-adaptive genetic algorithms with simulated binary crossover [J]. Evolutionary Computation.2001,9(2):137-221.
    [106]Shigeyoshi Tsutsui, Yoshiji Fujimoto, Ashish Ghosh. Forking genetic algorithms:GAs with search space division cchemes [J]. Evolutionary Computation.1997,5(1):61-80.
    [107]Shigeyoshi Tsutsui, Isao Hayashi, Yoshiji Fujimoto. Extended forking genetic algorithm for order representation [J]. International conference on evolutionary computation.1994:639-644.
    [108]Cheng S, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm [J]. IEEE Trans. Syst., Man, Cybern. A,2001,31(6):698-707.
    [109]Folino q Pizzuti C, Spezzano G. Parallel hybrid method for SAT that couples genetic algorithms and local search [J]. IEEE Trans. Evolutionary Computation.2001,5(4):323-334.
    [110]Whitley D, Mathias K, Fitzhorn P. Delta coding:an iterative search strategy for genetic algorithms [C]. In:the Proceedings of the 4" International Conference on Genetic Algorithms. Morgan Kaufmann,1991:77-84.
    [111]Schraudolph N, Belew R. Dynamic parameter encoding for genetic algorithms [C]. CSE Technical Report CS90-175, University of San Diego, La Jolla,1990.
    [112]Goldberg D E. Real-coded genetic algorithms, virtual alphabets and blocking [R]. University of Illinois at Urbana-Champaign, Technique Report No.90001, Sept.1990.
    [113]Eshleman L J, Schaffer J D. Real-coded genetic algorithms and interval-schemata [J]. Foundations of Genetic Algorithms.1993,2:187-202.
    [114]Deb K, Beyer H G Self-adaptation in real-Parameter genetic algorithms with simulated binary crossover [C]. In:the Proceedings of Genetic and Evolutionary Computation Conference.1999: 172-179.
    [115]Jonikow C Z, Michalewicz Z. An experimental comparison of binary and floating point representations in genetic algorithms [C]. In:the Proceedings of the 4th International Conference on Genetic Algorithms.1991:31-36.
    [116]Fogel G B, Chellapilla K, Fogel D B. Reconstruction of DNA sequence information from a simulated DNA chip using evolutionary programming [C]. In:the Proceedings of the 7th Annual Conference on Evolutionary Programming. Springer, Berlin,1998:429-436.
    [117]Fogel D B. Using evolutionary programming for modeling:an ocean acoustic example [J]. IEEE Journal of Oceanic Engineering,1992,17(4):333-340.
    [118]Fogel D B. Using evolutionary programming to create neural networks that are capable of playing tic-tac-toe [C]. In:the Proceedings of the American Power Conference. IEEE Computer Society Press, Los Alamitos, CA.,1993:875-879.
    [119]Fogel D B. A parallel processing approach to a multiple travelling salesman problem using evolutionary programming [C]. In:the Proceedings of the Fourth Annual Symposium on Parallel Processing. IEEE Computer Society Press, Los Alamitos, CA,1990:318-326.
    [120]Fogel D B. Applying evolutionary programming to selected traveling salesman problems [J]. Cybernetics and Systems,1993,24(1):27-36.
    [121]Xin Yao, Yong Liu, Guangming Lin. Evolutionary programming made faster [J]. IEEE Trans. Evolutionary Computation.1999,3(2):82-102.
    [122]Kim J H, Myung H. Evolutionary programming techniques for constrained optimization problems [J]. IEEE Trans. Evolutionary Computation.1997,1(2):129-140.
    [123]Schwefel H P. Numerical Optimization for Computer Models [M]. John Wiley, Chichester, UK, 1981.
    [124]Schwefel H. P., Rudolph G. Contemporary evolution strategies [C]. In:Advances in Artificial Life: Proceedings of 3'd Europe Conference on Artificial Life. LNAI, Springer-Verlag,1995,929:893-907.
    [125]Schwefel H P. Evolution and Optimum Seeking [M]. John Wiley&Sons, New York,1995.
    [126]Back T. Evolutionary Algorithm in Theory and Practice [M], Oxford:Oxford University Press, 1996.
    [127]Yao X, Liu Y. Fast evolution strategies [J]. Control and Cybernetics.1997,26(3):467-496.
    [128]Ohkura K, Matsumura Y, Ueda K. Robust evolution strategies [J]. Applied Intelligence.2001, 15:153-169.
    [129]Back T, Schwefel. An overview of evolutionary algorithms for parameter optimization [J]. Evolutionary Computation.1993,1(1):1-23.
    [130]Koza J R. Genetic Programming Ⅱ[M]:Automatic Discovery of Reusable Programs. Cambridge, MA:MIT Press.1994.
    [131]Koza J R. Genetic Programming III:Darwain Invention and Problem Solving [M]. Morgan Kaufmann,1999.
    [132]Koza J R. Genetic programming [C]. In:Encyclopedia of Computer Science and Technology, Marcel-Dekker,1998,39:29-43.
    [133]Zhang B T, Muhlenbein H. Balancing accuracy and parsimony in genetic programming [J]. Evolutionary Computation.1995,3(1):17-38.
    [134]Iba H, Garis H, Sato T. Genetic programming using a minimum description length principle [M]. In:Advances in Genetic Programming, chapter 12, MIT Press,1994:265-284.
    [135]A. Homaifar, S. H. Y. Lai, X. Qi. Constrained optimization via genetic algorithms [J]. Simulation, 1994,62(4):242-254.
    [136]徐宗本高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学,1996,26(4):364-375.
    [137]G. Rudolph. Convergence analysis of canonical genetic algorithms [J]. IEEE Trans. on Neural Networks.1994,5(1):96-101.
    [138]Vose M.D., Liepins G.E. Schema Disruption [C]. In Proceeding of Fourth International Conference on Genetic Algorithms (ICGA 4), Belew, F. and Brooker, L.(ed.),San Mateo, CA:Morgan Kaufmann Publisher,Inc.,1991:237-242
    [139]Goldberg E E. Genetic algorithms in search, optimization and machine learning [M]. Reading, MA:A ddison W esley Publish ing Company,1989
    [140]林焰,郝聚民,纪卓尚,戴寅生.隔离小生境遗传算法研究[J].系统工程学报,2000,15(1):86-91.
    [141]徐金梧,刘纪文.基于小生境技术的遗传算法[J].模式识别与人工智能,1999,12(1):104-107.
    [142]J. Gan, K. Warwick. Dynamic niche clustering, a fuzzy variable radius niching technique for multimodal optimization in Gas [C]. in:Proceedings of IEEE Congress on Evolutionary Computation, 2001,215-222.
    [143]L. Qing et al. Crowding clustering genetic algorithm for multimodal function optimization [J]. APPLIED SOFT COMPUTING,2006,8(1):88-95.
    [144]Leung Y W, Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization [J]. IEEE Trans. Evolutionary Computation.2001,5(1):41-53.
    [145]史奎凡,董吉文,李金屏,曲守宁,杨波.正交遗传算法[J].电子学报,2002,30(10): 1501-1504.
    [146]S Osher, J A Sethian. Fronts propagating with curvature dependent speed:Algorithms based on the Hamilton-Jacobi formulation [J]. Journal of Computational Physics,1988,79 (1):12-49.
    [147]李庆华,杨世达,阮幼林.基于水平集的遗传算法优化的改进[J].计算机研究与发展,2006,43(9):1624-1629.
    [148]Yuping Wang; Chuangyin Dang, An Evolutionary Algorithm for Global Optimization Based on Level-Set Evolution and Latin Squares [J]. IEEE Transactions on Evolutionary Computation, 2007,11(5):579-595.
    [149]Kazarlis S A, Papadakis S E, Theocharis J B, Petridis V. Microgenetic algorithms as generalized hill-climbing operators for GA optimization [J]. IEEE Trans. Evolutionary Computation.2001,5(3): 204-217.
    [150]张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922.
    [151]刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105.
    [152]江瑞,罗予频,胡东成,等.一种协调勘探和开采的遗传算法:收敛性及性能分析[J].计算机学报.2001,24(12):1233-1241.
    [153]钟伟才,刘静,等.多智能体遗传算法用于超高维函数优化[J].自然科学进展,2003,13(10):1078-1083.
    [154]W. C. Zhong, J. Liu, M. Z. Xue and L. C. Jiao. A multiagent genetic algorithm for global numerical optimization [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 2004,34(2):1128-1141.
    [155]刘静,钟伟才,等.组织进化数值优化方法[J].计算机学报,2004,27(2):157-167.
    [156]Jing Liu; Weicai Zhong; Licheng Jiao. An Organizational Evolutionary Algorithm for Numerical Optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2007,37(4): 1052-1064.
    [157]Le RRG, Knopf-Lenoir C, Haftka RT. A segregated genetic algorithm for constrained structural optimization [C]. In:Eshelman LJ, ed. Proc. of the 6th Int'l Conf. on Genetic Algorithms. San Francisco:Morgan Kaufman Publishers,1995.558-565.
    [158]Hoffmeister F, Sprave J. Problem-Independent handling of constraints by use of metric penalty functions [C]. In:Fogel LJ, Angeline PJ, Back T, eds. Proc. of the 5th Annual Conf. on Evolutionary Programming (EP'96). San Diego:MIT Press,1996.289-294.
    [159]Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization [J]. IEEE Trans. on Evolutionary Computation,2000,4(3):284-294.
    [160]王勇,蔡自兴,周育人,肖赤心.约束优化进化算法[J].软件学报,2009,20(1):11-29.
    [161]Powell D, Skolnick MM. Using genetic algorithm in engineering design optimization with nonlinear constraint [C]. In:Forrest S, ed. Proc. of the 5th Int'l Conf. Genetic Algorithms (ICGA'93). San Mateo:Morgan Kaufmann Publishers,1993.424-431.
    [162]Deb K. An efficient constraint handling method for genetic algorithms [J]. Computation Methods in Applied Mechanics and Engineering,2000,86(2-4):311-338.
    [163]Takahama T, Sakai S. Constrained optimization by applying the a constrained method to the nonlinear simplex method with mutations [J]. IEEE Trans. on Evolutionary Computation,2005,9(5): 437-451.
    [164]Camponogara E, Talukdar SN. A genetic algorithm for constrained and multiobjective optimization [C]. In:Alander JT, ed. Proc. of the 3rd Nordic Workshop on Genetic Algorithms and Their Applications (3NWGA). Vaasa:University of Vaasa,1997.49-62.
    [165]Coello Coello CA. Constraint handling using an evolutionary multiobjective optimization technique [J]. Civil Engineering and Environmental Systems,2000,17(4):319-346.
    [166]Fonseca CM, Fleming PJ. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part Ⅰ:A unified formulation [J]. IEEE Trans. on Systems, Man, and Cybernetics (A),1998,28(1):26-37.
    [167]Michalewicz Z, Janikow CZ. Handling constraints in genetic algorithm [C]. In:Belew RK, Booker LB, eds. Proc. of the 4th Int'l Conf. on Genetic Algorithms (ICGA-91).Los Altos:Morgan Kaufmann Publishers,1991.151-157.
    [168]Michalewicz Z, Attia NF. Evolutionary optimization of constrained problems [C]. In:Sebald AV, Fogel LJ, eds. Proc. of the 3rd Annual Conf. on Evolutionary Programming. River Edge:World Scientific,1994.98-108.
    [169]Michalewicz Z, Nazhiyath G. Genocop III:A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints [C]. In:Fogel DB, ed. Proc. of the 2nd IEEE Int'l Conf. on Evolutionary Computation. Piscataway:IEEE Service Center,1995.647-651.
    [170]Koziel S, Michalewicz Z. Evolutionary algorithm, homomorphous mappings, and constrained parameter optimization [J]. Evolutionary Computation,1999,7(1):19-44.
    [171]Marx Weber. The Ethnic Group [M]. In THEORIES OF SOCIETY Parsons and Shils etal (eds.). Vol.1 Gleercol Illinois, The Free Press,1961.
    [172]T. M. Chan, K. F. Man, S. Kwong, K. S. Tang, A Jumping Gene Paradigm for Evolutionary Multiobjective Optimization [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008,12(2):143-159.
    [173]Ortiz-Boyer Domingo, Hervas-Martinez Cesar, Garcia-Pedrajas Nicolas. Improving crossover operator for real-coded genetic algorithms using virtual parents [J]. Journal of Heuristics,2007,13(3): 265-314.
    [174]Garcia-Martinez C, Lozano M., Herrera F., Molina D., Sanchez A.M. Global and local real-coded genetic algorithms based on parent-centric crossover operators [J]. European Journal of Operational Research,2008,185(3):1088-1113.
    [175]Wolpert D.H., Macready W.G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation,1997 1(1):67-82.
    [176]Robert G Reynolds, Shinin Zhu. Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,2001,31(1):1-18.
    [177]J.J. Liang, P.N. Suganthan, K. Deb. Novel composition test functions for numerical global optimization [C]. In:James Kennedy, ed. Proc. of IEEE Swarm Intelligence Symposium. Pasadena California, USA:IEEE Press,2005,68-75.
    [178]Jinn-Tsong Tsai, Tung-Kuan Liu, Jyh-Horng Chou. Hybrid taguchi-genetic algorithm for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(4):365-377.
    [179]Zhen-Guo Tu, Yong Lu. A robust stochastic genetic algorithm (StGA) for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(5):456-470.
    [180]Goldberg D E, Deb K. A comparative analysis of selection schemes used in genetic algorithms [C]. In:Rawlins G J E ed. Foundations of Genetic Algorithm s. San Mateo, CA:Morgan Kaufmann, 1991,69-93.
    [181]郭东伟,周春光,刘大有.遗传算法取代时间的分析[J].计算机研究与发展,2001,38(10):1211-1216.
    [182]Baker, J. E. Reducing bias and inefficiency in the selection algorithm [J]. In Proceedings of the First International Conference on Genetic Algorithms (ICGA2), Grefenstette, J.J. (ed.), Lawrence Erlbaum Associates, NJ,1987:14-21.
    [183]Miller, B., and Goldberg, D. Genetic algorithms, selection schemes, and the varying effects of nose [J]. Evolutionary Computation,1996,4(2):25-49.
    [184]Percy C Y, Pao Y H. Combinatorial optimization with use of guided evolutionary simulated annealing [J]. IEEE Trans on Neural Networks,1995,6(2):290-295.
    [185]张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164.
    [186]Beyer HG. Toward a theory of evolution strategies:On the benefits of sex-the (μ/μ,λ) theory [J]. Evolutionary Computation,1995,3(1):81-111.
    [187]章珂,刘贵忠.交叉位置非等概率选取的遗传算法[J].信息与控制,1997,26(1):53-60.
    [188]张文修,梁怡.遗传算法的数学基础[M].第二版.西安,西安交通大学出版社,2000.37-44.
    [189]任庆生,叶中行,曾进,戚飞虎.交叉算子的搜索能力[J].计算机研究与发展,1999,36(11):1317-1322.
    [190]任庆生,曾进,戚飞虎.交义算子的极限一致性[J].计算机学报,2002,25(12):1405-1410.
    [191]姚望舒,陈兆乾,陈世福.CRGA一种基于保留全局公共模式和约束交义位置的遗传算法[J]. 计算机研究与发展,2006,43(1):81-88.
    [192]Zhang Jun, Chung Henry Shu-Hung, Lo Wai-Lun. Clustering-based adaptive crossover and mutation probabilities for genetic algorithms [J]. IEEE Transactions on Evolutionary Computation, 2007,11(3):326-335.
    [193]Jin Da-Jiang, Zhang Ji-Ye. A new crossover operator for improving ability of global searching [C]. In:Xizhao Wang, ed. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics (ICMLC 2007). Hong Kong. IEEE SMC Society,2007,2328-2332.
    [194]Kaelo P., Ali M.M. Integrated crossover rules in real coded genetic algorithms [J]. European Journal of Operational Research,2005,176(1):60-76.
    [195]Hutt Benjamin, Warwick Kevin. Synapsing variable-length crossover:Meaningful crossover for variable-length genomes [J]. IEEE Transactions on Evolutionary Computation,2007,11(1):118-131.
    [196]吴少岩,许卓群.遗传算法中遗传算子的启发式构造策略[J].计算机学报,1998,21(11):1003-1008.
    [197]张军英,许进,保铮.遗传交义运算的可达性研究[J].自动化学报,2002,28(1):120-125.
    [198]De Jong K. A., Spears W. M. A formal analysis of the role of multi-point crossover in genetic algorithms [J]. Annals of Mathematics and Artificial Intelligence,1992,5(1):1-26.
    [199]Jain AK, Murty MN, Flynn PJ. Data clustering [J]:A review. ACM Computing Surveys, 1999,31(3):264-323.
    [200]Z. Michalewicz. Genetic Algorithms+Data Structures= Evolution Programs [M]. Springer-Verlag, New York,1992.
    [201]Michalewicz Z, et. Al. A modified genetic algorithm for optimal control problem [J]. Computers Math. Application,1992,23(12):83-94.
    [202]X. Yao, Y. Liu, G. Lin. Evolutionary programming made faster [J]. IEEE Trans. Evol. Comput, 1999,3(2):82-102.
    [203]Oscar Montiel, Oscar Castillo, Patricia Melin, Antonio Rodri'guez Dt'az, Roberto Sepu' lveda. Human evolutionary model:A new approach to optimization [J]. Information Sciences, 2007,177:2075-2098.
    [204]B.K. Panigrahi, Salik R. Yadav, Shubham Agrawal, M.K. Tiwari. A clonal algorithm to solve economic load dispatch [J]. Electric Power Systems Research 2007,77:1381-1389.
    [205]P.H. Chen, H.C. Chang, Large scale economic dispatch by genetic algorithm [J], IEEE Trans. Power Syst.10 (4) (1995) 1919-1926.
    [206]R. Naresh, J. Dubey, J. Sharma. Two phase neural network based modeling framework of constrained economic load dispatch [J], IEE Proc. Gener. Transm. Distrib.,2004,151(3):373-378.
    [207]Ching Tzong Su, Chien Tung. New Approach with a Hopfield Modeling Framework to Economic Dispatch [J]. IEEE TRANSACTIONS ON POWER SYSTEMS,2000,15(2):541-545.
    [208]A. Immanuel Selvakumar, K. Thanushkodi. A New Particle Swarm Optimization Solutionto Nonconvex Economic Dispatch Problems [J]. IEEE Trans on Power Systems,2007,22(1):42-51.
    [209]B.K. Panigrahi, V. Ravikumar Pandi, Sanjoy Das. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch [J]. Energy Conversion and Management,2008,49: 1407-1415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700