围产期DEHP暴露对子代大鼠糖代谢的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病的发病率在全球范围内日益增加,现已成为21世纪危害人体健康的主要疾病之一。胰岛素抵抗和进行性的β细胞功能损害是2型糖尿病的两个重要特征;其中胰岛β细胞功能损害是糖尿病发生、发展的必要条件。传统观点认为,遗传、无节制的高热量饮食和久坐不动的生活方式的改变是导致2型糖尿病发生发展的主要因素。但是,目前这些因素已经不能完全解释2型糖尿病发病率持续增加的现象。最近,越来越多的研究表明,日常生活中主动或被动接触的外源化合物也可以干扰胰腺β细胞的功能,从而在2型糖尿病发生的过程中发挥着举足轻重的作用。
     邻苯二甲酸二(2-乙基己基)酯[Di-(2-ethylhexyl)-phthalate,DEHP]是生产聚氯乙烯(PVC)的一种主要增塑剂,在日常生活中广泛应用。DEHP可通过消化系统、呼吸系统及皮肤接触等途径进入人体,也可通过胎盘和乳汁到达下一代体内。在美国进行的一项流行病学调查发现,75%的被调查者尿液中可以被检测到DEHP及其代谢物。目前已有部分流行病学和动物实验显示,DEHP暴露和机体血糖代谢紊乱存在一定的联系。由于胎儿和新生儿对环境污染物非常敏感,所以本研究建立了发育关键时期DEHP暴露的实验动物模型,探讨围产期DEHP暴露对子代机体糖代谢的影响,并从胰岛β细胞的发育、胰岛素分泌功能以及凋亡等方面探讨其可能的机制。
     第一部分围产期DEHP暴露对子代大鼠糖代谢的影响
     目的:探讨围产期DEHP暴露对子代大鼠生长发育和糖代谢的影响。方法:Wistar雌鼠阴道涂片检查确定受孕,从受孕0天开始进行玉米油和不同剂量的DEHP (1.25和6.25 mg/kg/day)灌胃染毒直至仔鼠断乳(出生后第21天)。测量孕鼠孕期和泌乳期的体重以及断乳时的血糖、胰岛素水平的变化。断乳后每组保留雌雄仔鼠各16只进行后续的实验。动态监测子代生长过程中体重、摄食量、血糖、胰岛素、葡萄糖耐量和胰岛素耐量的变化。同时分析统计子代断乳时和成年后性腺旁脂肪组织的重量,并观察脂肪细胞的形态。结果:与对照组相比,围产期DEHP暴露引起子代出生体重显著减小;出生后生长速度明显减慢。断乳时,DEHP暴露组子代出现体脂系数和脂肪细胞面积显著减小;空腹血糖和空腹胰岛素显著降低。成年后,DEHP暴露组子代雌鼠出现严重的葡萄糖代谢紊乱,主要表现为高血糖、低胰岛素血症和葡萄糖严重耐受不良;雄鼠空腹血糖与对照相比无明显差异,但空腹胰岛素显著升高。围产期DEHP暴露未改变孕鼠的体重、血糖和胰岛素水平。结论:围产期DEHP暴露引起子代大鼠生长发育速度减慢和机体糖代谢紊乱。
     第二部分围产期DEHP暴露对子代大鼠内分泌胰腺发育的影响
     目的:通过围产期DEHP暴露引起子代大鼠糖代谢紊乱的动物模型,探讨DEHP暴露对子代大鼠内分泌胰腺的早期影响。方法:用阴道涂片法检测受孕情况,从Wistar大鼠雌性受孕后0天(GD0)开始,对其进行玉米油和不同剂量DEHP (1.25和6.25mg/kg/day)灌胃染毒直至仔鼠出生后第21天断乳。于PND21处死部分仔鼠,收集胰腺样本、称重并测量胰腺组织中胰岛素的含量。免疫组化分析β细胞形态和质量;电镜观察β细胞的超微结构。QPCR分析仔鼠胰腺组织中Pdx-1、insulin、glucagon、Atf4、Atf6、Bip、Ucp2的mRNA表达水平;Western Blot分析PDX-1和磷酸化的PERK蛋白含量。结果:与对照组相比,实验组子代断乳时β细胞质量和胰腺胰岛素含量显著降低。电镜结果提示围产期DEHP暴露导致断乳时子代大鼠β细胞超微结构损伤,主要表现为:内质网扩张脱颗粒、线粒体肿胀、完整的分泌颗粒减少、不成熟的分泌颗粒增加。围产期DEHP暴露还导致子代断乳时胰腺组织中Pdx-1、insulin的表达显著下降,以及Atf4、ATF6、BiP、Ucp2 mRNA的表达水平明显增加;glucagon的表达水平未受影响。蛋白表达水平与mRNA的表达水平意义一致。结论:围产期DEHP暴露导致早期内分泌胰腺发育受损,进而引起子代大鼠成年后出现的葡萄糖代谢紊乱。
     第三部分围产期DEHP暴露导致子代大鼠成年后p细胞的功能损伤
     目的:通过围产期DEHP暴露引起子代大鼠糖代谢紊乱的动物模型,探讨DEHP暴露对子代成年大鼠内分泌胰腺形态和功能的影响。方法:将健康受孕Wistar大鼠随机分为对照组(玉米油2 ml/kg/day)、低剂量组(DEHP 1.25 mg/kg/day)和高剂量组(DEHP 6.25 mg/kg/day).各实验组从受孕0天开始至产后第21天断乳(GDO~PND21)持续灌胃染毒。子代饲养至出生后第27周,收集胰腺组织,称重,测量胰岛素含量。电镜观察β细胞的超微结构;免疫组化分析β细胞面积和质量。利用葡萄糖刺激的胰岛素分泌实验分析离体培养β细胞的分泌功能。Western Blot分析胰腺组织中Bax、Bcl-2、Fas、FasL以及casepase-3细胞凋亡相关蛋白表达水平。结果:围产期DEHP暴露导致子代雌鼠成年后胰腺β细胞面积、β细胞质量以及胰腺胰岛素含量明显低于对照;离体培养的胰岛细胞分泌功能也显著降低。DEHP组雄鼠β细胞的面积和质量与对照相比,无统计学差异。但DEHP组雄鼠单位胰腺胰岛素的含量和低糖刺激下胰岛细胞分泌胰岛素的能力显著高于相应的对照组。电镜结果证实DEHP组β细胞超微结构的损伤随着年龄的增加,损伤程度不断加重。值得注意的是,DEHP暴露还导致了子代雌鼠成年后胰腺中凋亡相关蛋白,如Bax/Bcl-2、Fas、FasL、casepase-3表达水平显著升高。结论:围产期DEHP暴露导致子代成年大鼠的葡萄糖代谢紊乱与成年内分泌胰腺的凋亡密切相关。
The incidence of type 2 diabetes is dramatically increasing at an alarming rate worldwide and is regearded as one of the main threats to human health in the 21 St century. Reduced insulin sensitivity andβcells dysfunction are the core pathophysiological defects in type 2 diabetes. It has recently been acknowledged that (3 cells failture is the triggering factor for the progression of diabetes. Accepted risk factors such as dietary, lifestyle and genetics cannot fully explain the prevalence of diabetes mellitus, and there is increasing evidences suggesting that the increased presence of environmental pollutants plays an important role in the elevated incidence of type 2 diabetes
     Di(2-ethylhexyl) Phthalate (DEHP), one of the most widespread plasticizer to impart flexibility of polyvinyl-chloride (PVC), is commonly used in the manufacture of many dairy products. General human population is widely exposed to DEHP in everyday life through inhalation, ingestion or skin contact. It has been also proven that DEHP can easily cross the placenta and enter breast milk, and then is rapidly absorbed by offspring. A recent epidemiological study indicates that more than 75% of the U.S. population has been detected measurable levels of DEHP and other phthalate metabolites in the urine. Recently, mounting evidence has also point to the impact of DEHP exposure on metabolic state. As it is generally accepted that individuals are more sensitive to chemical exposure during vital developmental periods; in the present study, we used an animal model to investigate whether developmental DEHP exposure disrupts glucose homeostasis in the rat and whether this was associated with the early impairment in developing endocrine pancreas. We also examined the direct effect of developmental DEHP exposure on insulin secretion and apoptosis ofβcells
     Part I Effects of Perinatal DEHP Exposure on Glucose Metabolism in the Rat Offspring
     Objective:To study the impact of perinatal DEHP exposure on the growth and the whole-body glucose homeostasis in rat offspring. Methods:Pregnant Wistar rats were administered corn oil,1.25 and 6.25 mg/kg/day DEHP by gavage from gestation day 0 (GDO) to weaning at postnatal day 21 (PND 21). Body weight of dams was measured during gestation and lactation. Fasting glucose and insulin in dams were determined on PND21. Body weight, food intake, blood glucose, serum insulin, glucose and insulin tolerance test in offspring were measured during the growth. In addition, perigonadal adipose tissues mass, body fat percentage and area of adipocyte were measured at weaning. Results:Relative to controls, DEHP-exposed offspring had a significantly lower birth weight and maintained relatively lower body weight up to 27 weeks of age. At weaning, glucose-lowering effects were much more pronounced in DEHP-exposed offspring of both sexes, which accompanied by the decreased adipocyte size and body fat percentage. At adulthood, female DEHP-exposed offspring exhibited elevated blood glucose, reduced serum insulin and impaired glucose tolerance. Male DEHP-exposed offspring had increased serum insulin, although there were no significant differences in blood glucose at fasting and during glucose tolerance test. Body weight, fasting blood glucose and serum insulin were comparable between control and DEHP-exposed dams. Conclusions:Perinatal exposure to DEHP gives rise to growth retardation and the whole-body glucometabolic abnormalities in the rat offspring.
     PartⅡEffects of Perinatal DEHP Exposure on the Development of Endocrine Pancreas in the Rat Offspring
     Objective:In this study, we investigated the impact of perinatal DEHP exposure on the early endocrine pancreas development in rat pups before and at weaning. Methods: Pregnant Wistar rats were administered DEHP (1.25 and 6.25 mg/kg/day) or corn oil throughout gestation and lactation by oral gavage. Pancreas weight and pancreatic insulin content were measure at weaning (PND 21).βcells mass, area and morphology were determined by immunofluorescence.βcells ultrastructure was measured by transmission electron microcopy. In addition, mRNA levels of Pdx-1、insulin、glucagon、Atf4、Atf6、Bip and Ucp2 and protein levels of PDX-1 and p-PERK in pancretic tissue were determined at weaning. Results:DEHP exposed offspring had lower pancreas weight and pancreatic insulin content than controls at weaning. Abnormalβcells untrastructure, characterized as hypertrophic rough endoplasmic reticulum, swollen mitochondria, increased proportion of immature and reduced proportion of filled granule, was observed in DEHP-exposed offspring at this time point. All these alterations induced by DEHP corroborates with changes in genes expression in pancreas, such as Pdx-1, insulin, glucagon, Atf4, Atf6, Bip and Ucp2. Moreover, decreased potein levels of PDX-1 and increased potein levels p-PERK were observed in DEHP-exposed offspring. Conclusion:Perinatal exposure to DEHP impairs endocrine pancreas early in life and leads to severe glucometabolic disorders in adult rat offspring.
     PartⅢPerinatal DEHP Exposure in Wistar Rats Offspring Causesβcells Dysfunction at Adulthood
     Objective:In this study, we examined effects of fetal and neonatal exposure to DEHP onβcells structure and function in rat offspring at adulthood. Methods:Pregnant Wistar rats were given corn oil or DEHP (1.25 and 6.25mg/kg/day) via gavage from GD 0 until weaning at PND 21. Offspring were fed a normal diet after weaning and were raised from PND 21 to the age of 27 week. At week 27, pancreas tissue was collected for immunohistochemistry and transmission electron microscopy. Glucose-stimulated insulin secretion ex vivo was measured to evaluateβcells function. Key markers of each apoptotic pathway, such as Bax、Bcl-2、Fas、FasL and casepase-3 were examined in whole pancreas homogenates by Western blotting in female offspring. Results:At week 27, decreased pancreatic insulin content, reduced beta cells mass and area and evident degranulation of beta cells was observed in female DEHP-exposed offspring compared with controls. Diminished ability to secrete insulin in response to Glucose stimulus ex vivo was also observed following developmental DEHP exposure. In males, there was no difference in beta cells mass and area between DEHP treated offspring and controls, but elevated pancreatic insulin content and insulin secretion ex vivo was observed in DEHP treated offspring. Observed defects in P ultrastructure progressively got worse with age, even though DEHP exposure was discontinued at weaning. Importantly, Bax/Bcl-2, Fas, FasL and casepase-3 protein were significantly increased in the DEHP exposed female offspring compared with controls. Conclusion:Perinatal DEHP exposure predisposes offspring to glucose metabolic dysfunction at adulthood, and which was associated withβcells dysfunction and apoptosis.
引文
1. Bosnir J, Puntaric D, Skes I, et al. Migration of phthalates from plastic products to model solutions. Coll. Antropol.2003;27(Suppl 1):23-30.
    2. Casals-Casas C, Desvergne B. Endocrine disruptors:from endocrine to metabolic disruption. Annu Rev Physiol.2010;73:135-162.
    3. Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men:results from the Third National Health and Nutrition Examination Survey (NHANES Ⅲ). Diabetes Care.2007;30:234-238.
    4. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect.2004;112:331-338.
    5. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus:the thrifty phenotype hypothesis. Diabetologia.1992;35:595-601.
    6. Williams CM, Kanagasabai T. Maternal adipose tissue response to nicotine administration in the pregnant rat:effects on fetal body fat and cellularity. Br J Nutr. 1984;51:7-13.
    7. Shiverick KT, Salafia C. Cigarette smoking and pregnancy Ⅰ:ovarian, uterine and placental effects. Placenta.1999;20:265-272.
    8. Oken E, Huh SY, Taveras EM, et al. Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes Res.2005;13:2021-2028.
    9. Holloway AC, Lim GE, Petrik JJ, et al. Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia.2005; 48:2661-2666.
    10. Yao XH, Gregoire Nyomba BL. Abnormal glucose homeostasis in adult female rat offspring after intrauterine ethanol exposure. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1926-1933.
    11. Szeto IM, Aziz A, Das PJ, et al. High multivitamin intake by Wistar rats during pregnancy results in increased food intake and components of the metabolic syndrome in male offspring. Am J Physiol Regul Integr Comp Physiol.2008;295:R575-582.
    12. Alonso-Magdalena P, Vieira E, Soriano S, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect.2010;118:1243-1250.
    13. Colborn T, Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect.1993;101:378-384.
    14. Calafat AM, Brock JW, Silva MJ, et al. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate. Toxicology.2006;217:22-30.
    15. Singh AR, Lawrence WH, Autian J. Maternal-fetal transfer of 14C-di-2- -ethylhexyl phthalate and 14C-diethyl phthalate in rats. J Pharm Sci.1975;64:1347-1350.
    16. Boas M, Frederiksen H, Feldt-Rasmussen U, et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect.2010;118:1458-1464.
    17. Koch HM, Becker K, Wittassek M, et al. Di-n-butylphthalate and butylbenzylphthalate-urinary metabolite levels and estimated daily intakes:pilot study for the German Environmental Survey on children. J Expo Sci Environ Epidemiol.2007;17:378-387.
    18. Green R, Hauser R, Calafat AM, et al. Use of di(2-ethylhexyl) phthalate- -containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ Health Perspect.2005; 113:1222-1225.
    19. Gray LE, Ostby J, Furr J, et al. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci.2000;58:350-365.
    20. Swan SH, Main KM, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect.2005;113:1056-1061.
    21. Maranghi F, Lorenzetti S, Tassinari R, et al. In utero exposure to di-(2-ethylhexyl) phthalate affects liver morphology and metabolism in post-natal CD-1 mice. Reprod Toxicol.2010;29:427-432.
    22. Stahlhut RW, Wijngaarden E, Dye TD, et al. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect.2007; 115:876-882.
    23. Gayathri NS, Dhanya CR, Indu AR, et al. Changes in some hormones by low doses of di (2-ethyl hexyl) phthalate (DEHP), a commonly used plasticizer in PVC blood storage bags & medical tubing. Indian J Med Res.2004;119:139-144.
    24. Rengarajan S, Parthasarathy C, Anitha M, et al. Diethylhexyl phthalate impairs insulin binding and glucose oxidation in Chang liver cells. Toxicol In Vitro.2007; 21:99-102.
    25. Calafat AM, Slakman AR, Silva MJ, et al. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B Analyt Technol Biomed Life Sci.2004; 805(1):49-56.
    26. Latini G, De Felice C, Presta G, et al. Exposure to di(2-ethylhexyl)phthalate in humans during pregnancy. A preliminary report. Biol Neonate.2003a;83(1):22-24.
    27. Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect.2003b;111:1783-1785.
    28. Main KM, Mortensen GK, Kaleva MM, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect.2006; 114:270-276.
    29. Arcadi FA, Costa C, Imperatore C, et al. Oral toxicity of bis(2-ethylhexyl) phthalate during pregnancy and suckling in the Long-Evans rat. Food Chem Toxicol.1998 36:963-970.
    30. Foster PM, Mylchreest E, Gaido KW, et al. Effects of phthalate esters on the developing reproductive tract of male rats. Hum Reprod Update.2001;7:231-235.
    31. Moore RW, Rudy TA, Lin TM, et al. Abnormalities of sexual development in male rats with in utero and lactational exposure to the antiandrogenic plasticizer di(2-ethylhexyl) phthalate. Environ Health Perspect.2001; 109:229-237.
    32. Tandon R, Seth PK, Srivastava SP. Effect of in utero exposure to di(2-ethylhexyl) phthalate on rat testes. Indian J Exp Biol.1991;29:1044-1046.
    33. Akingbemi BT, Youker RT, Sottas CM, et al. Modulation of rat Leydig cell steroidogenic function by di(2-ethylhexyl)phthalate. Biol Reprod.2001;65:1252-1259.
    34. Wong JS, Gill SS. Gene expression changes induced in mouse liver by di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol.2002; 185:180-196.
    35. Calafat AM, Slakman AR, Silva MJ, et al. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B Analyt Technol Biomed Life Sci.2004;805(1):49-56.
    36. Mortensen GK, Main KM, Andersson AM, et al. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem.2005;382(4):1084-1092.
    37. Sorensen LK. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2006;20(7):1135-1143.
    38. Kavlock R, Barr D, Boekelheide K, et al. NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol.2006;22:291-399.
    39. Loff S, Kabs F, Witt K, et al. Polyvinylchloride infusion lines expose infants to large amounts of toxic plasticizers. J Pediatr Surg.2000;35:1775-1781.
    40. Christiansen S, Boberg J, Axelstad M, et al. Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reprod Toxicol. 2010;30:313-321.
    41. Somm E, Schwitzgebel VM, Vauthay DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology.2008; 149:6289-6299.
    42. Tornheim K. Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes,1997; 46(9):1375-1383.
    43. Kahn, Steven. The importance of β-cell failure in the development and progresson of type 2 diabetes. J Clin Endocrinol Metab,2001;86(9):4047-4052.
    44. Chen SQ, Chen JN, Cai XH, et al. Perinatal exposure to di-(2-ethylhexyl) phthalate leads to restricted growth and delayed lung maturation in newborn rats. J Perinat Med. 2010;38:515-521.
    45. Tanida T, Warita K, Ishihara K, et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action:mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol Lett.2009; 189:40-47.
    46. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes.2001;50:2279-2286.
    47. Barker DJ, Hales CN, Fall CH, et al. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X):relation to reduced fetal growth. Diabetologia.1993;36:62-67.
    48. Rich-Edwards JW, Colditz GA, Stampfer MJ, et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann Intern Med.1999; 130:278-284.
    49. Cherif H, Reusens B, Dahri S, et al. A Protein-restrieted diet during Pregnancy alters in vitro insulin secretion from islets of foetal Westar rats. J Nutr.2001; 131(5):1555-1559.
    50. Scaqlia L, Cahill CJ, Finegood DT, et al. Apoptosis participates in the remodeling of the endocring Pancreas in the neonatal rat. Endoerinology.1997;138(4):1736-1741.
    1. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature.2001;414:782-787.
    2. Bhatnagar A. Could dirty air cause diabetes? Circulation.2009; 119:492-494.
    3. Hectors TL, Vanparys C, Martens GA, et al. Environmental pollutants and type 2 diabetes:a review of mechanisms that can disrupt beta cell function. Diabetologia.2011; Mar 27. [Epub ahead of print]
    4. Casals-Casas C, Desvergne B. Endocrine disruptors:from endocrine to metabolic disruption. Annu Rev Physiol.2010;73:135-162.
    5. Lang IA, Galloway TS, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. Jama. 2008;300:1303-1310.
    6. Alonso-Magdalena P, Vieira E, Soriano S, et al. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ Health Perspect.2010;118:1243-1250.
    7. Somm E, Schwitzgebel VM, Toulotte A, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect.2009;117:1549-1555.
    8. Wang SL, Tsai PC, Yang CY, et al. Increased risk of diabetes and polychlorinated biphenyls and dioxins:a 24-year follow-up study of the Yucheng cohort. Diabetes Care. 2008;31:1574-1579.
    9. Stahlhut RW, van Wijngaarden E, Dye TD, et al. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect.2007; 115:876-882,.
    10. Park SK, Son HK, Lee SK, et al. Relationship between serum concentrations of organochlorine pesticides and metabolic syndrome among non-diabetic adults. J Prev Med Public Health.2010;43:1-8.
    11. Lin Y, Sun Z. Current views on type 2 diabetes. J Endocrinol.2010;204:1-11.
    12. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia.2003; 46:3-19.
    13. Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev.2008;9:193-205.
    14. Gayathri NS, Dhanya CR, Indu AR, et al. Changes in some hormones by low doses of di (2-ethyl hexyl) phthalate (DEHP), a commonly used plasticizer in PVC blood storage bags & medical tubing. Indian J Med Res.2004;119:139-144.
    15. Kahn, Steven. The importance of β-cell failure in the development and progresson of type 2 diabetes. J Clin Endocrinol Metab.2001;86(9):4047-4052.
    16. Ozanne, S. E., and Hales, C. N. Early programming of glucose-insulin metabolism. Trends Endocrinol Metab.2002;13,368-73.
    17. Ahlgren, U., Jonsson, J. and Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development.1996;122:1409-1416.
    18. Jonsson J, Carlsson L, Edlund T, et al. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature.1994;371:606-609.
    19. Jonsson J, Ahlgren U, Edlund T, et al. IPF1, a homeodomain protein with a dual function in pancreas development. Int. J. Dev. Biol.1995;39:789-798.
    20. Zhao L, Guo M, Matsuoka TA, et al. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem.2005;280(12):11887-11894.
    21. Hamlon JS, Stein R, Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cell. J Biol Chem.2005;280(12):11107-11113.
    22. Zhao L, Guo M, Matsuoka TA, et al. The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription. J Biol Chem.2005; 280(12):11887-11894.
    23. Brissova M, Shiota M, Nicholson WE, Gannon M, Knobel SM, Piston DW, Wright CV, Powers AC. Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem.2002;277:11225-11232.
    24. Nedergaard J, Cannon B. The'novel''uncoupling'Proteins UCP2 and UCP3 what do they really do? Pros and cons for suggested functions. ExP Physio.2003;88:65-84.
    25. Mattiasson G, Sullivan PG. The emerging functions of UCP2 in health, disease, and therapeutics. Antioxid Redox Signal.2006;8:1-38.
    26. Chan CB, De Leo D, Joseph W, et al. Increased uncoupling protein-2 levels in β-cells associated with impaired glucosestimulated insulins secretion mechanism of action. Diabetes.2001;50 (6):1302-1310.
    27. Knauf C, Cani PD, Ait-Belgnaoui A, et al. Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-induced insulin resistance and reduces energy expenditure. Endocrinology.2008;149:4768-4777.
    28. Laybutt DR, Sharma A, Sgroi DC, et al. Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem.2002; 277:10912-10921
    29. Ma Y, Hendershot LM. The unfolding tale of the unfolded protein response. Cell. 2001;107(7):827-830.
    30. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, et al. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol. 2002;3(6):411-421.
    31. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev.2008;29(1):42-61.
    32. Muoio DM, Newgard CB. Mechanisms of disease:molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev MolCell Biol.2008; 9(3):193-205
    33. Harding HP, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell.2001;7:1153-1163.
    34. Kobayashi T, Ogawa S, Yura T, et al. Abundant expression of 150-kDa oxygen-regulated protein in mouse pancreatic beta cells is correlated with insulin secretion. Biochem Biophys Res Commun.2000; 267:831-837.
    35. Elouil H, Bensellam M, Guiot Y, et al. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia.2007; 50:1442-1452.
    36. Lipson KL, Fonseca SG, Urano F. Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr Mol Med 2006; 6:71-7.
    37. Zhang K, Kaufman R J. From endoplasmic-reticulum stress to the inflammatory response. Nature.2008;454:455-462.
    38. Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol.2000;2:326-332.
    39. Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell.2002;3:99-111.
    40. Harding HP, Zhang Y, Bertolotti A, et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell.2000; 5:897-904.
    41. Seo HY, Kim YD, Lee KM, et al. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases insulin gene expression via upregulation of orphan nuclear receptor small heterodimer partner. Endocrinology.2008; 149:3832-3841.
    42. Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet.2000; 25:406-409.
    43. Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to b-cell failure. Journal of Biological Chemistry.2005; 280:28785-28791.
    44. Park JH, Stoffers DA, Nicholls RD, et al. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdxl. J Clin Invest.2008; 118:2316-2324.
    45. Garofano A, Czernichow P, Breant B. In utero under nutrition impairs rat β-cell development. Diabetologia.1997;40:1231-1234.
    46. Garofano A, Czernichow P, Breant B. β-Cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia.1998a;41:1114-1120.
    47. Dumortier O, Blondeau B, Duvillie B, et al. Different mechanisms operating during different critical time-windows reduce rat fetal β-Cell mass due to a maternal low-protein or low-energy diet. Diabetologia.2007;50:2495-2503.
    1. Amos AF, MeCarty DJ, Zimmet P. The rising global burden of diabetes and its complications:estimates and Projections to the year 2010. Diabet Med.1997; 14 (Suppl 5):1-85.
    2. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med.2010;362:1090-1101.
    3. Weyer C, Tataranni PA, Bogardus C, et al. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care.2001;24:89-94.
    4. Efanova IB, Zaitsev SV, Zhivotovsky B, et al. Glucose and tolbutamide induce apoptosis in panereatic beta-cells:a process dependent on intracellular Ca2+ concentration. J Biol Chem.1998;273:33501-33507.
    5. Kahn SE. the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab.2001;86:4047-4058.
    6. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in panereatic-islets compared with various other mouse tissues. Free Radic B, 1996;20:463-466.
    7. Bruin J E, Kellenberger LD, Gerstein HC, et al. Fetal and neonatal nicotine exposure and postnatal glucose homeostasis:Identifying critical windows of exposure. J Endocrinol.2007; 194:171-178.
    8. Montgomery SM, Ekbom A. Smoking during pregnancy and diabetes mellitus in a British longitudinal birth cohort. BMJ.2002;324(7328):26-27.
    9. Rosse T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-indueed release of cytochrome c. Natuer.1998;391(6666):496-499.
    10. Jesmin S, Zaedi S, Yamaguehi N, et al. Effeets of dual endothelin receptor antagonist on antiapoptotic marker Bcl-2 expression in streptozotocin-induced diabetic rats.ExP Biol Med(Maywood).2006;231(6):1034-1039
    11. Donath MY, Halban PA. Decreased β-cell mass in diabetes:significance, mechanisms and therapeutic implications. Diabetologia.2004;47:581-589.
    12. Rhodes CJ. Type 2 diabetes-a matter of β-cell life and death? Science.2005;307: 380-384.
    13. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia.2003;46(1):3-19.
    14. Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res.2005; 36(3): 197-209.
    15. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes.2003;52(1):102-110.
    16. Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type Ⅱ diabetic patients. Diabetologia.2002;45(1):85-96.
    17. Yoon KH, Ko SH, Cho JH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab.2003;88(5): 2300-2308.
    18. Butler AE, Janson J, Bonner-Weir S,et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes.2003;52(1):102-110.
    19. Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab. 2000;11(9):375-378.
    20. Bouwens L, Kloppel G. Islet cell neogenesis in the pancreas. Virchows Arch.1996; 427(6):553-560.
    21. Weir GC, Laybutt DR, Kaneto H, et al. Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes.2001;50(Suppl 1):S154-159.
    22. Dickson LM, Rhodes CJ. Pancreatic beta-cell growth and survival in the onset of type 2 diabetes:a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab. 2004;287(2):E192-198.
    23. Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes.1995;44(3):249-256.
    24. Dor Y, Brown J, Martinez OI, et al. Adult pancreatic beta-cells are formed by selduplication rather than stem-cell differentiation. Nature.2004; 429(6987):41-46.
    25. Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest.2004;114(7):963-968.
    26. Lingohr MK, Buettner R, Rhodes CJ. Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes? Trends Mol Med.2002;8(8):375-384.
    27. Bonner-Weir S. Perspective:Postnatal pancreatic beta cell growth. Endocrinology. 2000;141(6):1926-1929.
    28. Unger RH, Orci L. Diseases of liporegulation:new perspective on obesity and related disorders. FASEB J.2001;15(2):312-321.
    29. Pick A, Clark J, Kubstrup C, et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes.1998;47(3):358-364.
    30. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384-387.
    31. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:A dawn for evolutionary medicine. Annu. Rev. Genet.2005;39:359-407.
    32. Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92(1):57-70.
    33. Timmer T, Vries EG JS. Fas receptor-mediated apoptosis:A clinical application? J. Pathol.2002;96(2):125-134.
    34. DNutt L, Chnadra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem.2002b;277:20301-20308.
    35. Nutt L, Paaer A, Pahler Jet al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem.2002a;277: 9219-9225.
    36. Zong W, LI C, HaZtivassiliou G, et al. Bax and Bak can localize To the endoplasmic reticulum to initiate apoptosis. J Cell Biol.2003;162:59-69.
    37. Del Guerra S, Lupi R, Marselli L, et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes.2005;54(3):727-735.
    38. MacDonald PE, Joseph JW, Rorsman P. Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci.2005;360(1464):2211-2225.
    39. Silva JP, Kohler M, Graff C, et al. Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet.2000;26(3): 336-340.
    40. Silva JP, Larsson NG. Manipulation of mitochondrial DNA gene expression in the mouse. Biochim Biophys Acta.2002; 1555(1-3):106-110.
    41. Simmons RA, Suponitsky-Kroyter I, Selak MA. Progressive accumulation of mitochondrial DNA mutations and decline in mitochondrial function lead to beta-cell failure. J Biol Chem.2005;280(31):28785-28791.
    42. Anello M, Lupi R, Spampinato D, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 20054;8(2):282-289.
    1. Oie L, Hersoug LG, Madsen JO. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ Health Perspect.1997; 105:972-978.
    2. Bomehag CG, Lundgren B, Weschler CJ, et al. Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect.2005; 113: 1399-1404.
    3. StaPles CA, Peterson DR, Parkerton TF, et al. The environmental fate of Phthalate esters:a literature review. Chemosphere.1997;35:667-749.
    4. Teil MJ, Blanehard M, Chevreuil M. Atmospheric fate of Phthalate esters in an urban area (Paris-France).Sci Total Environ.2006; 354(2-3):212-223.
    5. Mihovce-Grdic M, Smit Z, Puntaric D, et al. Phthalates in Underground waters of the Zagreb area. Croat Med J.2002;43(4):493-497.
    6. Fromme H, Kqchler T, Otto T, et al. Occurrence of bisphenol A and F in the environment. Water Res.2002;36:1429-1438.
    7. Bosnir J, Puntaric D, Skes I, et al. Migration of phthalates from plastic products to model solutions. Coll. Antropol.2003;27(Suppl 1):23-30.
    8. Subotie U, Haunmann T, et al. Extraction of the Plasticizers diethylhexyl phthalate and Polyadipate from Polyvinylchloride nasogastric tubes through gastric juice and feeding solution. Pediatr Gastroenterol Nurt.2007;44(1):71-76.
    9. Barry YA, Labow RS, Keon WJ, et al. Perioperative exposure to plasticizers in patients undergoing cardiopulmonary by-pass. J Thorac Cardiovasc Surg.1989;97(6):900-905.
    10. Plonait SL, Nau H, Maier RF, et al. Exposure of newborn infants to di-(ethylhexyl)-phthalate and 2-ethylhexanoic acid following exchange transfusion with polyvinylch-loride catheters. Transfusion.1993;33:598-605.
    11. Sjoberg P, Bondesson UG, Sedin EG, et al.. Exposure of newborn infants to plasticizers. Plasma levels of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate during exchange transfusion. Transfusion.1985a;25:424-428.
    12. Sjoberg P, Bondesson U, Sedin G, at al. Dispositions of di- and mono-(2-ethylhexyl) phthalate in newborn infants subjected to exchange transfusions. Eur J Clin Invest. 1985b;15:430-436
    13. Shneider B, Schena J, Truog R, et al. Exposure to di(2-ethylhexyl)phthalate in infants receiving extracorporeal membrane oxygenation. N Engl J Med.1989;320(23):1563.
    14. Karle VA, Short BL, Martin GR, et al. Extracorporeal membrane oxygenation exposes infants to the plasticizer, di(2-ethylhexyl)phthalate. Crit Care Med.1997;25(4): 696-703.
    15. X Petersen JH, Breindahl T. Plasticizers in total diet samples, baby food and infant formulae. Food Addit Contam.2000;17(2):133-141
    16. Y Ozaki A, Yamaguchi T, Okamoto A, et al. Determination of alkylphenols, bisphenol A, benzophenone and phthalates in containers of baby food, and migration into food simulants. Shokuhin Eiseigaku Zasshi.2002;43(4):260-266.
    17. Niino T, Ishibashi T, Ishiwata H, et al. Characterization of human salivary esterase in enzymatic hydrolysis of phthalate esters. J Health Sci.2003;49:76-81
    18. Niino T, Ishibashi T, Itho T, et al. Monoester formation by hydrolysis of dialkyl phthalate migrating from polyvinyl chloride products in human saliva. J Health Sci. 2001;47:318-322.
    19. Albro PW, Corbett JT, Schroeder JL, et al. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect.1982;45:19-25.
    20. Albro PW, Thomas RO. Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases. Biochim Biophys Acta.1973; 306:380-390.
    21. Daniel JW, Bratt H. The absorption, metabolism and tissue distribution of di(2-ethylhexyl)phthalate in rats. Toxicology.1974;2:51-65.
    22. Albro PW. Absorption, metabolism, and excretion of di(2-ethylhexyl) phthalate by rats and mice. Environ Health Perspect.1986;65:293-298.
    23. Albro PW. The metabolism of 2-ethylhexanol in rats. Xenobiotica.1975; 5:625-636.
    24. Wahl HG, Hong Q, Stube D, et aj. Simultaneous analysis of the di(2-ethylhexyl) phthalate metabolites 2-ethylhexanoic acid,2-ethyl-3- hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl.2001; 758:213-9.
    25. Wahl HG, Hong Q, Hildenbrand S, et al.4-Heptanone is a metabolite of the plasticizer di(2-ethylhexyl) phthalate (DEHP) in haemodialysis patients. Nephrol Dial Transpl. 2004;19:2576-2583.
    26. Albro PW, Tondeur I, Marbury D, et al. Polar metabolites of di-(2- ethylhexyl)phthalate in the rat. Biochim Biophys Acta.1983;760:283-292.
    27. Peck CC, Albro PW. Toxic potential of the plasticizer Di(2-ethylhexyl) phthalate in the context of its disposition and metabolism in primates and man. Environ Health Perspect 1982;45:11-17.
    28. Schmid P, Schlatter C. Excretion and metabolism of di(2-ethylhexyl)phthalate in man.Xenobiotica 1985; 15:251-256.
    29. ECB (European Chemical Bureau). European Union Risk Assessment Report for Bis(2-ethylhexyl) phthalate. Consolidated Final Report 2004.
    30. Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol 2004b; 78:123-130.
    31. Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl) phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol.2005a;79:367-376.
    32. Silva MJ, Kato K, Wolf C, et al. Urinary biomarkers of di-isononyl phthalate in rats. Toxicology.2006a;223:101-112.
    33. Rhodes C, Elcombe CR, Batten PL, et al. The disposition of 14C-di-2-ethylhexy-lphthalate (DEHP) in the marmoset. Dev Toxicol Environ Sci.1983;11:579-581.
    34. Rhodes C, Orton TC, Pratt IS, et al. Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl) phthalate (DEHP) in rats and marmosets:extrapola- tion of effects in rodents to man. Environ Health Perspect.1986;65:299-307.
    35. Preuss R, Koch HM, Angerer J. Biological monitoring of the five major metabo- lites of di-(2-ethylhexyl)phthalate (DEHP) in human urine using column-switc- hing liquid chromatographytandem mass spectrometry. J Chromatogr B Analy Technol Biomed Life Sci.2005; 816:269-280.
    36. Silva MJ, Reidy JA, Preau JL, et al. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environ Health Perspect.2006b; 114:1158-1161.
    37. Koch HM, Angerer J, Drexler H, et al. Di(2-ethylhexyl)phthalate (DEHP) exposure of voluntary plasma and platelet donors. Int J Hyg Environ Health 2005b;208:489-98.
    38. Albro PW, Hass JR, Peck CC, et al. Identification of the metabolites of di-(2-ethylhexyl) phthalate in urine from the African green monkey. Drug Metab Dispos.1981;3:223-225
    39. Egestad B, Green G, Sjoberg P, et al. Chromatographic fractionation and analysis by mass spectrometry of conjugated metabolites of bis(2-ethylhexyl)phthalate in urine. J Chromatogr B Biomed Appl.1996;677:99-109.
    40. Kluwe WM. Overview of phthalate ester pharmacokinetics in mammalian species. Environ Health Perspect.1982;45:3-9.
    41. Calafat AM, Brock JW, Silva MJ, Gray LE Jr, Reidy JA, Barr DB, et al. Urinary and amniotic fluid levels of phthalate monoesters in rats after the oral administration of di(2-ethylhexyl) phthalate and di-n-butyl phthalate. Toxicology.2006; 217:22-30.
    42. Bronsch CJT. Untersuchungen zur Exposition und zum renal en Aussch-eidungsverhalten des Kunststoffweichmachers di-(2-ethylhexyl)phthalat (DEHP) beim Menschen. Dissertation No.8459. Eidgenoessische Technische Hochschule, Zuerich, Switzerland.1987.
    43. Dirven HA, Broek PH, Jongeneelen FJ. Determination of four metabolites of the plasticizer di(2-ethylhexyl)phthalate in human urine samples. Int Arch Occup Environ Health.1993; 64:555-560.
    44. Silva MJ, Reidy JA, Preau JL Jr, et al. Oxidative metabolites of diisononyl phthalate as biomarkers for human exposure assessment. Environ Health Perspect.2006b; 114:1158-1161.
    45. Gaunt IF, Butterworth KR. Autoradiographic study of orally administered di-(2-ethylhexyl) phthalate in the mouse. Food Chem Toxicol.1982; 20:215-217.
    46. Pollack GM, Buchanan JF, Slaughter RL, et al. Circulating concentrations of di(2-ethylhexyl) phthalate and its de-esterified phthalic acid products following plasticizer exposure in patients receiving hemodialysis. Toxicol Appl Pharmacol.1985a; 79:257-267.
    47. Dostal LA, Weaver RP, Schwetz BA. Transfer of di(2-ethylhexyl) phthalate through rat milk and effects on milk composition and the mammary gland. Toxicol Appl Pharmacol.1987;91:315-325.
    48. Parmar D, Srivastava SP, Seth PK. Hepatic mixed function oxidases and cytochrome P-450 contents in rat pups exposed to di-(2-ethylhexyl)phthalate through mother's milk. Drug Metab Dispos.1985; 13:368-370.
    49. Calafat AM, Slakman AR, Silva MJ, et al. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2004b; 805:49-56.
    50. Mortensen GK, Main KM, Andersson AM, et al. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal Bioanal Chem.2005; 382:1084-1092.
    51.Zhu J, Phillips SP, Feng YL, et al. Phthalate esters in human milk:concentration variations over a 6-month postpartum time. Environ Sci Technol.2006;40:5276-5281.
    52. Lindgren A, Lindquist NG, Lyden A, et al. A whole body autoradiographic study on the distribution of 14C-labelled di-(2- ethylhexyl)phthalate in mice. Toxicology.1982; 23:149-158.
    53. Singh AR, Lawrence WH, Autian J. Maternal-fetal transfer of 14C-di-2-ethylhexyl phthalate and 14C-diethyl phthalate in rats. J Pharm Sci.1975; 64:1347-50.
    54. Srivastava S, Awasthi VK, Srivastava SP, et al. Biochemical alterations in rat fetal liver following in utero exposure to di(2-ethylhexyl)phthalate (DEHP). Indian J Exp Biol. 1989;27:885-888.
    55. Wester RC, Melendres J, Sedik L, et al. Percutaneous absorption of salicylic acid, theophylline,2,4-dimethylamine, diethyl hexyl phthalic acid, and p-am-inobenzoic acid in the isolated perfused porcine skin flap compared to man in vivo. Toxicol Appl Pharmacol.1998,151:159-165.
    56. Elsisi AE, Carter DE, Sipes IG. Dermal absorption of phthalate diesters in rats. Fundam Appl Toxicol 1989; 12:70-7.
    57. Melnick RL, Morrissey RE, Tomaszewski KE. Studies by the National Toxicology Program on di(2-ethylhexyl)phthalate. Toxicol Ind Health.1987; 3:99-118.
    58. Barber ED, Topping DC. Subchronic 90-day oral toxicology of di(2-ethylhexyl) terephthalate in the rat. Food Chem Toxicol.1995;33(11):971-978.
    59. Scott RC, Dugard PH, Ramsey JD, et al. In vitro absorption of some o-phthalate diesters through human and rat skin. Environ Health Perspect.1987;74:223-227.
    60. Koch HM, Drexler H, Angerer J. Internal exposure of nursery-school children and their parents and teachers to di(2-ethylhexyl)phthalate (DEHP). Int J Hyg Environ Health. 2004a;207:15-22.
    61. Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, et al. DEHP metabolites in urine of children and DEHP in house dust. Int J Hyg Environ Health. 2004;207:409-417.
    62. Koch HM, Preuss R, Angerer J. Di(2-ethylhexyl)phthalate (DEHP):human metabolism and internal exposure -an update and latest results. Int J Androl.2006; 29:155-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700