miR-143在宫颈鳞癌组织中的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     宫颈癌是全球女性最常见的恶性肿瘤之一,尤其在发展中国家,造成每年约35万人死亡,且近来有年轻化趋势,严重威胁女性的生育及健康,构成了一个重要的公共健康问题,是我国重点防治癌症之一。大约80%的原发性宫颈癌从鳞状上皮不典型增生发生。高危型人乳头状瘤病毒(HPV)感染为宫颈癌发生的主要原因。然而,HPV阴性者也可患宫颈癌。这表明,其他辅助因子中存在从宫颈不典型增生到宫颈癌之间的致病因素。microRNA的发现,为癌症的发病机理提供了新的思路,它在转录后水平上调控基因表达。深入研究宫颈癌发生及发展的分子机制,寻找具有早期诊断的分子标志物,发现有效的治疗靶点,对于提高宫颈癌的诊断和治疗具有重要的意义。
     miRNAs是一类长度约19-25nt的单链非编码RNA,负调控靶mRNAs翻译的稳定性和效率。可在疾病中观察到miRNAs表达的变化,特别是在癌症中。miRNA的监管失调可能在宫颈癌的发生和发展过程中起重要作用。miR-143位于染色体5q32处。在多种恶性肿瘤中均呈低表达。miR-143在宫颈癌肿瘤诊断和治疗中可能存在潜在的应用价值。虽然miR-143在宫颈癌细胞株中呈现低表达,但目前国内尚未发现miR-143在正常宫颈组织、宫颈上皮内瘤变组织(CIN)及宫颈鳞癌组织中的研究。本研究旨在研究在正常宫颈组织、宫颈上皮内瘤变组织(CIN)及宫颈鳞癌组织中miR-143表达水平的变化,为miR-143在宫颈鳞癌中的研究提供理论基础。
     材料与方法
     1实验分组
     1.1病例组:选取郑州大学第二附属医院2012年2月至2012年11月住院手术切除的30例新鲜宫颈鳞状细胞癌组织,按国际妇产科联盟(FIGO)的分期标准,Ⅰ期20例,Ⅱ期10例。30例门诊收集的新鲜宫颈上皮内瘤变组织(CIN),其中CIN级14例,CIN~Ⅲ级16例。
     1.2对照组:取同期因子宫肌瘤行全子宫切除的正常宫颈组织30例作为对照。
     1.3纳入标准:①所有病例均未行放疗和化疗:②所有病理组织均经病理检查为宫颈鳞癌或宫颈上皮内瘤变;③所有入选的标本征集均经患者或家属的同意,并签知情同意书。
     2.实验方法
     用实时荧光定量聚合酶链反应(qRT-PCR)方法检测正常宫颈组织、CIN和宫颈鳞癌组织中miR-143的表达水平。用U6作为内参。应用统计软件SPSS17.0进行数据分析,计量资料以均数±标准差(x±s)表示,组间均数比较采用独立样本T检验,多个样本均数比较采用单因素方差分析。检验水准a=0.05。P<0.05差异有统计学意义。
     结果
     1.在正常宫颈组织、CIN组织和宫颈鳞癌组织中miR-143的相对表达量分别为1.02±0.15、0.93±0.17、0.32±0.23,三者比较差别具有统计学意义(F=122.097,P<0.05)。用LSD统计方法对其进行两两比较,发现正常宫颈组织和CIN组织比较差别无统计学意义(P>0.05),正常宫颈组织和CIN组织与宫颈鳞状细胞癌组织比较差别均有统计学意义(P<0.05)。
     2.miR-143在高危型HPV阳性和阴性中的相对表达量分别为0.87±0.27、0.90±0.24,两组比较差别无统计学意义(t=0.453,P>0.05)。
     3.宫颈鳞癌组织病理分级G2期与G3期miR-143的相对表达量为0.38±0.47、0.15±0.33,两者比较差别有统计学意义(t=2.742,P<0.05)。
     4.宫颈鳞癌淋巴结阳性和阴性miR-143的表达量为0.17±0.40、0.37±0.47,两者比较差异具有统计学意义(t=2.506,P<0.05)。
     5.宫颈鳞癌肿瘤直径≥2.5cm和肿瘤直径<2.5cm miR-143的相对表达量为0.22±0.06、0.36±0.48,两者比较差别无统计学意义(t=1.709,P>0.05)。
     6.宫颈鳞癌间质浸润深度≥2/5和间质浸润深度<2/5miR-143的相对表达量为0.31±0.44、0.33±0.89,两者比较差别无统计学意义(t=-0.269,P>0.05)。
     7.宫颈鳞癌FIGOI期和II期miR-143的相对表达量为0.36±0.54、0.24±0.41,两者比较差别无统计学意义(t=1.455,P>0.05)。
     8.宫颈鳞癌年龄>40岁和年龄<40岁miR-143的相对表达量为0.31+0.52、0.33±0.57,两者比较差异无统计学意义(t=0.249,P>0.05)。
     结论
     1.miR-143的低表达水平与宫颈鳞癌相关;
     2.miR-143的表达水平与高危型HPV感染无关;
     3.宫颈鳞癌中miR-143的表达水平与组织病理分级和淋巴结转移相关,与肿瘤直径、间质浸润深度、临床分期和年龄无关。
Background and objective
     Cervical cancer is one of the most common cancers in women worldwide, especially in developing countries,which caused about35million deaths per year. The people who have it get younger and younger. Cervical cancer which is one of important cancer prevention in China had threatened to fertility and health of women,and it poses an important public health problem. Approximately80%of primary cervical cancers arise from pre-existing squamous dysplasia. The most important etiologic agent in the pathogenesis is high risk human papillomavirus (HPV). However, the people who are HPV-negative also got cervical cancer.This suggests that other cofactors must be present in the pathogenic pathway between cervical dysplasia and carcinoma.The discover of microRNA which in the post-transcriptional level regulate the expression of gene provides new ideas for the pathogenesis of cancer.It is very significantly to improve the diagnosis and treatment of cervical cancer in studying the molecular mechanism deeply, seeking molecular markers for early diagnosis and finding effective therapeutic targets.
     microRNAs are a class of about19-25nt single-stranded non-coding RNA,which negatively regulate the translational efficiency and stability of target mRNAs. Altered miRNAs expression in disease has been observed, especially in cancer.The deregulation of miRNAs may play an important role in the occurrence and development of cervical cancer. miR-143located in chromosome5q32. miR-143is downregulated in a variety of malignant tumors. miR-143in the diagnosis and treatment of cervical cancer may have potential applications. Although miR-143in cervical cancer cell lines showed low expression, but there is not yet discovered the expression of miR-143in normal cervical tissue, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma. This research aimed to study the expression level of miR-143in normal cervical tissue, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma,and provide a theoretical basis for study of miR-143in cervical squamous cell carcinoma.
     Materials and Methods
     1. The experimental group
     1.1The case group:According to the International Federation of Gynecology and Obstetrics (FIGO) staging system,30samples of fresh cervical squamous cell carcinoma tissues come from the Second Affiliated Hospital of Zhengzhou University between February2012and November2012, which consist of Ⅰ20samples, Ⅱ10samples.30samples of fresh cervical intraepithelial neoplasia (CIN) tissues were collected in the same time, which consist of CIN Ⅰ14samples, CIN Ⅱ-Ⅲ16samples.
     1.2The control group:30samples of normal cervical tissues due to uterine fibroids hysterectomy were collected in the same period as a control.
     1.3The inclusion criteria:①All the samples have not been treated by radiotherapy and chemotherapy;②All cervical tissues were examined by pathological diagnosis as cervical squamous cell carcinoma or cervical intraepithelial neoplasia tissues;③The patients or thire family all agreed with the samples selection and signed informed consent.
     2. The experiment method
     Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) method was used to detect the relative expression of miR-143in the tissues of normal cervical, CIN and cervical squamous cell carcinoma.With U6as an internal reference. The date were analyzed by SPSS17.0program. The measurement data were expressed as standard deviation(x±s) and tested by independent samples T-test or One-Way ANOVA.Inspection level is α=0.05. P<0.05is the level of significant difference.
     Results
     1.The average relative expression of miR-143in normal cervical tissues, CIN tissues and cervical squamous cell carcinoma tissues were1.02±0.15、0.93±0.17、0.32±0.23, the difference was statistically significant (F=122.097, P<0.05).Comparing the pairwise comparisons with LSD statistical methods,between normal cervical tissues and CIN tissues the difference was not statistically significant (P>0.05),between cervical squamous cell carcinoma tissues and normal cervical tissues and CIN tissues the difference was statistically significant (P<0.05).
     2.The average relative expression of miR-143in the high-risk HPV positive and negative were0.87±0.27,0.90±0.24,the comparion between the two groups was not statistically significant difference(t=0.453,P>0.05).
     3.The average relative expression of miR-143in Cervical squamous cell carcinoma pathological stage G2and G3were0.38±0.47and0.15±0.33, the comparion between the two groups was not statistically significant difference (t=2.742,P<0.05)
     4.The average relative expression of miR-143in cervical squamous cell carcinoma with positive and negative lymph nodes were0.17±0.40and0.37±0.47, the comparion between the two groups was not statistically significant difference (t=2.506, P<0.05).
     5.The average relative expression of miR-143in cervical squamous cell carcinoma with tumor diameter≥2.5cm and<2.5cm were0.22±0.06,0.36±0.48, the comparion between the two groups was not statistically significant difference (t=1.709, P>0.05).
     6.The average relative expression of miR-143in cervical squamous cell with interstitial infiltration depth≥2/5and <2/5were0.31±0.44,0.33±0.89, the comparion between the two groups was not statistically significant difference (t=-0.269,P>0.05).
     7.The average relative expression of miR-143in cervical squamous cell carcinoma FIGO Ⅰ and Ⅱ were0.36±0.54,0.24±0.41, the comparion between the two groups was not statistically significant difference (t=1.455, P>0.05).
     8.The average relative expression of miR-143in cervical squamous cell carcinoma with the young(≥40)and the old (<40) were0.31±0.52,0.33±0.57, the comparion between the two groups was not statistically significant difference (t=0.249, P>0.05).
     Conclusions:
     l.The low expression level of miR-143are significantly associated with cervical squamous cell carcinoma.
     2.The expression level of miR-143are not significantly associated with high risk HPV infection.
     3.The expression level of miR-143in cervical squamous cell carcinoma are significantly associated with pathological stage, lymph node metastasis;but not associated with tumor size, depth of stromal invasion, clinical stage, and age.
引文
[1]Yao T, Lin Z. MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2012,1822(2): 248-260.
    [2]师婕.miR-143及miR-145在肿瘤患者中表达的研究进展[J].疑难病杂志,2011,10(12):955-957
    [3]G. Reshmi, Ramachandran Surya, V.T. Jissa,et al.C-T variant in a miRNA target site of BCL2 is associated with increased risk of human papilloma virus related cervical cancer-An in silico approach[J].Genomics,2011,98(3):189-193
    [4]Li B,Hu Y,Ye F,et al.Reduced miR-34a Expression in Normal Cervical Tissues and Cervical Lesions With High-Risk Human Papillomavirus Infection[J]. Gynecol Cancer 2010,20: 597-604
    [5]Anna T, Kamil T,Ryszard M,et al.MicroRNAs and Their Role in Gynecological Tumors.[J] Med Res,2010,10(1002):1-29
    [6]谭胜.miRNA在调节恶性肿瘤细胞的恶性进展中的作用研究[D].中国科学技术大学,2011:1-83
    [7]张媛媛,郑永青,李小雨.MicroRNA-143在急性白血病患者与正常人骨髓细胞中的差异表达及意义[J].中国实验血液学杂志,2011,19(2):308—311
    [8]余静.MiR-143对结肠癌生长的影响及分子机制[D]南京医科大学,2011:1-70
    [9]杨晔.人肺鳞状细胞癌miRNA表达谱检测及1niRNA-143的功能研究[D].第四军医大学,2011:1-92
    [10]唐家林.microRNA-143基因启动子区多态性与前列腺癌遗传易感性的研究[D].南京医科大学,2011:1-83
    [11]甘伟.MiR143和C-Myc在直肠癌中的表达及意义[D].中南大学,2010:1-45
    [12]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[J]. Cell,2003,113(6):673-676.
    [13]Tong A W, Nemunaitis J. Modulation of miRNA activity in human cancer:a new paradigm for cancer gene therapy?[J]. Cancer gene therapy,2008,15(6):341-355.
    [14]Guzman P, Sotelo-Regil R C, Mohar A, et al. Positive correlation between the frequency of micronucleated cells and dysplasia in Papanicolaou smears[J]. Environmental and molecular mutagenesis,2003,41(5):339-343.
    [15]Baskerville S, Bartel D P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes[J]. Rna,2005,11(3):241-247.
    [16]Calin G A, Croce C M. MicroRNA signatures in human cancers[J]. Nature Reviews Cancer, 2006,6(11):857-866.
    [17]Calin GA, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.[J] Proc Natl Acad Sci USA.2004;101:2999-3004.
    [18]Calin G A, Croce C M. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance[C]//Seminars in oncology.2006,33(2):167.
    [19]高翔.微小RNA在宫颈癌中的研究进展[J].国际妇产科学杂志ISTIC,2010,37(3):190-193
    [20]Yukio Kitade,Yukihiro Akao.MicroRNAs and Their Therapeutic Potential for Human Diseases:MicroRNAs, miR-143 and-145, Function as Anti-oncomirs and the Application of Chemically Modified miR-143 as an Anti-cancer Drug[J].J Pharmacol Sci,2010,114: 276-280
    [21]Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis[J]. Oncogene,2009,28(10):1385-1392.
    [22]Song T, Zhang X, Wang C, et al. Expression of miR-143 reduces growth and migration of human bladder carcinoma cells by targeting cyclooxygenase-2[J]. Asian Pac J Cancer Prev, 2011,12:929-933.
    [23]解昆,王剑松,肖民辉,等MicroRNA-143通过抑制EMT机制延缓膀胱癌演进[J].求医问药,2012,10(2):8-10.
    [24]Noguchi S, Mori T, Hoshino Y, et al. MicroRNA-143 functions as a rumor suppressor in human bladder cancer T24 cells[J]. Cancer letters,2011,307(2):211-220.
    [25]Francesca T,Francesco F,Ada P,et al.Changes in miR-143 and miR-21 Expression and Clinicopathological Correlations in Pancreatic Cancers[J].Pancreas,2012,10:1-5
    [26]程文捷,唐健,黄凤婷,等.微小RNA-143对人胰腺癌PANC-1细胞迁移的抑制作用及其机制的探讨[J].肿瘤,2012,32(011):855-861.
    [27]Hu Y, Ou Y, Wu K, et al. miR-143 inhibits the metastasis of pancreatic cancer and an associated signaling pathway[J]. Tumor Biology,2012,33(6):1863-1870.
    [28]Clape C, Fritz V, Henriquet C, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice[J]. PLoS One,2009,4(10):e7542.
    [29]Xu B, Niu X, Zhang X, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS[J]. Molecular and cellular biochemistry,2011,350(1-2):207-213.[30] Chang T C, Wentzel E A, Kent O A, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Molecular cell,2007,26(5):745.
    [30]Deftereos G, Corrie S R, Feng Q, et al. Expression of Mir-21 and Mir-143 in Cervical Specimens Ranging from Histologically Normal through to Invasive Cervical Cancer[J]. PloS one,2011,6(12):e28423.
    [31]刘琳,王月玲,王江芬.miR-21、miR-126、miR-143、miR-373在正常宫颈组织、宫颈癌组织及Hela细胞中的表达差异[J].四川大学学报,2012,43(4):536-539
    [32]Liu L, Yu X, Guo X, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2[J]. Molecular medicine reports, 2012,5(3):753.
    [33]Weng-Onn L,Nader P,Bruce K,et al.Patterns of known and Novel Small RNAs in Human Cervical Cancer.[J] Cancer Res,2007,67(13)6031-6043
    [34]Nambaru L, Meenakumari B, Swaminathan R, Rajkumar T.Prognostic significance ofHPVphysical status and integration sites in cervical cancer.[J] Asian Pac J Cancer Prev. 2009;10:355-60.
    [35]Chang T C, Wentzel E A, Kent O A, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Molecular cell,2007,26(5):745.
    [36]Chiyomaru T, Enokida H, Tatarano S, et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer[J]. British journal of cancer,2010,102(5):883-891.
    [37]Cascio S, D'Andrea A, Ferla R, et al. miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells[J]. Journal of cellular physiology,2010, 224(1):242-249.
    [38]Martinez I, Gardiner A S, Board K F, et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells[J]. Oncogene,2007,27(18): 2575-2582.
    [39]Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29[J]. The Journal of pathology, 2011,224(4):484-495.
    [40]Yeung C L A, Tsang T Y, Yau P L, et al. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway[J]. Oncogene,2011,30(21):2401-2410.
    [41]Li B, Hu Y, Ye F, et al. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection[J]. International Journal of Gynecological Cancer,2010,20(4):597.
    [42]Torres A, Torres K, Maciejewski R, et al. MicroRNAs and their role in gynecological tumors[J]. Medicinal Research Reviews,2011,31(6):895-923.
    [43]Li B H, Zhou J S, Ye F, et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein[J]. European Journal of Cancer, 2011,47(14):2166-2174.
    [44]Wang X, Tang S, Le S Y, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth[J]. PloS one,2008,3(7): e2557.
    [45]黄云辉.miR-21和miR-143在宫颈鳞癌中的表达及其临床意义[D].南华大学,2011:1-41
    [46]Wang X, Tang S, Le S-Y, Lu R, Rader JS, et al. Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth. [J] PLoS ONE 2008,3(7):e2557.
    [47]Huang L, Lin J X, Yu Y H, et al. Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix[J]. PloS one,2012,7(3):e33762.
    [48]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proceedings of the National Academy of Sciences,2008, 105(30):10513-10518.
    [49]徐林,陈静.血浆miR-143、miR-145与冠脉粥样硬化程度的关系[J].海南医学院学报2012,18(11):1526-1536
    [50]陈建,王朝霞.微小RNA:肿瘤耐药治疗新靶点[J].现代肿瘤医学,2012,20(1):191-196.
    [51]张林,高林波.miR-143和miR-145与肿瘤的研究进展[J].西安交通大学学报(医学版),2013,34(1):1-5
    [52]Shi M, Du L, Liu D,et al. Glucocorticoid regulation of a novel HPV-E6-p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells.[J]Pathol.2012; 228(2):148-157
    [1]Johnson S M, Grosshans H, Shingara J, et al. RAS Is Regulated by the let-7. MicroRNA Family[J], Cell,2005,120(5):635-647.
    [2]Rob L, Robova H, Chmel R, et al. Surgical options in early cervical cancer[J]. International Journal of Hyperthermia,2012,28(6):489-500.
    [3]Jiang J, Gusev Y, Aderca I, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival[J]. Clinical Cancer Research,2008,14(2):419-427.
    [4]Lee Y S, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene[J]. Genes & development,2007,21(9):1025-1030.
    [5]谭胜.miRNA在调节恶性肿瘤细胞的恶性进展中的作用研究[D].中国科学技术大学,2011:1-83
    [6]Houbaviy H B, Murray M F, Sharp P A. Embryonic stem cell-specific MicroRNAs[J]. Developmental cell,2003,5(2):351-358.
    [7]Suh M R, Lee Y, Kim J Y, et al. Human embryonic stem cells express a unique set of microRNAs[J]. Developmental biology,2004,270(2):488-498.
    [8]Yekta S, Shih I, Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science Signaling,2004,304(5670):594.
    [9]Darnell D K, Kaur S, Stanislaw S, et al. MicroRNA expression during chick embryo development[J]. Developmental Dynamics,2006,235(11):3156-3165.
    [10]Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature genetics,2005,38(2):228-233.
    [11]Cao X, Pfaff S L, Gage F H. A functional study of miR-124 in the developing neural tube[J]. Genes & development,2007,21(5):531-536.
    [12]Schratt G M, Tuebing F, Nigh E A, et al. A brain-specific microRNA regulates dendritic spine development[J]. Nature,2006,439(7074):283-289.
    [13]Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation [J], science,2004,303(5654):83-86.
    [14]Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature,2005,438(7068):685-689.
    [15]Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation[J]. Journal of Biological Chemistry,2004,279(50):52361-52365.
    [16]Bullrich F, Fujii H, Calin G, et al. Characterization of the 13q14 Tumor Suppressor Locus in CLL Identification of ALT1, an Alternative Splice Variant of the LEU2 Gene[J]. Cancer research,2001,61(18):6640-6648.
    [17]Els p S,Tam W,Sun L,et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas [J].Proc Natl Acad Sci USA,2005,102(10):3627-3632.
    [18]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 post-transcriptionally downregulates tumor suppressor PDCD4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene,2008,27(15):2128-2136.
    [19]Pang RT, Leung CO, Ye TM,et al.MicroRNA-34a suppresses invasion through downregulation of Notchl and Jaggedl in cervical carcinoma and choriocarcinoma cells[J].Carcinogenesis.2010,31(6):1037-44.
    [20]Wei Q, Li Y X, Liu M, et al. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells[J]. IUBMB life,2012,64(8):697-704.
    [21]Yukio Kitade, Yukihiro Akao.MicroRNAs and Their Therapeutic Potential for Human Diseases:MicroRNAs, miR-143 and-145, Function as Anti-oncomirs and the Application of Chemically Modified miR-143 as an Anti-cancer Drug[J].J Pharmacol Sci 2010 114: 276-280
    [22]Chen X, Guo X, Zhang H, et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis[J]. Oncogene,2009,28(10):1385-1392.
    [23]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070.
    [24]Bullrich F, Fujii H, Calin G, et al. Characterization of the 13q14 Tumor Suppressor Locus in CLL Identification of ALT1, an Alternative Splice Variant of the LEU2 Gene[J]. Cancer research,2001,61(18):6640-6648.
    [25]Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proceedings of the National Academy of Sciences,2002,99(24):15524-15529.
    [26]Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(39):13944-13949.
    [27]Sampson V B, Rong N H, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells[J]. Cancer research,2007,67(20): 9762-9770.
    [28]Mott J L, Kobayashi S, Bronk S F, et al. mir-29 regulates Mcl-1 protein expression and apoptosis[J]. Oncogene,2007,26(42):6133-6140.
    [29]Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29[J]. The Journal of pathology, 2011,224(4):484-495.
    [30]Tian R Q, Wang X H, Hou L J, et al. MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin Al in human cervical cancer, which may contribute to tumorigenesis[J]. Journal of Biological Chemistry,2011,286(29): 25556-25563.
    [31]Liu L, Yu X, Guo X, et al. miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2[J]. Molecular medicine reports, 2012,5(3):753.
    [32]Noguchi S, Mori T, Hoshino Y, et al. MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells[J]. Cancer letters,2011,307(2):211-220.
    [33]Yukio Kitade, Yukihiro Akao.MicroRNAs and Their Therapeutic Potential for Human Diseases:MicroRNAs, miR-143 and-145, Function as Anti-oncomirs and the Application of Chemically Modified miR-143 as an Anti-cancer Drug[J].J Pharmacol Sci 2010 114: 276-280
    [34]解昆,王剑松,肖民辉,等.MicroRNA-143通过抑制EMT机制延缓膀胱癌演进[J].求医问药,2012,10(2):8-10.
    [35]Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma[J]. Genes, Chromosomes and Cancer,2004,39(2): 167-169.
    [36]Voorhoeve PM, le Sage C, SchrierM,etal.A genetic screen implicates miRNA-372 andmiRNA-373 as oncogenes in testicular germ cell tumors[J].Cel,l 2006,124(6): 1169-1181.
    [37]田俊梅,涂真珍,顾月清.MicroRNA-21 表达调控研究[J].药物生物技术,2012,1:019.
    [38]Frankel L B, Christoffersen N R, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells[J]. Journal of Biological Chemistry,2008,283(2):1026-1033.
    [39]Frankel L B, Christoffersen N R, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells[J]. Journal of Biological Chemistry,2008,283(2):1026-1033.
    [40]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology,2007,133(2): 647.
    [41]Mendell J T. miRiad roles for the miR-17-92 cluster in development and disease[J]. Cell, 2008,133(2):217-222.
    [42]Petrocca F, Vecchione A, Croce C M. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling[J]. Cancer research,2008,68(20): 8191-8194.
    [43]O'Donnell K A, Wentzel E A, Zeller K I, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature,2005,435(7043):839-843.
    [44]He L, Thomson J M, Hemann M T, et al. A microRNA polycistron as a potential human oncogene[J]. Nature,2005,435(7043):828-833.
    [45]Dalmay T, Edwards D R. MicroRNAs and the hallmarks of cancer[J]. Oncogene,2006, 25(46):6170-6175.
    [46]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004, 116(2):281-297.
    [47]Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster[J]. Nature genetics,2006,38(9):1060-1065.
    [48]Ma L, Teruya-Feldstein J, Weinberg R A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J]. Nature,2007,449(7163):682-688.
    [49]Kang H W, Wang F, Wei Q, et al. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells[J]. FEBS letters,2012,586(6):897-904.
    [50]Long M J, Wu F X, Li P, et al. MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells[J]. Cancer Letters,2012.
    [51]Xu X,Wang X, Chen M, et al., MicroRNA-19a and-19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5[J].Cancer Letters,2012,10:12-33
    [52]景花,宋沁馨,周国华MicroRNA定量检测方法的研究进展.[J]遗传2010,32(1):31—40
    [53]Raymond C K, Roberts B S, Garrett-Engele P, et al. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs[J]. Rna,2005, 11(11):1737-1744.
    [54]Design R T P C R P. Facile means for quantifying microRNA expression by real-time PCR[J]. Biotechniques,2005,39(4):519-525.
    [55]Ogawa R, Ishiguro H, Kuwabara Y, et al. Expression profiling of micro-RNAs in human esophageal squamous cell carcinoma using RT-PCR[J]. Medical molecular morphology, 2009,42(2):102-109.
    [56]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proceedings of the National Academy of Sciences,2008, 105(30):10513-10518.
    [57]Calin G A, Croce C M. MicroRNA signatures in human cancers[J]. Nature Reviews Cancer, 2006,6(11):857-866.
    [58]Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma[J]. New England Journal of Medicine,2008,359(19): 1995-2004.
    [59]黄云辉.miR-21和miR-143在宫颈鳞癌中的表达及其临床意义[D].南华大学,2011:1-41
    [60]徐林,陈静.血浆miR-143、miR-145与冠脉粥样硬化程度的关系[J].海南医学院学报2012,18(11):1526-1536
    [61]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer cell,2006,9(3):189-198.
    [62]Boehm M, Slack F J. MicroRNA control of lifespan and metabolism[J]. Cell Cycle,2006, 5(8):837-840.
    [63]Negrini M, Calin G A. Breast cancer metastasis:a microRNA story[J]. Breast Cancer Res, 2008,10(2):203.
    [64]Clape C, Fritz V, Henriquet C, et al. miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice[J]. PLoS One,2009,4(10):e7542.
    [65]Huang L, Lin J X, Yu Y H, et al. Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix[J]. PloS one,2012,7(3):e33762.
    [66]Francesca T,Francesco F,Ada P,et al.Changes in miR-143 and miR-21 Expression and Clinicopathological Correlations in Pancreatic Cancers[J].Pancreas,2012,10:1-5
    [67]Huang Y S, Dai Y, Yu X F, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis[J]. Journal of gastroenterology and hepatology,2008,23(1):87-94.
    [68]Wilting S M, van Boerdonk R A A, Henken F E, et al. Research Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer[J]. 2010,9:167-181
    [69]Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer[J]. New England Journal of Medicine,2009,361(15):1437-1447.
    [70]陈建,王朝霞.微小RNA:肿瘤耐药治疗新靶点[J]现代肿瘤医学,2012,20(1):191-196
    [71]Chai HJ, Liu M, Tian RQ, et al. MiR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines [J]. Acta Biochim Biophys Sin,2011,43(3):217-225
    [72]Paolo Ceppil, Giridhar Mudduluru. Regalla Kumarswamy, et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer [J]. Mol Cancer Res,2010,8(9):1207-1216.
    [73]Lu X, Shu YQ. The expression and mechanism of miRNAoRNAsin drug-resistent NSCLC cell line A549/DDP [C]. Nanjing:Ningjing Medical University,2010.
    [74]Shi GH, Ye DW, Yao XD, et al. Involvement of microRNA-21 in mediating chemoresistance to docetaxel in androgen-independent prostate cancer PC3 cells [J]. Acta Pharmacologica Sinica,2010,31:867-873
    [75]Imanaka Y, Tsuchiya S, Sato F, et al. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma [J]. J Hum Genet,2011,56(4):270-276.
    [76]Hummel R, Watson DI, Smith C, et al. Mir-148a improves re-sponse to chemotherapy in sensitive and resistant oesophageal adenocarcinoma and squamous cell carcinoma cells [J]. J Gastrointest Surg,2011,15(3):429-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700