交感神经组胺的突触效应及其在急性缺血性心律失常中的病理生理功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们实验室前期研究发现,在交感神经元内存在有合成组胺的关键酶---组氨酸脱羧酶;组胺与去甲肾上腺素广泛共存于不同种属的交感神经元胞体、轴突以及末梢内;且亚细胞定位也显示,交感神经突触囊泡之中含有大量组胺。同时,适当的神经刺激条件下还能引发组胺自交感神经末梢释放,而释放的组胺则受到交感神经突触前组胺H3受体和α2肾上腺素受体的共同调控。基于这一系列研究发现,我们实验室率先提出了组胺是交感神经递质,且交感神经末梢组胺H3受体是一种自身受体的学术观点。但是,我们的前期研究所主要关注的是组胺在交感神经中的存在、定位以及其释放调控,而对其释放后的突触效应和生理或病理生理功能则知之甚少:交感神经组胺究竟有着怎样的突触前、后效应?其效应与交感神经的兴奋性有着怎样的关系?外源性的组胺是否能够模拟交感组胺的这些效应?此外,交感组胺又介导了怎样的病理生理作用呢?这些问题的回答将能够更为全面的定义组胺的交感神经递质身份。
     1豚鼠输精管交感神经源性组胺的释放及突触效应的研究
     为探讨交感神经源性组胺的突触前、后作用以及与交感神经兴奋性的关系,本研究运用电场刺激豚鼠离体输精管模型观察了不同频率电场刺激交感神经末梢所引发释放的组胺对标本收缩功能的影响。发现交感神经刺激能够诱发组胺释放,这种释放不受肥大细胞脱颗粒剂化合物48/80以及肥大细胞稳定剂色甘酸钠的影响,但对钠通道阻断剂河豚毒素以及交感神经化学损毁剂6-羟多巴胺高度敏感。当刺激频率为12.5 Hz时,释放的神经源性组胺只能够激活交感神经突触前H3受体而起到突触前抑制作用;而当刺激频率增至25或50 Hz条件时,组胺则可同时激活交感神经突触前H3受体以及突触后H1受体。但是,只有刺激频率高于50 Hz时才能观察到组胺的直接突触后收缩效应。组氨酸脱羧酶抑制剂α-fluoromethylhistidine能够显著抑制交感神经刺激所导致的组胺释放以及组胺介导的效应。提示经由组氨酸脱羧酶合成的交感神经源性组胺具有特定的突触效应,并与交感神经兴奋性密切相关。随着电场刺激频率的不同,其效应分别表现为突触前抑制、突触后易化以及直接的突触后收缩效应。
     2外源性组胺对交感神经源性组胺突触效应模拟的研究
     为进一步研究交感神经源性组胺的功能,本研究使用了不同浓度的外源性组胺,以观察其对内源性组胺突触作用的模拟效应。我们发现只有在浓度高于10μM时,外源性施加的组胺才能够引发直接的标本收缩效应。而尽管浓度为10 nM–1μM的外源性组胺不能够引发豚鼠输精管的直接收缩效应,但在12.5 Hz电场刺激时,浓度为10 nM和1μM的外源性组胺对于标本收缩效应分别具有抑制或者易化的作用。10 nM外源性组胺的抑制作用可被组胺H3受体阻断剂thioperamide所阻断,而1μM的外源性组胺的易化作用则可被组胺H1受体阻断剂氯苯那敏取消。这进一步提示,外源性组胺能够模拟不同神经兴奋状态下交感神经源性组胺的突触前、后作用。
     3交感神经源性组胺在小鼠急性缺血性心律失常中的病理生理作用的研究
     基于上述发现,为探讨交感神经源性组胺在急性缺血时交感神经过度兴奋所致的心律失常中的病理生理作用,本研究观察了其在肥大细胞缺失小鼠、组氨酸脱羧酶敲除小鼠以及野生型对照小鼠离体心脏中的分布和释放情况,并分析了对于室性心动过速和室颤等严重室性心律失常发生的影响。
     结果发现组胺在肥大细胞缺失小鼠的颈上神经节神经元中仍有分布;而在组氨酸脱羧酶敲除小鼠颈上神经节中则没有。电场刺激心脏交感神经或短时程停灌模拟急性缺血刺激均可促发野生型和肥大细胞缺失小鼠离体灌流心脏标本中释放对6-羟多巴胺预处理敏感的组胺,同时短时程停灌还能诱发明显的室性心动过速和室颤。但上述刺激因素对组氨酸脱羧酶缺失小鼠心脏标本组胺释放以及室性心律失常的发生却没有显著影响。小鼠离体灌流心脏标本复灌后室性心动过速和室颤的持续时间与其释放的组胺呈正相关。此外,α-fluoromethylhistidine预处理可以抑制肥大细胞缺失小鼠离体心脏标本短时程停灌后室性心动过速和室颤的发生率和持续时间;而组胺H2受体阻断剂法莫替丁和β1肾上腺素受体阻断剂阿替洛尔预处理同样可以显著减轻野生型和肥大细胞缺失小鼠离体心脏室性心律失常的持续时间,且二者具有协同作用。法莫替丁还能够显著抑制野生型和肥大细胞缺失小鼠心脏标本停灌复灌所致的心肌cAMP含量的上升,但对于组氨酸脱羧酶缺失小鼠心脏标本则无显著影响。提示交感神经源性组胺对于急性缺血性心律失常的发生有着显著的促进作用,其通过激动突触后组胺H2受体一方面产生直接的正性变时作用,另一方面易化β1肾上腺素受体从而增强去甲肾上腺素的致心律失常效应。
     综上,本研究得出以下结论:(1)交感神经源性组胺释放后可通过激活交感神经突触前组胺H3受体产生突触前抑制,并通过激活突触后H1或H2受体产生相应的突触后作用;(2)交感神经源性组胺的突触后作用与交感神经兴奋程度密切相关;(3)外源性组胺可以模拟交感神经源性组胺在不同神经兴奋状态下的突触作用;(4)交感神经源性组胺在急性缺血性心律失常的发生发展中具有重要的病理生理作用,组胺及其H2受体可能是今后治疗急性缺血性心律失常的新靶点。
Our previous study has found that histidine decarboxylase (HDC), the key enzyme that catalyzes the formation of histamine, was expressed in sympathetic neurons, and that histamine per se coexisted widely with norepinephrine in the bodies, axons and terminals of sympathetic neurons of different species. Moreover, histamine will release from sympathetic nerve endings upon appropriate nerve stimulation, which can be modulated by both presynaptic histamine H3 receptors andα2 adrenoceptors. Based on these points, we have proposed the viewpoints for the first time that histamine is a sympathetic neurotransmitter and that the sympathetic presynaptic histamine H3 receptor is an autoreceptor. However, what our previous study mainly focused on is the existence, the subcelluar location and the release modulation of sympathetic histamine; but some of its aspects still need to be further clarified. Specifically, it is not yet fully understood whether released HA from sympathetic nerves can activate the corresponding receptors located on the pre- or postsynaptic membrane and therefore mediate certain pre- or postsynaptic effects, what is the relationship between the synaptic effects of sympathetic histamine and sympathetic nerve activity, whether exogenous HA can mimic such effects, and what are the physiological or pathophysiological roles of sympathetic histamine. The answers of these questions comprise the key elements necessary for histamine to be defined as a sympathetic neurotransmitter.
     1 The release and the synaptic effects of sympathetic histamine in guinea pig vas deferens
     In order to explore the pre and post synaptic effects of sympathetic histamine and the relationship between the synaptic effects and sympathetic nerve activity, the present study used guinea pig vasa deferentia as a model to observe histamine release and the contractile responses induced by different frequencies of electrical field stimulation. We found that sympathetic nerve stimulation could evoke histamine release, which was independent to mast cell degranulator compound 48/80 and mast cell stabilizer cromolyn, but was highly sensitive to Na+ channel blocker tetrodotoxin and chemical sympathectomy with 6-hydroxydopamine. The neurogenically released histamine evoked by 12.5 Hz of nerve stimulation activated only presynaptic H3 receptors and mediated presynaptic inhibitory effects, while under 25 or 50 Hz stimulation condition, histamine simultaneously activated both presynaptic H3 receptors and postsynaptic H1 receptors. However, the direct contractile responses evoked by sympathetic histamine via H1 receptors were observed at 50 Hz. Histamine release and histamine mediated contractile responses upon sympathetic nerve stimulation were significantly inhibited by pretreatment of histidine decarboxylase inhibitorα-fluoromethylhistidine. These results suggest that histamine, synthesized by histidine decarboxylase, in sympathetic neurons exerts certain synaptic effects, which may vary from presynaptic inhibition, to postsynaptic facilitation, to direct postsynaptic contractile responses according to sympathetic nerve activity.
     2 The mimic effects of exogenous histamine in guinea pig vas deferens
     In order to further explore the function of sympathetic histamine, different concentrations of exogenous histamine were used to see whether they could mimic the effects mediated by endogenous histamine. We found that histamine evoked direct contractile responses only at concentrations over 10μM. Although exogenous histamine (10 nM - 1μM) did not induce any direct contractile responses of guinea pig vasa deferentia, it could either inhibit (10 nM) or facilitate (1μM) the contractile responses evoked by EFS at 12.5 Hz. The inhibitory effect of 10 nM of histamine was blocked by selective H3 receptor antagonist thioperamide, while the facilitory effect of 1μM of histamine was blocked by selective H3 receptor antagonist chlorpheniramine. These results further suggest that the synaptic effects of sympathetic histamine under different states of sympathetic nerve activity could be mimicked by exogenous application of histamine in both presynaptic and postsynaptic ways.
     3 The pathophysiological effects of sympathetic histamine in acute ischemia induced arrhythmia in mice hearts
     Based on the above findings, we further explored the pathophysiological effects of sympathetic histamine in acute ischemia induced arrhythmia, in which condition the heart sympathetic nerves are in an overactive state. We have observed the heart sympathetic histamine release and its relationship to arrhythmogenesis in isolated hearts of mast cell deficient mice, histidine decarboxylase knockout mice and their wild type control.
     We found that histamine was present in the superior cervical ganglion of mast cell deficient mice, but not in that of histidine decarboxylase knockout mice. Both electrical field stimulation and short time stop-flow (acute ischemia) induced 6-hydroxydopamine sensitive histamine release from isolated hearts of wild type mice and mast cell deficient mice. Acute ischemia also induced ventricular tachycardia and ventricular fibrillation in these two strains of mice. But in isolated hearts of histidine decarboxylase knockout mice, electrical field stimulation and acute ischemia did not show significant effects on either histamine release or arrhythmogenesis. Regression analysis revealed positive correlation between heart sympathetic histamine release and arrhythmogenesis. Furthermore, pretreatment withα-fluoromethylhistidine had inhibitory effects on the incidence and duration of acute ischemia induced ventricular tachycardia and ventricular fibrillation. Pretreatment with either selective H2 receptor antagonist famotidine orβ1 aderoceptor antagonist atenolol also significantly reduced the duration of ventricular tachycardia and ventricular fibrillation; and these two drugs showed synergistic effect when used in combination. In addition, famotidine inhibited the increase of myocardial cAMP induced by acute ischemia reperfusion in hearts of wild type mice and mast cell deficient mice but not in that of histidine decarboxylase knockout mice. These results indicate that sympathetic histamine exhibits significant promoting effects on acute ischemia induced arrhythmogenesis via postsynaptic histamine H2 receptors. The activation of heart histamine H2 receptors will exert direct positive chronotropic effects and will also facilitate the arrhythmogenic effects mediated byβ1 aderoceptors via post synaptic synergistic mechanism.
     In conclusion, 1) As a neurotransmitter, the released sympathetic histamine exerts the presynaptic inhibitory effect via histamine H3 receptors, and exerts corresponding postsynaptic effects via H1 or H2 receptors. 2) The postsynaptic effects of sympathetic histamine depend greatly on the activity of sympathetic nerves. 3) The exogenous histamine can mimic the synaptic effects of sympathetic histamine under different states of sympathetic nerve activity. 4) Sympathetic histamine plays important roles in acute ischemia induced arrhythmogenesis, and histamine and H2 receptors may be potential therapeutic targets in the future.
引文
[1] Grassi G, Cattaneo BM, Mancia G. Sympathetic nervous system. In: Poole-Wilson PA, Colucci WS, Massie BM, Chatterjee K, Coats AJ, eds. Heart failure: scientific principles and clinical practice. New York: Churchill Livingstone, 1997:199-214.
    [2] Grassi G. Qualitative assessment of sympathetic neural drive in cardiometabolic disease: a new challenge. Hypertension. 2007;50:835-836.
    [3] Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909-920.
    [4] Jordan J, Grassi G. Adrenergic overdrive: a 'not-so-sympathetic' risk factor in renal failure patients. J Hypertens. 2007;25:1197-1199.
    [5] Campese VM, Park J. The kidney and hypertension: over 70 years of research. J Nephrol. 2006;19:691-698.
    [6] Grassi G, Esler M. How to assess sympathetic activity in humans. J Hypertens. 1999;17:719-734.
    [7] Julius S, Krause L, Schork NJ, et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9:77-84.
    [8] Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177-183.
    [9] Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A. 1989;11 Suppl 1:75-89.
    [10] Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflexcontrol of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68-72.
    [11] Grassi G, Mancia G. Neurogenic hypertension: is the enigma of its origin near the solution? Hypertension. 2004;43:154-155.
    [12] Esler M, Ferrier C, Lambert G, et al. Biochemical evidence of sympathetic hyperactivity in human hypertension. Hypertension. 1991;17:III29-35.
    [13] Schlaich MP, Kaye DM, Lambert E, et al. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-565.
    [14] Burns J, Sivananthan MU, Ball SG, et al. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999-2005.
    [15] Grassi G, Seravalle G, Trevano FQ, et al. Neurogenic abnormalities in masked hypertension. Hypertension. 2007;50:537-542.
    [16] Grassi G, Seravalle G, Quarti-Trevano F, et al. Adrenergic, metabolic, and reflex abnormalities in reverse and extreme dipper hypertensives. Hypertension. 2008;52:925-931.
    [17] Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol. 1978;41:233-243.
    [18] Leimbach WN, Jr., Wallin BG, Victor RG, et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913-919.
    [19] Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation.1995;92:3206-3211.
    [20] Grassi G, Seravalle G, Bertinieri G, et al. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci (Lond). 2001;101:141-146.
    [21] Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819-823.
    [22] Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22:1136-1143.
    [23] Grassi G. Sympathetic deactivation as a goal of nonpharmacologic and pharmacologic antihypertensive treatment: rationale and options. Curr Hypertens Rep. 2003;5:277-280.
    [24] Grassi G. Adrenergic overdrive as the link among hypertension, obesity, and impaired thermogenesis: lights and shadows. Hypertension. 2007;49:5-6.
    [25] Bigazzi R, Bianchi S. Insulin resistance, metabolic syndrome and endothelial dysfunction. J Nephrol. 2007;20:10-14.
    [26] Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560-563.
    [27] Grassi G, Dell'Oro R, Facchini A, et al. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22:2363-2369.
    [28] Vaz M, Jennings G, Turner A, et al. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423-3429.
    [29] Huggett RJ, Burns J, Mackintosh AF, Mary DA. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension. 2004;44:847-852.
    [30] Grassi G, Dell'Oro R, Quarti-Trevano F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48:1359-1365.
    [31] Schultz HD, Li YL, Ding Y. Arterial chemoreceptors and sympathetic nerve activity: implications for hypertension and heart failure. Hypertension. 2007;50:6-13.
    [32] Grassi G, Facchini A, Trevano FQ, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46:321-325.
    [33] Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991;87:2246-2252.
    [34] Grassi G. Leptin, sympathetic nervous system, and baroreflex function. Curr Hypertens Rep. 2004;6:236-240.
    [35] Zoccali C, Mallamaci F, Parlongo S, et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354-1359.
    [36] Converse RL, Jr., Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912-1918.
    [37] Hausberg M, Kosch M, Harmelink P, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974-1979.
    [38] Grassi G, Seravalle G, Arenare F, et al. Behaviour of regional adrenergicoutflow in mild-to-moderate renal failure. J Hypertens. 2009;27:562-566.
    [39] Hering D, Zdrojewski Z, Krol E, et al. Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens. 2007;25:157-161.
    [40] Hausberg M, Grassi G. Mechanisms of sympathetic overactivity in patients with chronic renal failure: a role for chemoreflex activation? J Hypertens. 2007;25:47-49.
    [41] Mancia G, Dell'Oro R, Quarti-Trevano F, Scopelliti F, Grassi G. Angiotensin-sympathetic system interactions in cardiovascular and metabolic disease. J Hypertens Suppl. 2006;24:S51-56.
    [42] Mallamaci F, Tripepi G, Maas R, et al. Analysis of the relationship between norepinephrine and asymmetric dimethyl arginine levels among patients with end-stage renal disease. J Am Soc Nephrol. 2004;15:435-441.
    [43] Perticone F, Maio R, Tripepi G, et al. Microalbuminuria, endothelial dysfunction and inflammation in primary hypertension. J Nephrol. 2007;20 Suppl 12:S56-62.
    [44] Zoccali C. The endothelium as a target in renal diseases. J Nephrol. 2007;20 Suppl 12:S39-44.
    [45] Schlaich MP, Socratous F, Hennebry S, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933-939.
    [46] Zoccali C, Mallamaci F, Tripepi G, et al. Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension. 2002;40:41-46.
    [47] Levi R, Smith NC. Histamine H(3)-receptors: a new frontier in myocardial ischemia. J Pharmacol Exp Ther. 2000;292:825-830.
    [48] Akutsu Y, Kaneko K, Kodama Y, et al. Cardiac sympathetic nerve abnormality predicts ventricular tachyarrhythmic events in patients without conventional risk of sudden death. Eur J Nucl Med Mol Imaging. 2008;35:2066-2073.
    [49] Schomig A, Haass M, Richardt G. Catecholamine release and arrhythmias in acute myocardial ischaemia. Eur Heart J. 1991;12 Suppl F:38-47.
    [50] Imamura M, Lander HM, Levi R. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors. Circ Res. 1996;78:475-481.
    [51] Hatta E, Maruyama R, Marshall SJ, Imamura M, Levi R. Bradykinin promotes ischemic norepinephrine release in guinea pig and human hearts. J Pharmacol Exp Ther. 1999;288:919-927.
    [52] Kurz T, Yamada KA, DaTorre SD, Corr PB. Alpha 1-adrenergic system and arrhythmias in ischaemic heart disease. Eur Heart J. 1991;12 Suppl F:88-98.
    [53] Imamura M, Poli E, Omoniyi AT, Levi R. Unmasking of activated histamine H3-receptors in myocardial ischemia: their role as regulators of exocytotic norepinephrine release. J Pharmacol Exp Ther. 1994;271:1259-1266.
    [54] Kubler W, Strasser RH. Signal transduction in myocardial ischaemia. Eur Heart J. 1994;15:437-445.
    [55] Schomig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation. 1990;82:II13-22.
    [56] Kurz T, Richardt G, Hagl S, Seyfarth M, Schomig A. Two different mechanisms of noradrenaline release during normoxia and simulatedischemia in human cardiac tissue. J Mol Cell Cardiol. 1995;27:1161-1172.
    [57] Hatta E, Yasuda K, Levi R. Activation of histamine H3 receptors inhibits carrier-mediated norepinephrine release in a human model of protracted myocardial ischemia. J Pharmacol Exp Ther. 1997;283:494-500.
    [58] Sammet S, Graefe KH. Kinetic analysis of the interaction between noradrenaline and Na+ in neuronal uptake: kinetic evidence for CO-transport. Naunyn Schmiedebergs Arch Pharmacol. 1979;309:99-107.
    [59] Langer SZ. Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol. 1977;60:481-497.
    [60] Maruyama R, Hatta E, Levi R. Norepinephrine release and ventricular fibrillation in myocardial ischemia/reperfusion: roles of angiotensin and bradykinin. J Cardiovasc Pharmacol. 1999;34:913-915.
    [61] Vaughan PF, Peers C, Walker JH. The use of the human neuroblastoma SH-SY5Y to study the effect of second messengers on noradrenaline release. Gen Pharmacol. 1995;26:1191-1201.
    [62] Morris JL, Anderson RL, Gibbins IL. Neuropeptide Y immunoreactivity in cutaneous sympathetic and sensory neurons during development of the guinea pig. J Comp Neurol. 2001;437:321-334.
    [63] Haikerwal D, Du XJ, Turner A, Esler MD, Dart AM. Presynaptic antisympathetic action of amiodarone and its metabolite desethylamiodarone. J Cardiovasc Pharmacol. 1999;33:309-315.
    [64] Furshpan EJ, MacLeish PR, O'Lague PH, Potter DD. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, anddual-function neurons. Proc Natl Acad Sci U S A. 1976;73:4225-4229.
    [65] Hukovic S. Responses of the isolated sympathetic nerveductus deferens preparation of the guinea-pig. Br J Pharmacol Chemother. 1961;16:188-194.
    [66] Todorov LD, Mihaylova-Todorova ST, Bjur RA, Westfall DP. Differential cotransmission in sympathetic nerves: role of frequency of stimulation and prejunctional autoreceptors. J Pharmacol Exp Ther. 1999;290:241-246.
    [67] Westfall TD, Westfall DP. Pharmacological techniques for the in vitro study of the vas deferens. J Pharmacol Toxicol Methods. 2001;45:109-122.
    [68] Falck B, Owman C, Sjostrand NO. Peripherally Located Adrenergic Neurons Innervating the Vas Deferens and the Seminal Vesicle of the Guinea-Pig. Experientia. 1965;21:98-100.
    [69] Sjostrand NO. The adrenergic innervation of the vas deferens and the accessory male genital glands. An experimental and comparative study of its anatomical and functional organization in some mammals, including the presence of adrenaline and chromaftin cells in these organs. Acta Physiologica Scandinavica. 1965;65 (Suppl. 257):S1-82.
    [70] Owman C, Sjoestrand NO. Short Adrenergic Neurons and Catecholamine-Containing Cells in Vas Deferens and Accessory Male Genital Glands of Different Mammals. Z Zellforsch Mikrosk Anat. 1965;66:300-320.
    [71] Bell C, McLean JR. Localization of norepinephrine and acetylcholinesterase in separate neurons supplying the guinea-pig vas deferens. J Pharmacol Exp Ther. 1967;157:69-73.
    [72] Furness JB, Iwayama T. The arrangement and identification of axons innervating the vas deferens of the guinea-pig. J Anat. 1972;113:179-196.
    [73] Burnstock G, Holman ME. Junction potentials at adrenergic synapses. Pharmacol Rev. 1966;18:481-493.
    [74] Ambache N, Zar MA. Evidence against adrenergic motor transmission in the guinea-pig vas deferens. J Physiol. 1971;216:359-389.
    [75] Sneddon P. Electrophysiology of autonomic neuromuscular transmission involving ATP. J Auton Nerv Syst. 2000;81:218-224.
    [76] Kasakov L, Ellis J, Kirkpatrick K, Milner P, Burnstock G. Direct evidence for concomitant release of noradrenaline, adenosine 5'-triphosphate and neuropeptide Y from sympathetic nerve supplying the guinea-pig vas deferens. J Auton Nerv Syst. 1988;22:75-82.
    [77] Stjarne L, Lundberg JM, Astrand P. Neuropeptide Y--a cotransmitter with noradrenaline and adenosine 5'-triphosphate in the sympathetic nerves of the mouse vas deferens? A biochemical, physiological and electropharmacological study. Neuroscience. 1986;18:151-166.
    [78] Bitran M, Torres G, Fournier A, St Pierre S, Huidobro-Toro JP. Age and castration modulate the inhibitory action of neuropeptide Y on neurotransmission in the rat vas deferens. Eur J Pharmacol. 1991;203:267-274.
    [79] Vohra MM. An inhibitory action of histamine on the rat isolated vas deferens. Gen Pharmacol. 1979;10:405-409.
    [80] Vohra MM. Species differences in histamine receptors in the vas deferens. Agents Actions. 1981;11:208-214.
    [81] Luo XX, Song L, Jiang YP, Tan YH. Inhibition of sympathetic neurotransmission via NEM-sensitive H3-receptors in the guinea pig vasdeferens. Methods Find Exp Clin Pharmacol. 1994;16:185-189.
    [82] Campos HA. A possible crossed histamine-containing pathway adjacent to the sympathetic system of the rat vas deferens. J Pharmacol Exp Ther. 1988;244:1121-1127.
    [83] Campos HA, Briceno E. Two models of peripheral sympathetic autoregulation: role of neuronal histamine. J Pharmacol Exp Ther. 1992;261:943-950.
    [84] Campos HA, Dominguez J. Interaction between noradrenergic and histamine-containing neurons in the rat vas deferens. J Pharmacol Exp Ther. 1995;272:732-738.
    [85] Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff---still viable in the new millennium. J Pharmacol Toxicol Methods. 2007;55:113-126.
    [86] Yasmin W, Strynadka KD, Schulz R. Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res. 1997;33:422-432.
    [87] Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2003;138:532-543.
    [88] Cheung PY, Sawicki G, Wozniak M, et al. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 2000;101:1833-1839.
    [89] Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res. 2002;53:165-174.
    [90] Mackins CJ, Kano S, Seyedi N, et al. Cardiac mast cell-derived reninpromotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest. 2006;116:1063-1070.
    [91] Koyama M, Heerdt PM, Levi R. Increased severity of reperfusion arrhythmias in mouse hearts lacking histamine H3-receptors. Biochem Biophys Res Commun. 2003;306:792-796.
    [92] Clements-Jewery H, Hearse DJ, Curtis MJ. Independent contribution of catecholamines to arrhythmogenesis during evolving infarction in the isolated rat heart. Br J Pharmacol. 2002;135:807-815.
    [93] Baker KE, Curtis MJ. Left regional cardiac perfusion in vitro with platelet-activating factor, norepinephrine and K+ reveals that ischaemic arrhythmias are caused by independent effects of endogenous "mediators" facilitated by interactions, and moderated by paradoxical antagonism. Br J Pharmacol. 2004;142:352-366.
    [94] Luo XX, Tan YH, Sheng BH. Histamine H3-receptors inhibit sympathetic neurotransmission in guinea pig myocardium. Eur J Pharmacol. 1991;204:311-314.
    [95] Koyama M, Seyedi N, Fung-Leung WP, Lovenberg TW, Levi R. Norepinephrine release from the ischemic heart is greatly enhanced in mice lacking histamine H3 receptors. Mol Pharmacol. 2003;63:378-382.
    [96] Seyedi N, Mackins CJ, Machida T, et al. Histamine H3-receptor-induced attenuation of norepinephrine exocytosis: a decreased protein kinase a activity mediates a reduction in intracellular calcium. J Pharmacol Exp Ther. 2005;312:272-280.
    [97] Morrey C, Estephan R, Abbott GW, Levi R. Cardioprotective effect of histamine H3-receptor activation: pivotal role of G beta gamma-dependent inhibition of voltage-operated Ca2+ channels. JPharmacol Exp Ther. 2008;326:871-878.
    [98] Schaefer U, Machida T, Vorlova S, Strickland S, Levi R. The plasminogen activator system modulates sympathetic nerve function. J Exp Med. 2006;203:2191-2200.
    [99] Wahlestedt C, Wohlfart B, Hakanson R. Effects of neuropeptide Y (NPY) on isolated guinea-pig heart. Acta Physiol Scand. 1987;129:459-463.
    [100] Richardt G, Haass M, Neeb S, et al. Nicotine-induced release of noradrenaline and neuropeptide Y in guinea pig heart. Klin Wochenschr. 1988;66 Suppl 11:21-27.
    [101] Jiao JH, Baertschi AJ. Neural control of the endocrine rat heart. Proc Natl Acad Sci U S A. 1993;90:7799-7803.
    [102] Wennmalm A, Benthin G, Karwatowska-Prokopczuk E, Lundberg J, Petersson AS. Release of endothelial mediators and sympathetic transmitters at different coronary flow rates in rabbit hearts. J Physiol. 1991;435:163-173.
    [103] Woo ND, Ganguly PK. Neuropeptide Y prevents agonist-stimulated increases in contractility. Hypertension. 1995;26:480-484.
    [104] Mertes PM, el-Abbassi K, Jaboin Y, et al. Consequences of coronary occlusion on changes in regional interstitial myocardial neuropeptide Y and norepinephrine concentrations. J Mol Cell Cardiol. 1996;28:1995-2004.
    [105] Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213-237.
    [106] Emmelin N, Feldberg W. Systemic effects of adenosine triphosphate. Br J Pharmacol Chemother. 1948;3:273-284.
    [107] Galindo A, Krnjevic K, Schwartz S. Micro-iontophoretic studies on neurones in the cuneate nucleus. J Physiol. 1967;192:359-377.
    [108] Buchthal F, Folkow B. Interaction between acetylcholine and adenosine triphosphate in normal, curarised and denervated muscle. Acta Physiol Scand. 1948;15:150-160.
    [109] Ginsborg BL, Hirst GD. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol. 1972;224:629-645.
    [110] Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959;145:494-504.
    [111] Burnstock G. Purinergic signalling. Br J Pharmacol. 2006;147 Suppl 1:S172-181.
    [112] Langer SZ, Pinto JE. Possible involvement of a transmitter different from norepinephrine in the residual responses to nerve stimulation of the cat nictitating membrane after pretreatment with reserpine. J Pharmacol Exp Ther. 1976;196:697-713.
    [113] Fedan JS, Hogaboom GK, O'Donnell JP, Colby J, Westfall DP. Contribution by purines to the neurogenic response of the vas deferens of the guinea pig. Eur J Pharmacol. 1981;69:41-53.
    [114] Burnstock G, Holman ME. The transmission of excitation from autonomic nerve to smooth muscle. J Physiol. 1961;155:115-133.
    [115] Kasakov L, Burnstock G. The use of the slowly degradable analog, alpha, beta-methylene ATP, to produce desensitisation of the P2-purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur J Pharmacol. 1982;86:291-294.
    [116] Sneddon P, Burnstock G. Inhibition of excitatory junction potentials inguinea-pig vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol. 1984;100:85-90.
    [117] Su C, Bevan JA, Burnstock G. [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science. 1971;173:336-338.
    [118] Sneddon P, Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol. 1984;106:149-152.
    [119] Burnstock G, Warland JJ. A pharmacological study of the rabbit saphenous artery in vitro: a vessel with a large purinergic contractile response to sympathetic nerve stimulation. Br J Pharmacol. 1987;90:111-120.
    [120] Burnstock G. Cotransmission. Curr Opin Pharmacol. 2004;4:47-52.
    [121] Burnstock G. Purinergic cotransmission. Exp Physiol. 2009;94:20-24.
    [122] Burnstock G. Noradrenaline and ATP: cotransmitters and neuromodulators. J Physiol Pharmacol. 1995;46:365-384.
    [123] Burnstock G. Local control of blood pressure by purines. Blood Vessels. 1987;24:156-160.
    [124] Driessen B, von Kugelgen I, Starke K. Neural ATP release and its alpha 2-adrenoceptor-mediated modulation in guinea-pig vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1993;348:358-366.
    [125] Smith NC, Burnstock G. Mechanisms underlying postjunctional synergism between responses of the vas deferens to noradrenaline and ATP. Eur J Pharmacol. 2004;498:241-248.
    [126] Mulryan K, Gitterman DP, Lewis CJ, et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature. 2000;403:86-89.
    [127] Summers RJ, McMartin LR. Adrenoceptors and their second messenger systems. J Neurochem. 1993;60:10-23.
    [128] Burt RP, Chapple CR, Marshall I. Alpha1A-adrenoceptor mediated contraction of rat prostatic vas deferens and the involvement of ryanodine stores and Ca2+ influx stimulated by diacylglycerol and PKC. Br J Pharmacol. 1998;123:317-325.
    [129] Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372:231-236.
    [130] Stone TW, O'Kane EM, Nikbakht MR, Ross FM. Presynaptic P2 receptors? J Auton Nerv Syst. 2000;81:244-248.
    [131] Kirkpatrick KA, Burnstock G. Evidence that the inhibition of ATP release from sympathetic nerves by adenosine is a physiological mechanism. Gen Pharmacol. 1992;23:1045-1050.
    [132] Hedqvist P, Fredholm BB. Effects of adenosine on adrenergic neurotransmission; prejunctional inhibition and postjunctional enhancement. Naunyn Schmiedebergs Arch Pharmacol. 1976;293:217-223.
    [133] Paton DM. Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J Auton Pharmacol. 1981;1:287-290.
    [134] Shinozuka K, Bjur RA, Westfall DP. Characterization of prejunctional purinoceptors on adrenergic nerves of the rat caudal artery. Naunyn Schmiedebergs Arch Pharmacol. 1988;338:221-227.
    [135] von Kugelgen I, Schoffel E, Starke K. Inhibition by nucleotides acting at presynaptic P2-receptors of sympathetic neuro-effector transmission in the mouse isolated vas deferens. Naunyn Schmiedebergs ArchPharmacol. 1989;340:522-532.
    [136] Forsyth KM, Bjur RA, Westfall DP. Nucleotide modulation of norepinephrine release from sympathetic nerves in the rat vas deferens. J Pharmacol Exp Ther. 1991;256:821-826.
    [137] Todorov LD, Bjur RA, Westfall DP. Inhibitory and facilitatory effects of purines on transmitter release from sympathetic nerves. J Pharmacol Exp Ther. 1994;268:985-989.
    [138] von Kugelgen I, Starke K. Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci. 1991;12:319-324.
    [139] Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y--a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature. 1982;296:659-660.
    [140] Grouzmann E, Alvarez-Bolado G, Meyer C, et al. Localization of neuropeptide Y and its C-terminal flanking peptide in human renal tissue. Peptides. 1994;15:1377-1382.
    [141] Modin A, Pernow J, Lundberg JM. Repeated renal and splenic sympathetic nerve stimulation in anaesthetized pigs: maintained overflow of neuropeptide Y in controls but not after reserpine. J Auton Nerv Syst. 1994;49:123-134.
    [142] De Potter WP, Partoens P, Strecker S. Noradrenaline storing vesicles in sympathetic neurons and their role in neurotransmitter release: an historical overview of controversial issues. Neurochem Res. 1997;22:911-919.
    [143] Hou XE, Dahlstrom A. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons. Neurochem Res. 2000;25:1275-1300.
    [144] Sorra KE, Mishra A, Kirov SA, Harris KM. Dense core vesicles resembleactive-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices. Neuroscience. 2006;141:2097-2106.
    [145] Merighi A, Polak JM, Theodosis DT. Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide. Neuroscience. 1991;40:67-80.
    [146] Fried G, Terenius L, Hokfelt T, Goldstein M. Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J Neurosci. 1985;5:450-458.
    [147] Pablo Huidobro-Toro J, Veronica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol. 2004;500:27-35.
    [148] Racchi H, Schliem AJ, Donoso MV, et al. Neuropeptide Y Y1 receptors are involved in the vasoconstriction caused by human sympathetic nerve stimulation. Eur J Pharmacol. 1997;329:79-83.
    [149] Racchi H, Irarrazabal MJ, Howard M, et al. Adenosine 5'-triphosphate and neuropeptide Y are co-transmitters in conjunction with noradrenaline in the human saphenous vein. Br J Pharmacol. 1999;126:1175-1185.
    [150] Donoso MV, Miranda R, Briones R, Irarrazaval MJ, Huidobro-Toro JP. Release and functional role of neuropeptide Y as a sympathetic modulator in human saphenous vein biopsies. Peptides. 2004;25:53-64.
    [151] Bergdahl A, Nilsson T, Cantera L, et al. Neuropeptide Y potentiates noradrenaline-induced contraction through the neuropeptide Y Y1 receptor. Eur J Pharmacol. 1996;316:59-64.
    [152] Sautel M, Rudolf K, Wittneben H, et al. Neuropeptide Y and the nonpeptide antagonist BIBP 3226 share an overlapping binding site at the human Y1 receptor. Mol Pharmacol. 1996;50:285-292.
    [153] Pons J, Kitlinska J, Jacques D, et al. Interactions of multiple signaling pathways in neuropeptide Y-mediated bimodal vascular smooth muscle cell growth. Can J Physiol Pharmacol. 2008;86:438-448.
    [154] King PJ, Williams G, Doods H, Widdowson PS. Effect of a selective neuropeptide Y Y(2) receptor antagonist, BIIE0246 on neuropeptide Y release. Eur J Pharmacol. 2000;396:R1-3.
    [155] Smith-White MA, Hardy TA, Brock JA, Potter EK. Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. Br J Pharmacol. 2001;132:861-868.
    [156] Fuder H, Muscholl E. Heteroreceptor-mediated modulation of noradrenaline and acetylcholine release from peripheral nerves. Rev Physiol Biochem Pharmacol. 1995;126:265-412.
    [157] Toth PT, Bindokas VP, Bleakman D, Colmers WF, Miller RJ. Mechanism of presynaptic inhibition by neuropeptide Y at sympathetic nerve terminals. Nature. 1993;364:635-639.
    [158] Oellerich WF, Schwartz DD, Malik KU. Neuropeptide Y inhibits adrenergic transmitter release in cultured rat superior cervical ganglion cells by restricting the availability of calcium through a pertussis toxin-sensitive mechanism. Neuroscience. 1994;60:495-502.
    [159] Maynard KI, Burnstock G. Evoked noradrenaline release in the rabbit ear artery: enhancement by purines, attenuation by neuropeptide Y and lack of effect of calcitonin gene-related peptide. Br J Pharmacol. 1994;112:123-126.
    [160] Kotecha N. Modulation of submucosal arteriolar tone by neuropeptide Y Y2 receptors in the guinea-pig small intestine. J Auton Nerv Syst. 1998;70:157-163.
    [161] Modin A, Pernow J, Lundberg JM. Prejunctional regulation of reserpine-resistant sympathetic vasoconstriction and release of neuropeptide Y in the pig. J Auton Nerv Syst. 1996;57:13-21.
    [162] Fried G, Terenius L, Brodin E, et al. Neuropeptide Y, enkephalin and noradrenaline coexist in sympathetic neurons innervating the bovine spleen. Biochemical and immunohistochemical evidence. Cell Tissue Res. 1986;243:495-508.
    [163] Klimaschewski L, Kummer W, Heym C. Localization, regulation and functions of neurotransmitters and neuromodulators in cervical sympathetic ganglia. Microsc Res Tech. 1996;35:44-68.
    [164] Lemaire S, Day R, Dumont M, Chouinard L, Calvert R. Dynorphin and enkephalins in adrenal paraneurones. Opiates in the adrenal medulla. Can J Physiol Pharmacol. 1984;62:484-492.
    [165] Dale HH, Laidlaw PP. The physiological action of beta-iminazolylethylamine. J Physiol. 1910;41:318-344.
    [166] Dale HH, Laidlaw PP. Histamine shock. J Physiol. 1919;52:355-390.
    [167] Popielski L. b-Imidazolylathylamin und die Organextrakte Erster Teil: b-Imidazolylathylamin als mechtiger Errezer der Magendrucken. Pfluegers Arch. 1920;178:214-236.
    [168] Best CH, Dale HH, Dudley HW, Thorpe WV. The nature of the vaso-dilator constituents of certain tissue extracts. J Physiol. 1927;62:397-417.
    [169] Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system.Physiol Rev. 2008;88:1183-1241.
    [170] Kwiatkowski H. Histamine in nervous tissue. J Physiol. 1943;102:32-41.
    [171] White T. Formation and catabolism of histamine in brain tissue in vitro. J Physiol. 1959;149:34-42.
    [172] Folkow B, Haeger K, Kahlson G. Observations on reactive hyperaemia as related to histamine on drugs antagonising vasodilatation induced by histamine and the vasodilator properties of adenosine triphosphate. Acta Physiol Scand. 1948;15:244-278.
    [173] Schild HO. pA, a new scale for the measurement of drug antagonism. Br J Pharmacol Chemother. 1947;2:189-206.
    [174] Ash AS, Schild HO. Receptors mediating some actions of histamine. Br J Pharmacol Chemother. 1966;27:427-439.
    [175] Black JW, Duncan WA, Durant CJ, Ganellin CR, Parsons EM. Definition and antagonism of histamine H 2 -receptors. Nature. 1972;236:385-390.
    [176] Parsons ME, Ganellin CR. Histamine and its receptors. Br J Pharmacol. 2006;147 Suppl 1:S127-135.
    [177] Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302:832-837.
    [178] Boehm S, Kubista H. Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev. 2002;54:43-99.
    [179] Marshall I. Histamine modulation of neurotransmission in the sympathetic nervous system. J Auton Pharmacol. 1981;1:235-250.
    [180] Michel MC, Beck-Sickinger A, Cox H, et al. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y,peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev. 1998;50:143-150.
    [181] Riley JF, West GB. Histamine in tissue mast cells. J Physiol. 1952;117:72P-73P.
    [182] MacGlashan D, Jr. Histamine: A mediator of inflammation. J Allergy Clin Immunol. 2003;112:S53-59.
    [183] Gross SS, Guo ZG, Levi R, Bailey WH, Chenouda AA. Release of histamine by sympathetic nerve stimulation in the guinea pig heart and modulation of adrenergic responses. A physiological role for cardiac histamine? Circ Res. 1984;54:516-526.
    [184] Schwartz JC, Lampart C, Rose C, et al. [Development of hystaminergic systems in the newborn rat brain]. J Physiol (Paris). 1970;62 Suppl 3:447.
    [185] Taylor KM, Snyder SH. Isotopic microassay of histamine, histidine, histidine decarboxylase and histamine methyltransferase in brain tissue. J Neurochem. 1972;19:1343-1358.
    [186] Watanabe T, Ohtsu H. L-histidine decarboxylase as a probe in studies on histamine. Chem Rec. 2002;2:369-376.
    [187] Iwabuchi K, Kubota Y, Ito C, Watanabe T, Yanai K. Methamphetamine and brain histamine: a study using histamine-related gene knockout mice. Ann N Y Acad Sci. 2004;1025:129-134.
    [188] Liu L, Zhang S, Zhu Y, et al. Improved learning and memory of contextual fear conditioning and hippocampal CA1 long-term potentiation in histidine decarboxylase knock-out mice. Hippocampus. 2007;17:634-641.
    [189] Koerner P, Hesslinger C, Schaefermeyer A, Prinz C, Gratzl M. Evidencefor histamine as a transmitter in rat carotid body sensor cells. J Neurochem. 2004;91:493-500.
    [190] Lazarov N, Rozloznik M, Reindl S, et al. Expression of histamine receptors and effect of histamine in the rat carotid body chemoafferent pathway. Eur J Neurosci. 2006;24:3431-3444.
    [191] Lazarov NE, Reindl S, Fischer F, Gratzl M. Histaminergic and dopaminergic traits in the human carotid body. Respir Physiol Neurobiol. 2009;165:131-136.
    [192] Li M, Luo X, Chen L, et al. Co-localization of histamine and dopamine-beta-hydroxylase in sympathetic ganglion and release of histamine from cardiac sympathetic terminals of guinea-pig. Auton Autacoid Pharmacol. 2003;23:327-333.
    [193] Li M, Hu J, Chen Z, et al. Evidence for histamine as a neurotransmitter in the cardiac sympathetic nervous system. Am J Physiol Heart Circ Physiol. 2006;291:H45-51.
    [194] Hu J, Chen T, Li M, et al. Wide distribution and subcellular localization of histamine in sympathetic nervous systems of different species. Neurosci Res. 2007;59:231-236.
    [195] Li M, Hu J, Chen T, et al. Histamine in Macaca mulatto monkey cardiac sympathetic nerve system: a morphological and functional assessment. Auton Neurosci. 2007;137:37-43.
    [196] He G, Ma X, Lu J, et al. Alpha2 adrenoceptors modulate histamine release from sympathetic nerves in the guinea pig vas deferens. Neuropharmacology. 2009;57:506-510.
    [197] Fryer RM, Reinhart GA, Esbenshade TA. Histamine in cardiac sympathetic ganglia: a novel neurotransmitter? Mol Interv. 2006;6:14-19,12.
    [198] He G, Hu J, Ma X, et al. Sympathetic histamine exerts different pre- and post-synaptic functions according to the frequencies of nerve stimulation in guinea pig vas deferens. J Neurochem. 2008;106:1710-1719.
    [199] Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol. 2008;153:1589-1601.
    [200] Asanuma H, Minamino T, Ogai A, et al. Blockade of histamine H2 receptors protects the heart against ischemia and reperfusion injury in dogs. J Mol Cell Cardiol. 2006;40:666-674.
    [201] Kim J, Ogai A, Nakatani S, et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol. 2006;48:1378-1384.
    [202] Vidal-Carou MC, Veciana-Nogues MT, Marine-Font A. Spectrofluorometric determination of histamine in fish and meat products. J Assoc Off Anal Chem. 1990;73:565-567.
    [203] Celuch SM, Sloley BD. Release of 5-hydroxytryptamine, dopamine and noradrenaline in the rat vas deferens in the presence of compound 48/80, veratridine or K+. Br J Pharmacol. 1989;96:77-82.
    [204] Bytautiene E, Vedernikov YP, Saade GR, Romero R, Garfield RE. The effect of a mast cell degranulating agent on vascular resistance in the human placental vascular bed and on the tone of isolated placental vessels. Reprod Sci. 2008;15:26-32.
    [205] Gotoh K, Fukagawa K, Fukagawa T, et al. Hypothalamic neuronal histamine mediates the thyrotropin-releasing hormone-induced suppression of food intake. J Neurochem. 2007;103:1102-1110.
    [206] Tamesue S, Sato C, Katsuragi T. ATP release caused by bradykinin, substance P and histamine from intact and cultured smooth muscles of guinea-pig vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:240-244.
    [207] Hill SJ, Ganellin CR, Timmerman H, et al. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997;49:253-278.
    [208] Ruan HB, Zhang N, Gao X. Identification of a novel point mutation of mouse proto-oncogene c-kit through N-ethyl-N-nitrosourea mutagenesis. Genetics. 2005;169:819-831.
    [209] Skovgaard N, Moller K, Gesser H, Wang T. Histamine induces postprandial tachycardia through a direct effect on cardiac H2-receptors in pythons. Am J Physiol Regul Integr Comp Physiol. 2009;296:R774-785.
    [210] Wenzel-Seifert K, Liu HY, Seifert R. Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants. Biochem Pharmacol. 2002;64:9-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700