新型点接触锁定加压接骨板的研制与初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接骨板内固定是治疗四肢骨折的常用方法。近年来随着人们对骨折愈合生物学特征的重视,在AO基础提出了BO理念,其目的为进一步减少接骨板与骨面的接触面积,减少其对骨皮质及骨折断端血运的破坏,降低术后并发症的发生。这一理念促进了接骨板研制地极大发展,并相继推出了有限接触动力加压钢板(Limited Contact-Dynamic Compression plate, LC-DCP)、锁定加压接骨板(Locking Compression plate, LCP)、点式接触固定器(Point Contact- Fixator, PC-Fix)及锥状点式接触钢板(Conical Cylinder Point Contact-Fixator, CCPC-Fix)等微创接骨板。但这类接骨板仍存在不同的问题,LC-DCP的有限接触作用被许多学者质疑,其仍依靠与骨面间的摩擦力来达到骨折断端稳定;LCP螺钉孔采用圆锥形螺纹锁定孔和动力加压孔一体化设计,降低了接骨板本身的生物力学性能,同时其与骨面间的接触面积仍然很大;点式接触内固定器(PC-Fix)解决了接骨板与骨面间的接触问题,但PC-Fix螺钉孔仍被设计为圆孔,传统接骨板对骨折断端加压的优点未于保留;CCPC-Fix保留加压作用,其固定力学模式仍是依靠接骨板与骨面间的摩擦力。为了进一步保护骨折端及骨皮质血运,提供骨折愈合的最佳生物学环境。我们研制出了一种新型点接触锁定加压接骨板(Point Contact-Locking Compression plate, PC-LCP),其结合了AO研究进展中骨科接骨板的所有优点,集点接触、锁定及加压功能于一体。点接触设计能最大限度减少接骨板与骨面间接触面积,充分保护骨皮质及骨折断端的血循环,同时保留了加压功能,以适应不同类型骨折,选择性地对骨折断端行加压固定作用,锁定功能改变了接骨板与骨面间的作用模式,转化接骨板与骨面间的摩擦力为锁定螺钉与接骨板间的作用力,使接骨板与螺钉形成一体化结构,可作为一种内在‘外固定架’来应用。
     本研究以LC-DCP、DCP (Dynamic Compression Plate)为对照,对PC-LCP的生物力学性能、固定不同骨面时的接触特征及其对接骨板板下骨皮质、固定骨折愈合的影响进行研究,为PC-LCP应用于临床提供理论及实验依据。
     PC-LCP固定骨折生物力学及与骨面接触特性的研究结果:1. PC-LCP在抗弯曲、抗扭转等生物力学特性与DCP、LC-DCP无明显差异;2. PC-LCP与骨面间的接触面积较LC-DCP有明显减少,PC-LCP在不同骨面有稳定的接触特性,而LC-DCP则易受不同骨面特征的影响。研究表明PC-LCP固定骨折的力学稳定性与其它两种接骨板相似,同时PC-LCP能最大限度地减少与骨面间的接触面积,从而达到保护接骨板板下血运的目的。
     PC-LCP固定对板下骨皮质血流量及板下骨皮质胶原纤维影响的研究结果:1.固定骨折术后1天,PC-LCP对接骨板下血流量及髓腔血流量较DCP及LC-DCP影响要小。2. PC-LCP与DCP固定术后1天板下骨皮质均出现骨缺血区现象,PC-LCP固定组板下缺血区于4周时即恢复,而DCP固定组板下皮质骨于1天、2周、4周持续存在缺血现象,到第8周才渐恢复;PC-LCP固定组板下骨皮质血流量均高于DCP固定组板下血流量,DCP固定组板下血流量至12周才恢复到正常。3. PC-LCP与DCP固定组对接骨板板下胶原均有不同程度的影响,但DCP固定组对板下胶原的影响更加明显,12周时DCP固定组见板下骨胶原排列紊乱明显,可见空泡及断裂出现;PC-LCP固定组板下胶原紊乱及断裂现象没有DCP固定组明显。说明PC-LCP接骨板对骨皮质干扰较小,有效地保护了固定段骨皮质的血运及正常的结构,为促进骨折愈合及减少感染提供一种好的方法。
     PC-LCP固定骨折骨愈合动物实验研究的结果:1. PC-LCP固定组各期新生血管数量较DCP固定组为多,血管成熟度较高;2.两组接骨板固定荧光标记显示PC-LCP骨愈合能力较DCP固定组稍强,但两者无明显差异;3.骨胶原纤维染色显示两组各期骨胶原形成过程无明显差别,但PC-LCP固定组I型胶原形成较DCP固定组多,成熟度高;4.组织学观察:PC-LCP固定组愈合骨组织骨小梁及新生毛细血管芽形成时间较DCP固定组出现早,成熟度也较DCP固定组高。后期,PC-LCP固定组板层骨及哈佛氏管形成规律,重建明显,DCP固定组新生骨内可见骨吸收腔出现;5. X线显示,术后12周,两种接骨板固定组骨折断端均良好愈合,DCP固定组板下皮质骨见吸收、变薄现象;6.力学性能测试显示PC-LCP固定组骨折愈合质量优于DCP固定组。结果表明:PC-LCP固定骨折骨愈合速度及质量均优于DCP固定组,有利于骨折愈合。
     综上所述:PC-LCP在不减弱固定力学强度的同时,最大限度地减少了与骨面间的接触面积;PC-LCP能有效地保护板下骨皮质血流及骨胶原的排列,防止接骨板固定后期板下骨质疏松地发生;PC-LCP固定可靠,骨折愈合速度及质量均要优于DCP固定组。PC-LCP接骨板是一种较为完美的内固定材料,为骨折愈合提供了最佳生物学环境,也为临床接骨板应用提供了更多选择机会。
Bone plates internal fixation was a common technique for limb fracture at present. In recent years, with the cognition of the bone’s biology character, people have advanced the BO theoretics based on AO. The aims of this change were reduce the breakage of the part of bone blood supply and degrade the complications after bone fracture operation. The change promoted the design of internal fixation evolution greatly. The Low Contact Dynamic compression plate (LC-DCP), Locking Compression plate(LCP), Point Contact Fixator (PC-Fix) and Conical Cylinder Point Contact-Fixator (CCPC-Fix) etc as minimally invasive internal fixation had been designed. However, the limited contact function of LC-DCP has been doubted by many scholar that it still depended on the friction between bone and internal fixation to attaining the stabilization. The integrative design between taper locking bore and dynamic compression bore of LCP weakened the biomechanical of the plate.The question of contact that existed between plate and the bone surface of PC-Fix had been dissolved, but the bore of PC-Fix still been designed to the rotundity which had not reserved compressing function like the traditional internal fixation plate. CCPC-Fix Reserved the function of compression, but it still depended on the friction between the plate and the bone surface to keeping the stabilization of the bone fracture. For protecting the supply of bone fracture and the bone cortex further and providing the best bone healing biological environment, we had designed one new internal fixation plate PC-LCP which integrated the function of locking, point contact and compression. The point contact design could decrease the contact area between the plate and the bone surface that could protect the blood supply of the bone cortex and the bone fracture. The compression function of PC-LCP were a strongpoint of plate which was used to adapting the type of the bone fracture and been used freely when the plate fixed the bone fracture. The locking function changed the force mode between the plate and the bone surface, which changed from the friction force between the plate and the bone surface to the strength between the boil and the plate.
     In order to provide theoretical and experimental basis for future clinical application, the biomechanical, the biological characteristics, the contact proportion and animal experiments of the PC-LCP were studied with traditional DCP and LC-DCP as a control group.
     The study of the biomechanical and the contact proportion under the bone surface of the PC-LCP showed: 1. The torsion and bending rigidity biomechanical of PC-LCP compared with that of DCP had not distinct difference; 2. The contact proportion under bone surface of PC-LCP decreased greatly compare with that of LC-DCP. The PC-LCP had the same contact character on different bone surface while the LC-DCP effected easily by the bone surface in contrast. This result revealed that the PC-LCP had the same biomechanical character as the other two traditional bone plate and the PC-LCP could decrease the contact proportion furthest for the aim of protecting the blood supply of bone cortex under the plate.
     The result of testing the regional microcirculation in cortical bone and observing the change of cortical bone collagen fibers after fixed by PC-LCP and DCP showed: 1.24 hours after operation, the blood supply of cortical bone affected by PC-LCP less than that of DCP group and LC-DCP. 2. Region of the perfusion deficiency was found at 1 day after operation with PC-LCP and DCP fixation. However, it had recovered at 4week with PC-LCP fixation group. DCP application resulted in a continuous perfusion deficiency under the plate at 1day, 2weeks and 4weeks. The perfusion deficiency did not disappear until 8week after operation; The blood supply of bone cortex under the plate PC-LCP was higher than that under the plate DCP at all time. 3. Both the PC-LCP and the DCP had affected the collagen fibers at a certain degree, but the DCP had more affection on the collagen fibers. At 12week, many collagen fibers presented the appearance of corrosion, break and disarrangement under cortical bone fixed by DCP, but the change of collagen fibers in group PC-LCP were not obvious than that in group DCP. PC-LCP illuminated the merit that it disturbed bone cortex less and protected the bone cortex blood supply under the plate effectively which provided a gooe method for promoting the bone healing and decreasing the infecton.
     Fracture healing experiment was studied in goats. The immunity histochemistry demarcating the growth of new blood vessel, fluorescence marker, Sirius Red stained, histology, X-ray and the biomechanical test of healing bone were used to observed the degree of bone fracture healing. The results showed: 1.The PC-LCP fixed group had more new blood vessel growth than that of DCP fixed group. The newborn blood vessel in group PC-LCP had the more mature character in all times.2. Fluorescence marker showed no distinct difference between group PC-LCP and group DCP in bone healing ability. 3. In group PC-LCP, type I collagen fibers growth more mature than that of group DCP. 4. The histology results showed that in group PC-LCP the rate of fracture healing were better than that of group DCP. 5. X-ray scanning revealed that the fractures healed well in both group PC-LCP and group DCP, but the bone cortex found the phenolmenon of absorb and atenudation. 6. The mechanical test showed that the quality of the fracture healing was superior in group PC-LCP than that of the group DCP.
     From the analysis above, we can get the conclusions as follow: 1. PC-LCP has the character of the same fixation stability as the traditional bone plate while it has the less contact proportion under the bone surface greatly. 2.PC-LCP can provide the environment of optima bone healing biology by protecting the blood supply and the collagen fibers of cortical bone under the plate, that can prevent the occur of the bone loose later. 2. The PC-LCP can provide better healing rate and healing quality than that of traditional plates. PC-LCP can provide more choice for the clinic application as one perfect internal fixation plate.
引文
1. Bassett AL. Current concept of bone formation. J Bone and Joint Surg (Am), 1962, 44(9): 1217-1244.
    2. Muller ME, Allgower M, Schneider R, Willenegger H. Manual of internal fixation. Techniques recommended bythe AO-ASIF group. Springer, 1991,3: 466-475.
    3. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch. Orthop. Trauma Surg. 1990, 109:29-36.
    4. Woo SL, et al, A compareson of cortical bone atrophy secondary to fixateon with plates with large differences in bending stiffenss. J Bone Joint Surg, 1976, 58 A:190-195.
    5. Perren SM, et al. Early temporary porosis of bone induced by internal fixateon implants. Clin Orthop 1988, 232: 139-151.
    6. Claes L, et al. The mechanical and morphologyical properties of bone beneath internal fixation plates of differing rigidity. J Orthop Res 1989, 7: 170-177.
    7. Michael E, O’Sullivan MB, Edmund YS, et al. The effects of fixateon on fracture-healing. J Bone Joint Surg (Am), 1989, 71: 306-310.
    8. 戴克戎. 骨折内固定与应力遮挡效应. 医用生物力学. 2000, 15(2): 69-71.
    9. Tomas B, Sune L, Percutaneous plating of distal tibial fractures Preliminary results in 21 patientm Injury 2004, 35, 608-614.
    10. John R,Fielda J, Rohan Edmonds-Wilsonb, Richard M. An evaluation of interface contact profiles in two low contact bone plates [J] injured 2004, 35(6): 551-556.
    11. Frigg R. Locking Compression Plate (LCP).An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC- Fix). Injury, 2001, 32(2 supple): 63-66.
    12. Wagner M, Frigg R. Locking compression plate (LCP): Einneuer AO-Standard. OP J, 2000, 16: 238-243.
    13. Schutz M, Sudkamp N. Revolution in plate osteosynthesis: new internal fixator systems. J Orthop Sci, 2003, 8(2): 252-258.
    14. Perren SM. Buchanan JS. Basic concepts relevant to the design and development of thepoint contact fixator (PC-Fix). Injury 1995, 26(suppl 2): 1-4.
    15. 吴雪辉, 李起鸿. 锥状点式接触钢板内固定对局部皮质骨微循环影响的实验研究. 中华骨科杂志, 2000, 20: 137-141.
    16. 赵玉峰, 李起鸿, 顾祖超, 等. 新型点状接触动力加压接骨板的研制(生物力学部分)[J].医用生物力学, 2002, 17(1): 58-62.
    1. Gerber C, Mast JW, Ganz R, Biological internal fixation of fractures. Arch. Orthop. Trauma Surg. 1990, 109: 29-36.
    2. Blauth M, Bastian L, Krettek C, et al. Surgical options for the treatment of severe tibial Pilon fractures: a study of three techniques. J Orthop Trauma, 2001, 15(3): 153-160.
    3. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific baciground, design and application. Injury 1991, 22(suppl 1): 1-41.
    4. Perren SM, Russenberger M, Steinemann S, et al. A dynamic compression plate. Acta Orthop Scan, 1969 c, 125(Suppl): 31-41.
    5. Klaue K. The Dynamic Compression Unit (DCU) for stable internal fixation of bone fracture. Med. Diss, Basel, 1982.
    6. Klaue K, Fengels I, Perren SM. Long-term effects of plate osteosynthesis: comparison of four different plates [J]. Injury, 2000, 31(Suppl 2): SB51-SB62.
    7. Arens S, Hansis M, Schlegel U, et al. Infection after open reduction and internal fixation with dynamic compression plates-clinical and experimental data [J]. Injury,1996, 27(Suppl 3): SC27-SC33.
    8. Eijer H, Hauke C, Arens S, et al. PC-Fix and local infection resistance-influence of implant design on postoperative infection development, clinical and experimental results [J]. Injury, 2001, 32(Suppl 2): SB38-43.
    9. Perren Sm, et al. The limited contact-dynamic compression plate (LC-DCP). Arch Orthop Traum Surg, 1990, 109: 304-310.
    10. 荣国威, 姜春岩. 点式接触固定-全新概念的钢板固定系统. 中华外科杂志. 1997, 35(12): 756-757.
    11. Haas N, Hauke C, Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix II). Injury. 2001, 32 (Suppl 2): 51-62.
    12. Perren SM. Buchanan JS. Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury 1995, 26(suppl 2): 1.
    13. 王强, 赵建宁, 陆维举等. 波形接骨板内固定对兔股骨局部血流影响的研究. 医学研究生学报, 2002, 15(3): 223-225.
    14. Kenneth A, Egol MD, Erik N. Biomechanics of locked plates and screws [J].J Orthop Trauma, 2004, 18(8): 488-493.
    15. 吴雪辉, 李起鸿, 等. 锥点式接触钢板内固定对局部皮质骨微循环影响的实验研究[J]. 中华骨科杂志, 2000, 20: 137-141。
    16. 赵玉峰, 李起鸿, 顾祖超, 等. 新型点状接触动力加压接骨板的研制(生物力学部分)[J],医用生物力学, 2002, 17: 59-61。
    17. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures [J]. Arch Orthop Trauma Surg, 1990, 109(6): 295-303.
    18. Borgeaud M, Cordey J, Leyvraz PE, et al. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FiX on human femora [J]. Injury, 2000, 31(suppl 3): C29-C36.
    19. Farouk O, Krettek C, Miclau T, et al. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999, 13: 401-406.
    20. Farouk O, Krettek C, Miclau T, et al. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998, 117: 438-441.
    21. Schutz M, Muller M, Kaab M, et al. Less invasive stabilization system (LiSS) in the treatment of distal femoral fractures. Acta Chir Orthop Traumatol Cech. 2003, 70: 74–82.
    22. 王爱民, 赵玉峰, 孙红振等.点式接触解剖钢板内固定治疗不稳定性肱骨外科颈骨折[J]. 创伤外科杂志.2004, 6(6): 545-547.
    23. 戴克戎, 戴 闽, 王开友, 等. 应力松弛接骨板对骨几何形态和力学性能影响的实验研究[J].中华医学杂志, 1995, 75(7): 414-416.
    24. 张先龙, 戴克戎, 汤亭亭, 等. 应力松驰接骨板对骨折愈合影响的生物力学研究[J]. 骨与关节损伤杂志, 2000, 15(1): 30-32.
    25. 徐莘香, 刘一, 刘建国. 机械接骨术与生物接骨术. 中华创伤杂志[J]. 2003, 19(2): 69-72.
    26. Kenneth A, Egol, MD, Erik N, et al. Biomechanics of Locked Plates and Screws. J Orthop Trauam, 2004, 18(8): 488-493.
    27. Miiller ME, Allg6wer M, Schneider R, Willenegger H. Manual of internal fixation. Techniques recommended bythe AO-ASIF group. 3rd Ed. Berlin: Springer, 1991.
    1. Gautier E, Rahn BA, Perren SM. Vascular remodeling. Injury, 1995, 26 (suppl 2): 11-19.
    2. Perren SM, Cordey J, Rahn BA, et al. Early temporary porosis of bone induced by internal fixation implants-a reaction to mecrosis, not to stress protection implants [J]. Clin Orthop, 1988, 232: 139-151.
    3. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures [J]. Arch Orthop Trauma Surg, 1990, 109: 295-303.
    4. Palmer RH. Biological osteosynthesis [J].Vet Clin North Am Small Anim Pract, 1999, 29: 1171-1185.
    5. Kregor PJ, Senft D, Parvin D ,et al. Cortical bone perfusion in plated fractured sheep tibiae [J]. J Orthop Res, 1995, 13(6): 715-724.
    6. 赵玉峰, 李起鸿, 顾祖超等.新型点状接触动力加压接骨板的研制(生物力学部分),医用生物力学, 2002, 17: 59-61.
    7. Miclau T, Martin RE. The evolution of modern plate osteosynthesis [J]. Injury, 1997, 28(suppl): A3-6.
    8. Gunst MA, Rahn BA, Ruedi T, et al.Bone blood supply after change of implant. Helv Chir Acta. 1985, 52(1): 177-80.
    9. Rhinedlander FW. The normal microcirculation of diaphyseal cortex and its response to fracture [J]. J Bone Joint Surg, 1968, 50(A): 784-800.
    10. 王强, 赵建宁, 陆维举, 等. 波形接骨板内固定对兔股骨局部血流影响的研究. 医学研究生学报, 2002, 15(3): 223-225.
    11. 赵玉峰, 李起鸿, 顾祖超, 王爱民等. 新型点式接触动力加压接骨板固定对板下骨质及力学性能影响的实验研究.创伤外科杂志. 2004, 6(2): 111-114.
    12. Field JR, Hearn TC, Caldwell CB et al. Bone plate fixation: an evaluation of interface contact area and force of the Dynamic Compression Plate (DCP) and the Limited contact-Dynamic Compression Plate (LC-DCP) applied to cadaveric bone. J Orthop Trauma. 1997, 11(5): 368-73.
    13. John R, Fielda J, Rohan Edmonds-Wilsonb, Richard M. An evaluation of interface contact profiles in two low contact bone plates [J] injured 2004, 35: 551-556.
    14. Lobo JJ, Shekhman M, Mishra S, et al. Effect of cortical contact area on biomechanical properties of LC-DCP plates for fixation of transverse fractures. In: Proceedings of the 68th AAOS, 2001, p:339.
    15. 王军强, 王满宜. 骨折的生物学固定. 中华外科杂志, 2002, 40(7): 543-546.
    1. Gunst MA.interference with bone blood supply through plating of intact bone in: Unthof HK(ed): Current concept of internal fixation of fracture [J]. Berlin: Springer, 1980, 268-280.
    2. Peren SM, Rosen D, Ddeon E, Early temporary porosis of bone induced by internal fixation implant:A reaction to necrosis not to stress protecdon? [J]. Ciin Orthop. 1988, 232: 139-142..
    3. Rhinedlander FW. The normal microcirculation of diaphyseal cortex and its response to fracture [J]. J Bone Joint Surg (Am), 1968, 50(A): 784-800.
    4. Gerber C, Mast JW, Ganz R, Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990, 109: 295-303.
    5. Lindsberg PJ, O' Neill JT, Paakkari IA, et al. Validation of Laser-Doppler flowmetry in measurement of spinal cord blood flow. Am J Physiol, 1989, 257: 674-680.
    6. PeriFlux PF, User's Handbook, the leader in microvascular perfusion measurements. Sweden: Perimed AB, 1991, 7.
    7. Kowallik P, Schutz R, Guth B, et al. Measurements of regional myocardial blood flow with multiple colored microspheres [J]. Circulation, 1991, 83(3): 974-982.
    8. Hale S, Alker K, Klone R. Evaluation of nonradioactive colored microspheres for the measurement of regional myocardial blood flow in dog [J].Circulation, 1988, 78(2): 428-434.
    9. Hakkinen JP, Miller MW, Smith AH, et al. Measurement of organ blood flow with colored microspheres in the rat [J]. Cardiovasc Res, 1995, 29(1): 74-79.
    10. Wan C, Maldonado C, Papanicolaou G, et al. Reducing the vascular delay period in latissimus dorsi muscle flaps for use in cardiomyoplasty. Plast Reconstr Surg, 2002, 109(5): 1630-1637.
    11. Schemitsch EH, Kowalski MJ, Swiontkowski MF, et al.Cortical bone blood flow in reamed and undreamed locked intramedullary nailing:a fractured tibea model in sheep [J].J Orthop Trauma, 1994, 8: 373-382.
    12. Frank CW. The musculoskeletal system basic processes and disorders (2th ed), JB Lippincolt company, Tornoto philachelphar, 1983, 129-134.
    13. Broods M. The blood supply of bones. London Butterworth. 1971.
    14. Jacobs RR, Rahn BA, Perren SM. Effects of plates on cortical bone perfusion. J Trauma, 1981, 21: 91-95.
    15. 王友, 戴克戎, 裘世静等. 接骨板内固定对局部皮质骨微循环影响的形态学研究. 中华外科杂志, 1993, 31: 248-250.
    16. Uhthoff HK, Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Cling Orhtop, 1971, 81: 165-170.
    17. John R. Field A, Geoffrey S, et al. Bone blood flow response to surgical trauma [J].Injury, 2002, 33(8): 447–451.
    18. Grundnes O, Reikeras O. Blood flow and mechanical properties of healing bone, Femoral osteotomies studied in rats. [J], Acta Orthop Scand, 1992, 63(5): 487-491.
    19. Kregor PJ, Senft D, Parvin D, et al. Cortical bone perfusion in plated fractured sheep tibiae [J]. J Orthop Res, 1995, 13(6): 715-724.
    20. Lippuner K, Vogel R, Tepic S, Effect of animal species and age on plate-induced vascular damage in cortical bone. Arch Orthop Trauma Surg 1992, 111: 78.
    21. 邢叔星, 赵玉峰, 王爱民, 刘东北. 两种有限接触接骨板固定不同类型骨表面特征评估. 创伤外科杂志, 2007, 9(1): 49-51.
    22. Grundnes O, Utvag SE, Keikeras O. Restoration of bone flow following fracture and reaming in rat femora. Acta Orthop scand, 1994, 65(2): 185.
    23. Kowalski MJ, Schemitsch EH, Kregor PJ, et al. Effect of periosteal striping on cortical bone perfusion: a laser Doppler study in sheep [J]. Calcif Tissue int, 1996, 59(1):24-26.
    24. Tepic S,Remiger AR, Morikawa K, et a1. Stength recovery in fractured sheep tibia treated with a plate or an internal f ixatior: an experimental study with a two year follow up [J]. J Orthop Trauma, 1997, 11(1):14-23.
    25. Gunst MA, Uhthoff HK, et al. Interference with bone blood supply through plating of intact bone. Current Concepts of internal Fixation of fractures [J] .Berlin, Springer 1980, 268-276.
    26. 赵玉峰, 李起鸿, 顾祖超, 等. 新型点式接触动力加压接骨板固定对羊完整胫骨皮质骨血流量的影响. 中华创伤外科杂志, 2003, 19(8): 470-473.
    1. 张艳, 陈银成. 苦味酸天狼星红能胶原纤维染色的方法[J]. 医药论坛杂志, 2003, 24(15): 61.
    2. Perren SM, Cordey J, Rahn BA, et al. Early temporary porosis of induced by internal fixation implants. Clin Orthop, 1998, 232: 139-151.
    3. Rosson JW, Shearer JR, et al. Refracture after the removal of plates from the forearm. J Bone Joint Surg(Br), 1991, 73-B: 415-417.
    4. 李章华, 王常勇, 张玉富, 等. 骨折愈合过程中胶原纤维类型分布的动态变化. 中国矫形外科杂志, 2004, 12(8): 607-609.
    5. 徐洪, 申华, 陈国振, 等. 振动应力促进骨重建最佳频率的实验研究—扫描电镜观察与生化分析[J]. 中国矫形外科杂志, 2001, 8(2): 150-152.
    6. 陶凯忠, 陈尔瑜, 丁光宏. 胶原纤维的结构和生物力学. 解剖科学进展[J]. 1998, 4(4): 289-293.
    7. 林军, 王慧明, 曹之强, 等.下颌骨缺损修复过程中 I 型胶原基因表达的实验研究[J]. 中国口腔种植医学杂志, 2001, 6(1): 7-10.
    8. Martin RB, Lau ST, Mathews PV, et al.Collagen fiber organization is related tomechanical properties and remodeling in equine bone, A comparison of two methods [J].J Biomech, 1996, 12: 1515-1521.
    9. Stromsoe K, Hoiseth A, Kok WL, et al. Bending of strength of the femur in relation to bone mineral. Acta Orthop Scand, 1992, 63(suppl 248): 80.
    10. Smith EL, Gilligan C. Dose response relationship between physical loading and mechanical competence of bone. Bone, 1996, 18:45.
    11. Bailey AJ, Wotton SF, Sims TJ, et al.Biochemical changes in the collagen of human osteoportotic bone matrix [J]. Connect Tissue Res, 1993, 29: 119-132.
    12. Laftman P, Nilsson OS, Brosjo O, et al. Stress shielding by rigid fixation studied in odteotomized rabbit tibiae. A cta Orthop Scand, 1989, 60(6): 718-722.
    13. Mansell JP. Bailey AJ, et al. The increased metabolism of bone collagen in post-menopausal female osteoporosis femoral heads [J]. Int J Biochem Cell Biol, 2003, 35: 522-529.
    14. Oxlund H, Barckman M, Ortoft G, et al. Reduced comcentrations of collagen cross-links are associated with reduced strength of bone [J]. 1995, Suppl4: 365-371.
    15. Brown SA, Merritt K, Mayor MB, et al. internal fixation with metal and thermoplastic plate. In: Uhthoff HK ed. Curent concept of internal fixation of fractures. Berlin; Springer-Verlag, 1980, 334-341.
    16. Weigert M, Werhahn C, et al.The influence of electric potentials on plated bones, Clin Orthop 1977, 124: 20-30.
    1. Guacci D.Ultrastructural aspect of human union. Histopathol, 1991, 6: 87.
    2. Kurky NM, Weiss JB, Bate A, et al. Endothelial stimulating angiogenc factor in early fracture healing. Injury 1996, 27(2): 143-145.
    3. Leuning M. Quantitative assessment of angiogenesisand osteogenesis after transplantation of bone. Acta Orthop Scand, 1999, 70(40): 374.
    4. Glowacki J, Angiogenesis in fracture repair, Clin Orthop, 1998, 355(supply): s82-S89.
    5. Brownlow HC, Reed A, Simpson AH. Injury, 2002, 33(2): 145-150.
    6. Cho TJ, Choi iH, Chung CY, et al. Temporal and spatial expression of bone mouphogenetic protein-2 and-4 mRNA in distraction osteo-genesis and fracture healing [J]. Kouean Orthop Assoc, 1998, 33: 595-605.
    7. Glowacki J.Angiogenes is in fracture repare [J]. ClinOrthop, 1998, 355(Supply): 82-9.
    8. Gerber HP. FerraraN. Angiogenes is an bone growth [J]. Trends Cardiovasc Med, 2000, 10: 223-238.
    9. Vang JS. Basic fibro blast growth factor for stimulation of bone formation in osteo inductive or conductive implants [J].Acta Orthop Scand, 1996, 269: 1-33.
    10. Miclau T, Martin BE. The evolution of modern plate osteosynthesis. Injury, 1997, 28 (Suppl 1): SA3-A6.
    11. Claes L, Heitemeyer U, Krischark G, et al. Fixation technique influences ofComminuted fractures. Clin Orthop, 1999, 365: 221-229.
    12. Baumgaertel F. Fracture healing in biological plate osteosynthesis, Injury 1998, 29(Suppl 3): 3-6.
    13. Haas N, Hauke C, Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix ii). Injury. 2001, 32 (Suppl 2): 51-62.
    14. 苏佳灿, 任可, 张春才. 应力对骨折愈合的影响及作用机制[J]. 第二军医大学学报, 2001, 22(10): 988-900.
    15. Yu SW.The relation of the blood supply to union of experimental fracture, Chin Med J, 1960, 80(8): 520.
    16. Abo-Auda W, Benza RL. Therapeutic a giogenesis:review of current concepts a future directions [J].JHeart Lung Tran plant, 2003, 22(4): 370-82.
    17. 卜丽佳, 汪渊, 任斌. 血管生成与骨肿瘤发生及其治疗的分子机制[J]. 临床骨科杂志, 2003, 6(1): 86-90.
    1. 李建福, 李世荣, 郭霞, 等. 活体顺序性荧光标记技术在实验性骨折愈合研究中的应用. 中国实用美容整形外科杂志, 2005, 16(3): 179-181.
    2. Feofanov AV, Grichine AI, Shitova LA, et al. Confocal raman microspectroscopy and imaging study of theraphtal in living cancer cells [J]. Biophy J, 2000, 78(1): 499-512.
    3. Sheppard C, Shotton DM. Confocal laser scaning microscopy [M]. Eynsham: information Press Ltd, 1997: 1-10.
    4. 杨连甲, 金岩, 胡蕴玉, 等. 主编. 口腔和骨科的生物活性材料. 西安: 陕西科学技术出版社, 1993, 111-112.
    5. Schliephake H, Neukam FW, Hutmacher D, et al. Experimental transplantation of hydroxylapatite-bone composite grafts. J Oral Maxillofac Surg, 1995, 53(1): 46-51.
    6. Montes GS, Junqueira LCU. Histochemical localization of collagen and of proteoglycans in tissue. in: Nimni ME, ed. Collagen.vol ii. Florida: CRC Press Inc, 1988, 41-43.
    7. Junqueira LC, Cossermelli W, Brentani R. Differential staining of collagens type I, II and III by SIrIus Red and polarization mIcroscopy. Arch HIstol Jpn, 1978, 41(3): 267-274.
    8. 丁真奇, 郭延杰, 杨立民. 胶原与骨折愈合. 骨与关节损伤杂志, 1997, 12(2):125-127.
    9. 姜福全, 赵铁军, 沈洪兴. 胶原蛋白与骨折愈合的关系. 中国骨伤, 2002, 15(8): 505-507.
    10. 杨志明, 余希杰, 黄富国, 等. 外源性 I 型胶原对人胚骨膜成骨细胞生物学特性的影响. 华西医科大学学报, 2001, 32(1): 1-4.
    11. 邹培, 李峻辉, 李主一, 等. 骨延长区组织愈合过程中胶原变化的偏光显微镜观察. 中国修复重建外和科杂志, 2006, 20(1): 1-4.
    12. 成军. 细胞外基质的分子生物学与临床疾病. 北京: 北京医科大学版, 1999: 1180.
    13. 林军, 王慧明, 曹之强, 等.下颌骨缺损修复过程中 I 型胶原基因表达的实验研究 [J]. 中国口腔种植医学杂志, 2001, 6(1): 7-10.
    14. 曾岩, 马庆军, 郭昭庆, 等. 骨髓基质细胞体外培养成骨能力的实验研究 [J]. 中华骨科杂志, 2001, 21(1): 45-49.
    15. 张睨, 王 凡, 蒋红梅, 等. 二期骨折愈合中 I、Ⅱ型胶原的表达. 华西医大学报, 2002, 33(2): 204-206.
    16. Hayda RA, BrIghton CT, EsterhaI JR. ClIn Orhtop, 1998, 355 (suppl): s31-s34.
    1. Mckibbin B. The biology of fracture healing in long bones. J Bone and Joint Surg (Br). 1978, 60: 150-162.
    2. Michael E, O’Sullivan MB, Edmund YS, et al. The effects of fixation on fracture-healing. J Bone Joint Surg(Am), 1989,71: 306-310.
    3. Kenneth A, Egol MD, Erik N. Biomechanics of locked plates and screws. J Orthop Trauma, 2004, 18(8): 488-493.
    4. 李秀群, 邓力, 罗静聪, 等. 硬组织切片技术在组织工程骨研究中的应用. 中国修复重建外科杂志, 2004, 18(3): 239-240.
    5. 吕 荣,南 耘,胡蕴玉, 等. 骨切片固定液和脱钙剂的筛选及效果观察. 临床与实验病理学杂志, 1992, 8(3): 229.
    6. 刘介眉. 病理组织染色的理论方法和应用. 北京: 人民出版社, 1981, 22-29.
    7. Uhthoff HK, Biosvert D, Finnegan M, et al. Cortical porosis under plates. Reaction to unloading or to necrosis [J] Bone Joint Surg, 1994, 76 A(10): 1507-1512.
    8. Moyen BJ, Lahey PJ, Weinberg EH, et al. Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural stydy comparing stiffer and more flexible plates. J Orthop Trauma, 1991, 5: 138-145.
    9. Swiontkowski MF, Senft D, Taylor S, et al. Plate design has an effect on cortical bone perfusion.Trans Orthop Res Soc, 1992, 15: 387-389.
    10. Brighton CT, Fisher JR, Levine SE, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg Am, 1996, 78: 1337-1347.
    11. Cornell CN, Lane JM. Newest factors in fracture healing [J]. Cli-northop, 1992, 277(2): 297-311.
    12. Frost HM.The biology of fracture healing. An over view for clinician Partl [J]. Clin Orthop, 1989, 248(2):283-293.
    13. Mckinbin B.The biology of fracture healing in long bones [J]. J Bon Joint Surg (Br), 1978, 60(2): 150-156.
    14. Hulth A.Current concepts of fracture healing.Clin Orthop, 1989, 249: 265-284.
    15. Einhorn TA. The cell and molecular blology of fracture healing [J]. Cli orthop, 1998, (355S): S7-S21.
    16. Buckwalter JA, Einborn TA, Bolander ME, et al. Healing of the musculoskeletal tissues. in Rockwood CA, Green DP, editors. Fractures in adults. Ed 4. Philadelphia: JB Lippincott, 1996, 261-303.
    17. Hulth A. Current concepts of fracture healing. Clin Orthop 1989, 249: 265-270.
    18. O'Sullivan ME, Chao EVS, Kelly PJ. The effects of fixation on fracture healing. J Bone Joint Surg 1989, 71 A: 306-310.
    19. Einhorn, TA. The cell and molecular biology of fracture healing. Clinical Orthopaedics 1998, 355: S7-S21.
    20. Klaue K, Fengels i, Perren SM. Long-term effects of plate osteosynthesis: Comparison of four defferent plates, Injury. 2000, 31 (supply 2): SB51-SB62.
    21. Gautier E, Perren SM, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000, 31(suppl 3): C14-C20.
    22. 史俊, 邱蔚六 等. 骨折愈合中骨再生的生物学和生物力学. 上海生物医学工程, 2006, 26(1): 52-55.
    23. 赵玉峰, 李起鸿, 顾祖超, 王爱民等. 新型点式接触动力加压接骨板固定对板下骨质及力学性能影响的实验研究. 创伤外科杂志, 2004, 6(2): 111-114.
    24. 吴雪晖,李起鸿,杨柳.骨折固定对长骨微循环及骨折愈合的影响[J]. 创伤外科杂志, 2002, 4(3): 178-180.
    25. Slomczykowski M, Hofstetter R, Sati M, et al. Novel computer-assisted fluoroscopy system for intraoperative guidance: feasibility study for distal locking of femoral nails. J Orthop Trauma, 2001, 15(2): 122-131.
    26. 刘振东, 范清宇, 应力遮挡效应-寻找丢失的钥匙.中华创伤骨科杂志, 2002, 4(1): 62-64.
    27. Perren SM. Evolution of the internal fixateon of long bone fractures. The scienticfic basis of bilological internal fixation: choosing a new balance between stability andbiology. J Bone Joint Surg (Br), 2002, 84: 1093-1110.
    28. 王爱民, 李起鸿. 进一步提高骨关节创伤的治疗水平. 创伤外科杂志, 2002, 4(6): 321-323.
    29. 李起鸿. 骨外固定原理与临床应用 [M]. 成都: 四川科学技术出版社, 1992.
    30. 王爱民, 蒋耀光. 以骨关节损伤为主的严重多发伤的救治.创伤外科杂志, 2006, 8(4). 382-385.
    1. Miiller ME, Allg6wer M, Schneider R, Willenegger H. Manual of internal fixation. Techniques recommended by the AO-ASiF group. 3rd Ed. Berlin: Springer, 1991, 2.
    2. Gerber C, Mast JW, Ganz R, et al. Biological internal fixation of fractures. Arch. Orthop. Trauma Surg. 1990, 109: 29-36.
    3. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific background, design and application, Injury 1991, 22(suppl 1): 1.
    4. 荣国威,姜春岩. 点式接触固定-全新概念的钢板固定系统. 中华外科杂志, 1997, 35(12): 756-757.
    5. Tomas B, Sune L, et al. Percutaneous plating of distal tibial fractures Preliminary results in 21 patients. Injury 2004, 35: 608-614.
    6. John R. Rohan E, An evaluation of interface contact profiles in two low contact bone plates. Injury 2004, 35, 551-556.
    7. Jain R, Podworny N, A biomechanical evaluation of different plates for fixation of canine radial osteotomies. J-Trauma. 1998, 44(1): 193-197.
    8. Perren SM. Buchanan JS. Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury 1995, 26(suppl 2): 1.
    9. Baumgaertel F. Fracture healing in biological plate osteosynthesis, Injury 1998, 29(Suppl 3): 3-6.
    10. Haas N, Hauke C, Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix ii). Injury. 2001, 32 (Suppl 2): 51-62.
    11. Hofer, H,Wildburger, R. Observations concerning different patterns of bone healing using the Point Contact Fixator (PC-Fix) as a new technique for fracture fixation. Injury. 2001, 32 (Suppl 2): 15-25.
    12. Hertel R, Eijer H, Biomechanical and biological considerations relating to the clinical use of the Point Contact-Fixator--evaluation of the device handling test in the treatment of diaphyseal fractures of the radius and/or ulna. Injury. 2001, 32 (Suppl 2): 10-4.
    13. Tepic S, Perren S. The biomechanics of the PC-Fix internal fixator AO/ASiF Researchinstitute, Clavadelerstrasse, 7270 Davos, Switzerland.
    14. Frigg R. Locking CompressionPlate (LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix).Injury, 2001, 32(supple 2): 63-66.
    15. Wagner M, Frigg R. Locking compression plate (LCP):Einneuer AO-Standard. OP J, 2000, 16: 238-243.
    16. Schutz M, Sudkamp N. Revolution in plate osteosynthesis: new internal fixator systems.J Orthop Sci, 2003, 8: 252-258.
    17. Leung F, Zhu L,Ho H,Lu WW, Chow SP. Palmar plate fixation of AO type C2 fracture of distal radius using a locking compression plate-a biomechanical study in a cadaveric model.J Hand Surg (Br), 2003, 28: 263-266.
    18. Sommer C, Gautier E, Muller M, et al. First clinical results of the locking compression plate (LCP). Injury, 2003, 34(supple 2): 43-54.
    19. 吴雪辉,李起鸿. 锥状点式接触钢板内固定对局部皮质骨微循环影响的实验研究. 中华骨科杂志, 2000, 20(3): 137-141.
    20. 赵玉峰,李起鸿,顾祖超,等.新型点状接触动力加压接骨板的研制(生物力学部分) [J]. 医用生物力学, 2002, 17(1): 58-62.
    21. Krettek C. Foreword: concepts of minimally invasive plate osteosynthesis. Injury 1997, 28 (Suppl 1): A1-2.
    22. Kregor P, Stannard J, Prospective clinical trial of the less invasive stabilization system (LiSS) for supracondylar femur fractures. J Orthop Trauma, 2000, 14: 133-134.
    1. Buckwalter JA, Einborn TA, Bolander ME, et al. Healing of the musculoskeletal tissues. in Rockwood CA, Green DP, Bucholz RW, et al. Fractures in adults. Ed 4. Philadelphia. Lippincott-Raven, 1996, 261-303.
    2. Hulth A. Current concepts of fracture healing. Clin Orthop 1989, 249: 265-270.
    3. O'Sullivan ME, Chao EVS, Kelly PJ et al. The effects of fixation on fracture healing. J Bone Joint Surg 1989, 71A: 306-310.
    4. Einhorn TA. The cell and molecular biology of fracture healing. Clinical Orthopaedics 1998, 355: S7-S21.
    5. Goodship AE, Kenwright J, The influence of induced micromovement upon the healing of tibial fractures. Journal of Bone and Joint Surgery. 1985, 67 B: 650-655.
    6. Augat P, Margevicius K, Simon J, et al. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. Journal of Orthopaedic 1998, 16: 475-481.
    7. Kenneth A. Egol, MD, Erik N, et al.Biomechanics of Locked Plates and Screws, J Orthop Trauam, 18(8): 488-493.
    8. Perren SM. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop. 1979, 138: 175-196.
    9. Hente R, Cordey J. Perren SM. in vivo measurement of bending stiffness in fracture healing. Biomed Eng Online. 2003, 2: 8.
    10. Perren SM. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002, 84: 1093-1110.
    11. Hofer HP, Wildburger R, Szyszkowitz R. Observations concerning different patterns ofbone healing using the Point Contact Fixator (PC-Fix) as a new technique for fracture fixation. Injury. 2001, 32(suppl 2): SB15-SB25.
    12. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific background, design and application, Injury 1991, 22(suppl 1): 1.
    13. Thomas P, Christoph S. 从 AO 传统加压接骨板到新型内固定器原则. 中华创伤骨科杂志, 2003, 5(3): 216-217.
    14. Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury, 1995, 26; (Suppl): 5-10.
    15. Miclau T, Remiger A, Tepic S, et al.A mechamical comparison of the dynamic compression plate, limited contact-dynamic compression plate and point contact fixator. Orthop Research, 1995, 9: 17-22.
    16. Heitemeger U, Kemper F, Hierholzer G, et al. Severly comminuted femoral shaft fractures:treatment by bridging-plate osteosynthesis.Arch OrthopTrauma Surg, 1987, 106: 327-330.
    17. John PC, Theodore X, Kostas GP, et al. Bridge plating osteosynthesis of 20 comminuted fractures of the femur. Acta Orthop Scand, 1997, 68(Supple): 72-76.
    18. David R,Jesse BJ,Richard AS,et al. Complex nonunion of fractures of the femoral shaft treated by wave-plate osteosynthesis.J Bone Joint SurgBr, 1997, 79: 289-294.
    19. Cole PA, Zlowodzki M, Kregor PJ et al. Less invasive Stabilization System (LiSS) for fractures of the proximal tibia: indications, surgical technique and preliminary results of the UMC Clinical Trial. Injury. 2003, 34(suppl 1): A16-29.
    20. Farouk O, Krettek C, Miclau T, et al. Minimally invasive plate osteosynthesis and vascularity: preliminary results of a cadaver injection study.Injury. 1997, 28(suppl 1): A7-A12.
    21. Schutz M, Kaab MJ, Haas N et al. Stabilization of proximal tibial fractures with the LiS-System: early clinical experience in Berlin. Injury. 2003,34(suppl 1): A30-A35.
    22. Burstein AHWT. Fundamentals of Orthopaedic Biomechanics. Baltimore, MD: Williams and Wilkins; 1994.
    23. Gautier E, Perren SM, Ganz R. Principle of internal fixation. Curr Orthop.1992, 6: 220-232.
    24. Borgeaud M, Cordey J, Leyvraz PE, et al. Mechanical analysis of the bone to plate interface of the LC-DCP and of the PC-FiX on human femora. Injury. 2000, 31(suppl 3): C29-C36.
    25. Cordey J, Borgeaud M, Perren SM et al. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury. 2000, 31(suppl 3): C21-C28.
    26. Perren S. Point contact fixator: Part I. Scientific background, design and application. Injury. 1995,.22 (suppl 1): 1-10.
    27. Gautier E, Perren SM, Cordey J. Strain distribution in plated and unplated sheep tibia an in vivo experiment. Injury. 2000, 31(suppl 3): C37-C44.
    28. Perren SM, Cordey J, Rahn BA, et al. Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? Clin Orthop. 1988, 232: 139-151.
    29. Frigg R. Locking Compression Plate (LCP). An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix). Injury. 2001, 32(suppl 2): 63-66.
    30. Sommer C, Gautier E, Muller M, et al. First clinical results of the Locking Compression Plate (LCP). Injury. 2003, 34(suppl 2): B43-B54.
    31. Wagner M. General principles for the clinical use of the LCP. Injury. 2003, 34(suppl 2): B31-B42.
    32. Gautier E, Perren SM, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000, 31(suppl 3): C14-C20.
    33. Farouk O, Krettek C, Miclau T, et al. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999, 13: 401-406.
    34. Farouk O, Krettek C, Miclau T, et al. Effects of percutaneous and conventional platingtechniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998, 117: 438-441.
    35. Schutz M, Muller M, Kaab M, et al. Less invasive stabilization system (LiSS) in the treatment of distal femoral fractures. Acta Chir Orthop Traumatol Cech. 2003, 70: 74-82.
    36. Cordey J, Perren SM, Steinemann SG. Stress protection due to plates: myth or reality? A parametric analysis made using the composite beam theory. Injury. 2000, 31(suppl 3): C1-C13.
    37. Eijer H, Hauke C, Arens S, et al. PC-Fix and local infection resistance influence of implant design on postoperative infection development, clinical and experimental results. Injury. 2001, 32(suppl 2): SB38-SB43.
    38. Perren SM. Evolution and rationale of locked internal fixator technology. Introductory remarks. Injury. 2001, 32(suppl 2):B3-B9.
    39. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003, 34(suppl 2):B63-B76.
    40. Marti A, Fankhauser C, Frenk A, et al. Biomechanical evaluation of the less invasive stabilization system for the internal fixation of distal femur fractures. J Orthop Trauma. 2001, 15: 482-487.
    41. Hertel R, Eijer H, Meisser A, et al. Biomechanical and biological considerations relating to the clinical use of the Point Contact-Fixator evaluation of the device handling test in the treatment of diaphyseal fractures of the radius and/or ulna. Injury. 2001, 32(suppl 2): SB10-SB14.
    42. Wagner M. General principles for the clinical use of theLCP.Injury 2003, 34(2): 31.
    43. Sommer C, Bautier E, Muller M, et al.First clinicalinical results of the locing compression plate (LCP). Injury 2003, 34(2): 43.
    44. .Haas N, Hauke C, Schuetz, M. Treatment of diaphyseal fractures of the forearm using the Point. Contact Fixator (PC-Fix): Results of 387 fractures of a prospective.Injury, 2001, 32(supply2): 51-62.
    45. Swiontkowski MF, Senft D, Taylor S, et al. Plate design has an effect on cortical boneperfusion [J]. Orthop Trans, 1992, 15: 387-389.
    46. Jain R, Podworny N, Hearn T, et al. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture [J]. J Orthop Trauma, 1997, 11: 490-495.
    47. Hofer HP, Wildburger R, Szyszkowitz R et al. Observations concerning different patterns of bone healing using the Point Contact Fixator (PC-Fix) as a new technique for fracture fixation[J]. Injury ,2001, 32 (Suppl): B15-25.
    48. Perren SM, Klave K, Pohler O, et al.The limited contact dynamic compression plate(LC-DCP). Arch Orthop Trauma Surg, 1990, 109: 304-310.
    49. Perren SM. The concept of biological plating using the LC-DCP, Scientific background, design and application. Injury, 1991, 22(Suppl): 141-146.
    1. Rhnelander FW, barary RA. Microangiogrphy in bone healing, part I. J bone joint surg, 1962, 44 A: 1273.
    2. Rhinelander FW, Phillips RS, Steel WM.et al. Microangiograpgy in bone healing, part II, J bone Joint Surg, 1968, 5 A: 643.
    3. Yu SW. The relation of the blood supply to union of experi-mental fracture, ChinMed J, 1960, 80(8): 520.
    4. 苏佳灿,张春才,禹宝庆 等. 天鹅记忆加压接骨器治疗肱骨骨折加载应力的选择 [J]. 中国临床康复 2003, 7(26): 35-58.
    5. Kregor PJ, Senft D, Parvin D, et al. Cortical bone perfusion in plated fractured sheep tibiae [J]. J Orthop Res, 1995, 13: 715-724.
    6. Peren SM, Cordey J, Rahn BA, et al.Early temporay poros is of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? [J] ClinOrthopRelRes, 1988, 232: 139.
    7. Karnezis A. Biomechanical considerations in ‘biological’ femoral osteosynthesis: an experimental study of the ‘bridging’ and ‘wave’ plating techniques [J]. Arch Orthop Trauma Surg, 2000, 120: 272-275.
    8. 吴雪辉,李起鸿. 锥状点式接触钢板内固定对局部皮质骨微循环影响的实验研究. 中华骨科杂志, 2000, 20(3): 137-141.
    9. 赵玉峰,李起鸿. 新型点式接触动力加压接骨板固定对羊完整胫骨皮质骨血流量的影响. 中华创伤杂志, 2003, 19(8): 470-473.
    10. Wilson JW, et al.Current concepts review: The effects of fixation on fracture healing, [J] Bone Joint Surg 1989, 71 A(2): 306-310.
    11. Karladani AH, Granhed H, Edshage B, et al. Displaced tibial shaft fractures: a prospective randomized study of closed intramedullary nailing versus cast treatment in 53 patients [J]. Acta Orthop Scand, 2000, 71: 160-167.
    12. Einhorn T, Enhancement of Fracture-healing. J Bone Joint Surg (Am), 1995, 77: 940-956.
    13. Frost HM. The biology of fracture healing: an overview for clinicians (part 11). ClinOrthop, 1989, 248: 294-309.
    14. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumor genesis [J].Cell, 1996, 86(3): 353-364.
    15. Glowacki J. Angiogenes is in fracture repare [J]. Clin Orthop, 1998, 355(Supply): 82-9.
    16. Gerber HP. Ferrara N. Angiogenes is an bone growth [J].Trends Cardiovasc Med, 2000, 10: 223-238.
    17. Vang JS. Basic fibro blast growth factor for stimulation of bone formation in osteo inductive or conductive implants [J].Acta Orthop Scand, 1996, 269: 1-33.
    18. Melder RJ, Koenig GC, Witwer BP, et al. Angiogenesis modulates the tumour immune response international Journal of Experimental Pathology 79 (6), 363-368.
    19. 张斌, 黄家国. 骨折修复的启动与分子水平调节 [J].中国修复重建外科杂志, 2003, 17(3): 218-219.
    20. Tay BK, Le AX, Gould SE, et al. Histochemial and molecular analyses of distraction osteogenesis in a mouse model [J].Orthp Res, 1998, 16: 636-642.
    21. Reilly TM, Selders R, Luchetti W, et al. Similaritites in the phenotypic expression of pericytes and bone cells [J]. Clin Orthop, 1998, 346: 95-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700