碳纳米管—双马来酰亚胺体系的摩擦磨损研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术和生产的发展,不断对材料提出新的要求,以满足航空航天、电子信息、核能等高新技术领域的需要。双马来酰亚胺树脂这种高比强、高比模、高绝缘、耐高温和耐腐蚀,能在恶劣环境中长期使用的高性能树脂是满足这些日益发展的新需求的先进树脂,然而针对其在使用过程中的损耗和失效所开展的摩擦磨损以及润滑的研究甚为不足。本文正对双马来酰亚胺树脂的这种情况,提出了在两种减小摩擦磨损实现润滑的方案:方案一,直接制备双马来酰亚胺纳米复合材料实现复合材料的固体纳米润滑;方案二,在双马来酰亚胺和金属对磨材料的接触表面添加纳米润滑微乳,减轻摩擦磨损。
     首先,利用碳纳米管优良的热性能、力学性能以及润滑特性,结合双马来酰亚胺树脂的先进性,制备性能优异的MWCNTs/BMI纳米复合材料降低材料的摩擦磨损。为了进一步研究影响该纳米复合材料的摩擦磨损的因素以实现磨损的最大化降低,并排除环境因素(如温度、湿度等)的影响,通过实验设计,探究了影响材料摩擦磨损的几个重要因素。
     通过采用不同的长径比的碳纳米管制备MWCNTs/BMI纳米复合材料发现,碳纳米管本身的结构会对所制备的复合材料的摩擦磨损产生影响,长径比大的碳纳米管所制备的复合材料具有较低的摩擦系数和磨损率;然而碳纳米管长径比变化对材料的摩擦磨损带来的影响却远不如碳纳米管带有官能团所带来的影响。当对碳纳米管实现胺基化的时候,碳纳米管本身管状结构遭到破坏,所制备的复合材料的摩擦系数会降低。
     MWCNTs/BMI纳米复合材料的摩擦磨损特性还跟加入碳纳米管之后引起的树脂交联度的变化有关,当碳纳米管表面上带有羧基时会加速复合材料的固化,进而加大树脂的交联度。这种对树脂的强化对提高整个复合材料的摩擦磨损也是有利的。
     在保持其他条件相同的情况下,通过对碳纳米管的改性来增强MWCNTs/BMI复合材料的界面是降低该复合材料的摩擦磨损最为显著和有效的手段。用烯丙基双酚A改性后的碳纳米管制备的纳米复合材料,在树脂中分散状态最佳,而且与树脂的界面粘接强度最大,该复合材料的摩擦系数比添加纯碳纳米管制备的复合材料降低了四分之三,磨损率降低了二分之一,达到几种改性碳纳米管/BMI树脂的摩擦磨损的最佳值。
     利用场发射扫描电子显微镜(FESEM),动态力学分析(DMA)等手段对MWCNTs/BMI复合材料的摩擦磨损表面及机理分析发现,改变以上提到的各因素会改变磨损表面的形貌,而其中界面因素对磨损形貌的影响最大。加入纯碳纳米管可以使树脂磨损表面形貌由存在众多裂纹的波纹状疲劳磨损形貌向表面有碾痕的粘着磨损过渡,加入改性后的碳管后磨损表面显得平滑,很多时候都显示微磨粒磨损的形貌。而且当复合材料的磨损形貌为微磨粒磨损的时候,其磨损率和材料的显微硬度之间存在如下线性关系:dm/dl=-0.01498+0.0059/H。也就是说,当复合材料的磨损机理为微磨粒磨损机理的时候,材料的显微硬度可以成为磨损率的简易判据:硬度越大的复合材料一般磨损率越低,越耐磨。
     其次,通过在石蜡油中添加硬脂酸改性碳纳米管形成稳定均一的分散,明显地减小所润滑的双马来酰亚胺对磨钢球体系的摩擦系数,减小钢球在双马来酰亚胺表面形成的磨痕的宽度和深度。改性后的碳纳米管在摩擦表面起到微轴承的作用,从而减小了摩擦磨损,但是发现少量碳纳米管会锲入树脂表面,对树脂表面造成微划伤。
     为了减小这种微划痕,用水解后的苯乙烯-马来酸酐共聚物改性碳纳米管,使碳纳米管形成以力学强度大并且热稳定性高的碳纳米管为核,以高分子聚合物软层为壳的结构,并且呈球形分散在石蜡油中。这种碳纳米管表面的高分子软层在较小添加浓度和较低接触表面温度的时候,能够和钢球表面作用形成保护膜,从而降低摩擦磨损;然而在较高的添加浓度的时候,在钢球表面形成吸附膜剩余的碳纳米管在摩擦力的长期作用下,由于其表面高分子软层的存在,易与树脂表面形成吸附,反而会加速树脂表面的降解与缺陷的形成,使摩擦磨损性能变差。
Bismaleimide (BMI) is a kind of high-performance resin with high specific strength, high specific modulus ratio, excellent insulation and good heat resistance to and good anti-corrosion, which meets the new needs in the fields of aviation and astronavigation, electronic devices and also nuclear industry. However, the tribological study of this kind of resin is quite scarce, which is related with the final loss and failure of the material. In order to impeove this properties of BMI resin, two schemes are proposed to reduce the friction and wear of the resin:firstly, prepare bismaleimide nanocomposite solid lubricant to realize lubrication in nano-scale; secondly, add nano-lubricant into the contacting surface between BMI resin and the anti-wear metal to reduce friction and wear of the system.
     Firstly, combining the excellent thermal, mechanical and also lubricating properties of carbon nanotube with the wonderful properties of advanced BMI resin, MWCNTs/BMI nanocomposite has been prepared in order to reduce friction and wear of the material. For the further study of this nanocomposite to reduce friction and wear of the material, excluding the environmental effects (such as temperature and humidity), several main factors have been found out and studied.
     Using carbon nanotubes with different slenderness ratios to prepare MWCNTs/BMI nanocomposite, it is found that nanocomposite using MWCNTs with larger slenderness ratio processes lower friction coefficient and wear rate. However, the effect of the slenderness ratio of MWCNTs on the friction and wear of the composite is far less than the effect of functional groups attached to MWCNTs. When carbon nanotubes are aminated, the tubular structure is damaged and the friction coefficient decreases.
     The friction and wear of MWCNTs/BMI nanocomposite is also related with the crosslinking degree of the resin matrix. When carboxyl groups are attached to carbon nanotubes, the carboxyl groups can accelerate the curing of the resin and increase the crosslinking degree of the resin. And this kind of strengthening for the matrix is favored by the reduce of the friction and wear of the composite.
     With everything under the same circumatance, it is the most efficient method to improve the tribological properties of MWCNTs/BMI nanocomposite through improving the interface of the composite. Nanocomposite prepared with allyl bisphenol A modified carbon nanotube shows the best tribological properties with only one quarter of friction coefficient and one half of wear loss rate to the composite with unmodified carbon nanotube, which is related with the best dispersing state and best interfacial adhesion.
     Field emission scanning electronic microscope (FESEM) and dynamic mechanic analysis (DMA) are adopted to analyze the worn surface and wear mechanism of the composite. The factors mentioned above will all affect the worn surface of the material but the interfacial factor plays the key part. The addition of original carbon nanotube into the BMI resin can change the fatigue mechanism of the pure BMI resin with large numbers of cracks and flaws to adhesive mechanism with many roll marks. The addition of modified carbon nanotube into the BMI resin can change the mechanism to abrasive wear mechanism with regular straight grooves on the worn surface. When the worn mechanism meets the mechanism of abrasive wear mechanism, the relationship between wear rate and microhardness is as follows: dm/dl=-0.01498+0.0059/H, which means the microhardness can be the simple criterion of wear loss rate:the higher the microhardness, the lower the wear loss rate and also the better wear resistance of the material.
     Secondly, stearinic acid modified carbon nanotube dispersed in parafin oil can form the uniform lubricant between the BMI resin and steel anti-wear system. The friction coefficient is reduced significantly and the width and depth of the worn mark are also decreased. The modified carbon nanotube displays the effect of micro-bearings on the contact surface to reduce friction and wear. However, small amount of carbon nanotubes are found to insert into the surface of the resin and micro scratches are formed.
     In order to reduce these micro scratches on the worn surface, hydrolyzed styrene-maleic anhydride co-polymers are used to modify carbon nanotubes with tough carbon nanotubes as core and soft polymer as shell and dispersed in paraffin oil in spheral shape. This core-shell structured carbon nanotube can reduce the friction and wear of the system at low concentration and low contact temperature for the protecting film formed on the steel ball. However, at high carbon nantube concentration, the residue carbon nanotube with polymer soft shell interacts with the BMI resin, which will accelerate the formation of defects of the surface and deteriorate the friction and wear of the system.
引文
1. 温诗铸,黄平.摩擦学原理:清华大学出版社.2002.
    2. 肖祥麟.摩擦学导论:同济大学出版社.1990.
    3. B.布尚,摩擦学导论,北京.
    4. 美,B. Bhushan,葛世容译,摩擦学导论.2006,北京:机械T业出版社.
    5. E. Rabinowicz, A. Mutis. Effect of abrasive particle size on wear. Wear.1965,8(5): 381-390.
    6. B. Bhushan, P. L. Ko. Introduction to tribology. Applied Mechanics Reviews.2003,56:B6.
    7. I. V. Kragelskii. Friction and wear. Mashinostroenie, Moscow.1968,2.
    8. H. Czichos. Introduction to friction and wear. Elsevier Science Publishers B. V., Friction and Wear of Polymer Composites.1986:1-23.
    9. I. M. Hutchings. Tribology:Friction and wear of engineering materials1992.
    10. G. W. Stachowiak, A. W. Batchelor. Engineering tribology:Butterworth-Heinemann Boston. 2001.
    11. B. Bhushan. Tribology issues and opportunities in mems:Kluwer Academic Dordrecht, The Netherlands.1998.
    12. P. J. Blau. Introduction to the special issue on friction test methods for research and applications. Tribology International.2001,34(9):581-583.
    13. H. Aceves, M. Colosimo. An introduction to dynamical friction in stellar systems. American Journal of Physics.2007,75(2):139-147.
    14. A. Domenech, T. Domenech, J. Cebrian. Introduction to the study of rolling friction. American Journal of Physics.1987,55(3):231-235.
    15. J. G. Gimenez, A. Alonso, E. Gomez. Introduction of a friction coefficient dependent on the slip in the fastsim algorithm. Vehicle System Dynamics.2005,43(4):233-244.
    16. M. D. Hersey. A short account of the theory of lubrication i-introduction, viscosity and friction. Journal of the Franklin Institute.1935,219:677-702.
    17. J. Larsen-Basse. Introduction to friction. Materials Park, OH:ASM International,1992. 1992:25-26.
    18. T. Sakamoto. Fundamental phenomena-introduction to friction. Journal of Japanese Society of Tribologists.2001,46(4):269-270.
    19. R. D. Arnell, P. B. Davies, J. Halling, et al. Tribology:Principles and design applications. Shock and Vibration.1991.
    20. B. Bhushan. Principles and applications of tribology:Wiley-lnterscience.1999.
    21. H. Czichos. Tribology:A systems approach to the science and technology of friction, lubrication, and wear:Elsevier.1978.
    22. D. Dowson. History of tribology:Addison-Wesley Longman Ltd.1979.
    23. W. A. Glaeser. Materials for tribology:Elsevier.1992.
    24. J. Halling. Principles of tribology:MacMillan.1975.
    25. D. F. Moore. Principles and applications of tribology. Pergamon Press, Oxford, England. 1975,388.1975.
    26. K. C. Ludema. Friction, wear, lubrication:A textbook in tribology:CRC.1996.
    27. J. A. Schey. Tribology in metalworking:Friction, lubrication, and wear. Journal of Applied Metalworking.1984,3(2):173-173.
    28. t. tribology International conference on, N. P. Suh, N. Saka, et al. Fundamentals of tribology: MIT Press Cambridge, MA.1981.
    29. B. Bhushan, B. K. Gupta. Handbook of tribology:McGraw-Hill New York.1991.
    30. B. Bhushan. Modern tribology handbook:CRC.2001.
    31. B. Bhushan, B. K. Gupta. Handbook of tribology:Materials, coatings, and surface treatments:McGraw-Hill New York.1991.
    32. A. M. Homola, J. N. Israelachvili, P. M. McGuiggan, et al. Fundamental experimental studies in tribology:The transition from. Wear.1990,136(1):65-83.
    33. M. Nakada. Trends in engine technology and tribology. Tribology International.1994,27(1): 3-8.
    34.陈娟.不同磨损状态的磨粒特征研究.昆明理工大学.2007.
    35.刘洪志.磨损与磨损可靠性.中国制造业信息化:学术版.2009,38(009):65-67.
    36.杨德华,薛群基.磨损图研究的发展现状与趋势.摩擦学学报.1995,15(003):281-287.
    37.张铁岭,张祖明.表面磨损的类型,机理与测试.北京印刷学院学报.1997.
    38.费斌,蒋庄德.工程粗糙表面粘着磨损的分形学研究.摩擦学学报.1999,19(001):78-82.
    39.高彩桥,刘家浚.材料的粘着磨损与疲劳磨损:机械工业出版社.1989.
    40.马丽心,刘义翔,李文新.粘着磨损及影响因素的研究.哈尔滨商业大学学报(自然科学版).2001,17(1).
    41. T. A. Stolarski. Adhesive wear of lubricated contacts. Tribology International.1979,12(4): 169-179.
    42. A. D. Sarkar. Wear of metals:Pergamon.1976.
    43. P. Sahoo, R. Chowdhury. A fractal analysis of adhesive wear at the contact between rough solids. Wear.2002,253(9-10):924-934.
    44. E. Rabinowicz. The least wear. Wear.1984,100(1-3):533-541.
    45. A. Misra, I. Finnie. On the size effect in abrasive and erosive wear. Wear.1981,65(3): 359-373.
    46. T. Kayaba, K. Kato. The analysis of adhesive wear mechanism by successive observations of the wear process in sem. Wear of Materials.1979:45-56.
    47. G. Ahmadi, X. Xia. A model for mechanical wear and abrasive particle adhesion during the chemical mechanical polishing process. Journal of the electrochemical society.2001,148: G99.
    48. J. F. Archard. Wear theory and mechanisms. Wear Control Handbook.1980:35-80.
    49. J. F. Archard. Friction between metal surfaces. Wear.1986,113(1):3-16.
    50. J. F. Archard, W. Hirst. The wear of metals under unlubricated conditions. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1956:397-410.
    51.仝健民,李明义.材料的冲击磨料磨损耐磨性及其疲劳磨损机制.机械工程材料.1993,17(003):10-12.
    52. M. M. Khruschov. Principles of abrasive wear. Wear.1974,28(1):69-88.
    53. E. Rabinowicz, L. A. Dunn, P. G. Russell. A study of abrasive wear under three-body conditions. Wear.1961,4(5):345-355.
    54. H. Sin, N. Saka, N. P. Suh. Abrasive wear mechanisms and the grit size effect. Wear.1979, 55(1):163-190.
    55. R. I. Trezona, D. N. Allsopp, I. M. Hutchings. Transitions between two-body and three-body abrasive wear:Influence of test conditions in the microscale abrasive wear test. Wear.1999, 225:205-214.
    56. K. L. Rutherford, I. M. Hutchings. A micro-abrasive wear test, with particular application to coated systems. Surface and Coatings Technology.1996,79(1):231-239.
    57. E. Rabinowicz. The determination of the compatibility of metals through static friction tests. Tribology Transactions.1971,14(3):198-205.
    58. E. Rabinowicz. Friction and wear of materials1995.
    59. E. Rabinowicz. Influence of surface energy on friction and wear phenomena. Journal of Applied Physics.1961,32:1440.
    60. E. Rabinowicz, Friction and wear of materials,1965, John Wiley, New York.
    61. I. V. Kraghelsky, E. F. Nepomnyashchi. Fatigue wear under elastic contact conditions. Wear. 1965,8(4):303-319.
    62. J. F. McCabe, A. R. Ogden. The relationship between porosity, compressive fatigue limit and wear in composite resin restorative materials. Dental Materials.1987,3(1):9-12.
    63. V. K. Jain, S. Bahadur. Experimental verification of a fatigue wear equation. Wear.1982, 79(2):241-253.
    64. L. Rozeanu. Fatigue wear as a rate process. Wear.1963,6(5):337-340.
    65.赵国鹏,吴荫顺.腐蚀磨损协同作用率的研究.摩擦学学报.1998,18(002):157-161.
    66.姜晓霞,李诗卓,李曙,金属的腐蚀磨损.2003,北京:化学工业出版社.
    67.张天成,姜晓霞.钝化膜在腐蚀磨损过程中的作用.腐蚀科学与防护技术.1998,10(005):259-262.
    68.姜晓霞,李诗卓.腐蚀磨损的交互作用.化工机械.1991,18(003):18-22.
    69. K. V. Pool, C. K. H. Dharan, I. Finnie. Erosive wear of composite materials. Wear.1986, 107(1):1-12.
    70. K. Friedrich. Erosive wear of polymer surfaces by steel ball blasting. Journal of Materials Science.1986,21(9):3317-3332.
    71. G. W. Stachowiak. Particle angularity and its relationship to abrasive and erosive wear. Wear. 2000,241(2):214-219.
    72. W. Brostow, J. L. Deborde, M. Jaclewicz, et al. Tribology with emphasis on polymers: Friction, scratch resistance and wear. Journal of Materials Education.2003,25(4/6): 119-132.
    73. K. Friedrich, Z. Lu, A. M. Hager. Recent advances in polymer composites'tribology. Wear. 1995,190(2):139-144.
    74. N. K. Myshkin, M. I. Petrokovets, A. V. Kovalev. Tribology of polymers:Adhesion, friction, wear, and mass-transfer. Tribology International.2006,38(11-12):910-921.
    75. E. Santner, H. Czichos. Tribology of polymers. Tribology International.1989,22(2): 103-109.
    76. Y. Yamaguchi, F. E. Kennedy, T. A. Blanchet. Tribology of plastic materials. Journal of Tribology.1991,113:414.
    77. S. W. Zhang. State-of-the-art of polymer tribology. Tribology International.1998,31(1-3): 49-60.
    78. S. K. Biswas, K. Vijayan. Friction and wear of ptfe--a review. Wear.1992,158(1-2): 193-211.
    79. Y. M. Pleskachevsky, V. A. Smurugov. Thermal fluctuations at ptfe friction and transfer. Wear.1997,209(1-2):123-127.
    80. Z. P. Lu, K. Friedrich. On sliding friction and wear of peek and its composites. Wear.1995, 181:624-631.
    81. Y. Yamamoto, M. Hashimoto. Friction and wear of water lubricated peek and pps sliding contacts::Part 2. Composites with carbon or glass fibre. Wear.2004,257(1-2):181-189.
    82. C. G. Long, X. Y. Wang. Mechanical properties and tribology performance of the ekonol-peek composite. Journal of Reinforced Plastics and Composites.2004,23(15): 1575.
    83. J. Le, Z. D. Q. Yulin. Study on friction and wear behaviors of ekonol filled ptfe composites under dry conditions [j]. Lubrication Engineering.2005,5.
    84. H. Unal, A. Mimaroglu. Friction and wear behaviour of unfilled engineering thermoplastics. Materials & Design.2003,24(3):183-187.
    85. J. W. M. Mens, A. W. J. De Gee. Friction and wear behaviour of 18 polymers in contact with steel in environments of air and water. Wear.1991,149(1-2):255-268.
    86. D. H. Gracias, G. A. Somorjai. Continuum force microscopy study of the elastic modulus, hardness and friction of polyethylene and polypropylene surfaces. Macromolecules.1998, 31(4):1269-1276.
    87. C. H. Da Silva, D. K. Tanaka, A. Sinatora. The effect of load and relative humidity on friction coefficient between high density polyethylene on galvanized steel--preliminary results. Wear.1999,225:339-342.
    88. H. E. Katz, Z. Bao. The physical chemistry of organic field-effect transistors. J. Phys. Chem. B.2000,104(4):671-678.
    89. T. A. Blanchet, F. E. Kennedy. Sliding wear mechanism of polytetrafluoroethylene (ptfe) and ptfe composites. Wear.1992,153(1):229-243.
    90. K. R. Makinson, D. Tabor. The friction and transfer of polytetrafluoroethylene. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1964:49-61.
    91. B. J. Briscoe, M. D. Steward, A. J. Groszek. The effect of carbon aspect ratio on the friction and wear of ptfe. Wear.1977,42(1):99-107.
    92. M. Watanabe, H. Yamaguchi. The friction and wear properties of nylon. Wear.1986, 110(3-4):379-388.
    93. M. Watanabe, M. Karasawa, K. Matsubara. The frictional properties of nylon. Wear.1968, 12(3):185-191.
    94. P. E. Dupont, B. Armstrong, V. Hayward. Elasto-plastic friction model:Contact compliance and stiction.2000.
    95. R. L. Fusaro, H. E. Sliney. Lubricating characteristics of polyimide bonded graphite fluoride and polyimide thin films. Tribology Transactions.1973,16(3):189-196.
    96. R. L. Fusaro. Evaluation of several polymer materials for use as solid lubricants in space. Tribology Transactions.1988,31(2):174-181.
    97. R. L. Fusaro. Tribological properties and thermal stability of various types of polyimide films. Tribology Transactions.1982,25(4):465-477.
    98. K. Tanaka, Y. Yamada. Effect of temperature on the friction and wear of some heat-resistant polymers. Polymer wear and its control.1985:103.
    99. K. Miyoshi, D. H. Buckley. Friction and wear of some ferrous-base metallic glasses. Tribology Transactions.1984,27(4):295-304.
    100.李泉,曾广赋.纳米粒子.化学通按.1995(006):29-34.
    101. D. B. Kittelson. Engines and nanoparticles::A review. Journal of Aerosol Science.1998, 29(5-6):575-588.
    102. V. N. Bakunin, A. Y. Suslov, G. N. Kuzmina, et al. Synthesis and application of inorganic nanoparticles as lubricant components-a review. Journal of Nanoparticle Research.2004, 6(2):273-284.
    103. E. Y. A. Wornyoh, V. K. Jasti, C. F. Higgs Iii. A review of dry particulate lubrication: Powder and granular materials. Journal of Tribology.2007,129:438.
    104.欧忠文,丁培道.磨损部件自修复原理与纳米润滑材料的自修复设计的构思.表面技术.2001,30(006):47-49.
    105.欧忠文,丁培道.纳米润滑材料应用研究进展.材料导报.2000,14(008):28-30.
    106.秦敏,陈国需.纳米润滑添加剂的研究进展.合程润滑材料.2001,28(004):9-14.
    107.刘谦,徐滨士.纳米润滑材料和润滑添加剂的研究进展.航空制造技术.2004,2.
    108.薛茂权,熊党生,闫杰.纳米润滑材料的摩擦学研究.机械工程材料.2004,28(003):47-50.
    109.方建华,陈波水,张斌,et al.纳米润滑添加剂的抗磨减摩机理.合成润滑材料.2001,28(002):15-18.
    110.李文魁,刘长松.纳米润滑材料的研究及其在石油管连接中应用展望.西安石油学院学报:自然科学版.2002,17(004):59-61.
    111. A. T. Demchenko, A. I. Evseev. Molybdenum-disulfide lubricant. Metallurgist.1964,8(1): 42-43.
    112. J. Moser, F. Levy. Crystal reorientation and wear mechanisms in mos2 lubricating thin films investigated by tem. J. Mater. Res.1993,8(1):206.
    113. M. R. Hilton, R. Bauer, P. D. Fleischauer. Tribological performance and deformation of sputter-deposited mos2 solid lubricant films during sliding wear and indentation contact. Thin Solid Films.1990,188(2):219-236.
    114. W. O. Winer. Molybdenum disulfide as a lubricant:A review of the fundamental knowledge. Wear.1967,10(6):422-452.
    115. R. I. Christy, G. C. Barnett. Sputtered mos2 lubrication system for spacecraft gimbal bearings. Lubr. Eng.1978,34(8):437-443.
    116. Z. Wu, D. Wang, A. Sun. Surfactant-assisted fabrication of mos 2 nanospheres. Journal of Materials Science.45(1):182-187.
    117. A. Savan, E. Pfluger, P. Voumard, et al. Modern solid lubrication:Recent developments and applications of mos2. Lubrication Science.2006,12(2):185-203.
    118. L. Cizaire, B. Vacher, T. Le Mogne, et al. Mechanisms of ultra-low friction by hollow inorganic fullerene-like mos2 nanoparticles. Surface and Coatings Technology.2002, 160(2-3):282-287.
    119. E. Pfluger, A. Savan. Modern solid lubricants, especially based on mos2. Vakuum in Forschung und Praxis.2007,11(4):236-240.
    120. P. W. Centers. Tribological performance of mos2 compacts containing moo3, sb2o3 or moo3 and sb2o3. Wear.1988,122(1):97-102.
    121. T. Xu, Z. Zhang, J. Zhao, et al. Study on the structure of surface-modified mos2 nanoparticles. Materials Research Bulletin.1996,31 (4):345-349.
    122. P. A. Bertrand, R. Bauer, P. D. Fleischauer, et al., Electronic structure and lubrication properties of mos2:A qualitative molecular orbital approach.1990, Storming Media.
    123.张平余,张治军.不同金属基体上的mos2纳米微粒1b膜摩擦学行为研究.摩擦学学报.1999,19(002):112-116.
    124.孙磊,郭新勇,周静芳,et al.硬脂酸修饰磷钼酸铵纳米微粒的抗磨性能研究.电子显微学报.2001,20(004):360-361.
    125. Z. Zhang, Q. Xue, J. Zhang. Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified mo s compound nanoclusters. Wear.1997,209(1-2): 8-12.
    126. Q. Xue, P. Zhang, Z. Zhang, et al. The structural changes of mos2 nanoparticle lb film during rubbing process. Thin Solid Films.1999,346(1-2):234-237.
    127. Y. U. Li-yan, H. A. O. Chun-cheng, S. U. I. Li-na, et al. Study on the improving friction and wear properties of lubricating oil with nanoparticles [j]. Journal of Material Science and Engineering.2004,22(6):901-905.
    128. Y. Han-min, L. I. Cong. Lubrication of zns nanoparticals synthesized in lamllar liquid crystal. Journal of Yunnan University (Natural Sciences).2005.
    129. X. Li, Y. Gao, J. Xing, et al. Wear reduction mechanism of graphite and mos2 in epoxy composites. Wear.2004,257(3-4):279-283.
    130.徐滨士,马世宁,梁秀兵,et al.纳米粉体材料与表面工程.材料导报.2001,15(011):7-9.
    131. Z. Zijie, C. Longwu. Development in lubricant antiwear mechanism and boundary film model [j]. Lubrication Engineering.2006,1.
    132. W. Kr tschmer, L. D. Lamb, K. Fostiropoulos, et al. Solid c60:A new form of carbon1990.
    133. W. Kr tschmer, K. Fostiropoulos, D. R. Huffman. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust:Evidence for the presence of the c60 molecule. Chemical Physics Letters.1990,170(2-3):167-170.
    134. S. Ballenweg, R. Gleiter, W. Kr tschmer. Hydrogenation of buckminsterfullerene c60 via hydrozirconation:A new way to organofullerenes. Tetrahedron Letters.1993,34(23): 3737-3740.
    135. J. P. Hare, H. W. Kroto, R. Taylor. Preparation and uv/visible spectra of fullerenes c60 and c70. Chemical Physics Letters.1991,177(4-5):394-398.
    136. H. Ajie, M. M. Alvarez, S. J. Anz, et al. Characterization of the soluble all-carbon molecules c60 and c70. Journal of Physical Chemistry.1990,94(24):8630-8633.
    137. R. E. Haufler, J. Conceicao, L. P. F. Chibante, et al. Efficient production of c60 (buckminsterfullerene), c60h36, and the solvated buckide ion. Journal of Physical Chemistry.1990,94(24):8634-8636.
    138. A. G. Rinzler, J. Liu, H. Dai, et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Applied Physics A:Materials Science & Processing. 1998,67(1):29-37.
    139. B. M. Ginzburg, L. A. Shibaev, O. F. Kireenko, et al. Antiwear effect of fullerene c 60 additives to lubricating oils. Russian Journal of Applied Chemistry.2002,75(8):1330-1335.
    140. B. Bhushan, B. K. Gupta, G. W. Van Cleef, et al. Fullerene (c 60) films for solid lubrication. Tribology Transactions.1993,36(4):573-580.
    141. L. M. Lander, W. J. Brittain, V. A. DePalma, et al. Friction and wear of surface-immobilized c60 monolayers. Chemistry of Materials.1995,7(8):1437-1439.
    142. J. Lee, S. Cho, Y. Hwang et al. Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives. Tribology Letters.2007,28(2): 203-208.
    143. L. Rapoport. Tribology of inorganic nanoparticles2004.
    144. J. J. Hu, J. S. Zabinski. Nanotribology and lubrication mechanisms of inorganic fullerene-like mos 2 nanoparticles investigated using lateral force microscopy (lfm). Tribology Letters.2005,18(2):173-180.
    145. R. Tenne, L. Rapoport, M. Lvovsky, et al., Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices.2002, Google Patents.
    146. L. Huang, J. Chen, T. Cao, et al. Investigation of microtribological properties of c60-containing polymer thin films using afm/ffm. Wear.2003,255(7-12):826-831.
    147. A. Hirata, M. Igarashi, T. Kaito. Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribology International.2004, 37(11-12):899-905.
    148. A. Hirata. Nanolubricants and applications-nanotechnology in solid lubrication.2005.
    149. L. Joly-Pottuz, N. Matsumoto, H. Kinoshita, et al. Diamond-derived carbon onions as lubricant additives. Tribology International.2008,41(2):69-78.
    150. N. Matsumoto, L. Joly-Pottuz, H. Kinoshita, et al. Application of onion-like carbon to micro and nanotribology. Diamond and Related Materials.2007,16(4-7):1227-1230.
    151. L. Joly-Pottuz, B. Vacher, N. Ohmae, et al. Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribology Letters.2008,30(1):69-80.
    152. L. Joly-Pottuz, E. W. Bucholz, N. Matsumoto, et al. Friction properties of carbon nano-onions from experiment and computer simulations. Tribology Letters.37(1):75-81.
    153. H. Ago, T. Kugler, F. Cacialli, et al. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B.1999,103(38):8116-8121.
    154. R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical properties of carbon nanotubes: Imperial College Pr.1998.
    155. V. N. Popov. Carbon nanotubes:Properties and application. Materials Science and Engineering:R:Reports.2004,43(3):61-102.
    156. S. Reich, C. Thomsen, J. Maultzsch. Carbon nanotubes:Basic concepts and physical properties:Vch Verlagsgesellschaft Mbh.2004.
    157. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters.1999,82(5):944-947.
    158. R. H. Baughman, A. A. Zakhidov, W. A. De Heer. Carbon nanotubes-the route toward applications. Science.2002,297(5582):787.
    159. M. S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon nanotubes:Synthesis, structure, properties, and applications:Springer Verlag.2001.
    160. P. Ajayan, O. Zhou. Applications of carbon nanotubes. Carbon Nanotubes.2001:391-425.
    161. S. Berber, Y. K. Kwon, D. Tomanek. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters.2000,84(20):4613-4616.
    162. Y. K. Kwon, S. Berber, D. Tomanek. Thermal contraction of carbon fullerenes and nanotubes. Physical Review Letters.2004,92(1):15901.
    163. J. Cumings, A. Zettl. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science.2000,289(5479):602.
    164. M. R. Falvo, R. M. Taylor, A. Helser, et al. Nanometre scale rolling and sliding of carbon nanotubes. Nature.1999,397(6716):236-238.
    165. P. Tangney, S. G. Louie, M. L. Cohen. Dynamic sliding friction between concentric carbon nanotubes. Physical Review Letters.2004,93(6):65503.
    166. A. Kis, K. Jensen, S. Aloni, et al. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Physical Review Letters.2006,97(2):25501.
    167. H. Dai. Carbon nanotubes:Synthesis, integration, and properties. Acc. Chem. Res.2002, 35(12):1035-1044.
    168. J. Chen, H. Liu, W. A. Weimer, et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc.2002,124(31):9034-9035.
    169. R. J. Chen, Y. Zhang, D. Wang, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc.2001, 123(16):3838-3839.
    170. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proceedings of the National Academy of Sciences.2003,100(9):4984.
    171. H. Murakami, T. Nomura, N. Nakashima. Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chemical Physics Letters.2003,378(5-6):481-485.
    172. M. Baibarac, I. Baltog, C. Godon, et al. Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon.2004,42(15):3143-3152.
    173. P. Liu. Modifications of carbon nanotubes with polymers. European Polymer Journal.2005, 41(11):2693-2703.
    174. J. L. Bahr, J. M. Tour. Covalent chemistry of single-wall carbon nanotubes. Journal of Materials Chemistry.2002,12(7):1952-1958.
    175. S. Banerjee, T. Hemraj-Benny, S. S. Wong. Covalent surface chemistry of single-walled carbon nanotubes. Advanced Materials.2005,17(1):17-29.
    176. R. K. Saini, I. W. Chiang, H. Peng, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc.2003,125(12):3617-3621.
    177. S. Qin, D. Qin, W. T. Ford, et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. Star.2001,342:265-271.
    178. B. Zhao, H. Hu, A. Yu, et al. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. Nano Lett.2002,2:25-28.
    179. Z. Jia, Z. Wang, C. Xu, et al. Study on poly (methyl methacrylate)/carbon nanotube composites. Materials Science and Engineering:A.1999,271(1):395-400.
    180. F. Beuneu, C. l'Huillier, J. P. Salvetat, et al. Modification of multiwall carbon nanotubes by electron irradiation:An esr study. Physical Review B.1999,59(8):5945-5949.
    181. Q. Chen, L. Dai, M. Gao, et al. Plasma activation of carbon nanotubes for chemical modification. J. Phys. Chem. B.2001,105(3):618-622.
    182. C. H. Kiang, W. A. Goddard Iii, R. Beyers, et al. Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem.1996,100(9):3749-3752.
    183. Y. Li, D. Mann, M. Rolandi, et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced cvd method. Nano letters.2004,4(2):317-321.
    184. D. S. Lim, J. W. An, H. J. Lee. Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear.2002,252(5-6):512-517.
    185. W. X. Chen, J. P. Tu, H. Y. Gan, et al. Electroless preparation and tribological properties of ni-p-carbon nanotube composite coatings under lubricated condition. Surface and Coatings Technology.2002,160(1):68-73.
    186. S. R. Dong, J. P. Tu, X. B. Zhang. An investigation of the sliding wear behavior of cu-matrix composite reinforced by carbon nanotubes. Materials Science and Engineering A. 2001,313(1-2):83-87.
    187. W. Tang, M. H. Santare, S. G. Advani. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (mwnt/hdpe) composite films. Carbon.2003,41(14):2779-2785.
    188. W. X. Chen, F. Li, G. Han, et al. Tribological behavior of carbon-nanotube-filled ptfe composites. Tribology Letters.2003,15(3):275-278.
    189. O. Jacobs, W. Xu, B. Sch del, et al. Wear behaviour of carbon nanotube reinforced epoxy resin composites. Tribology Letters.2006,23(1):65-75.
    190. X. H. Chen, C. S. Chen, H. N. Xiao, et al. Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribology International.2006,39(1): 22-28.
    191. K. Balani, D. Lahiri, A. K. Keshri, et al. The nano-scratch behavior of biocompatible hydroxyapatite reinforced with aluminum oxide and carbon nanotubes. JOM Journal of the Minerals, Metals and Materials Society.2009,61(9):63-66.
    192. K. Balani, S. P. Harimkar, A. Keshri, et al. Multiscale wear of plasma-sprayed carbon-nanotube-reinforced aluminum oxide nanocomposite coating. Acta Materialia.2008, 56(20):5984-5994.
    193. Y. Peng, Y. Hu, H. Wang. Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribology Letters.2007,25(3):247-253.
    194. W. C. Guan, H. F. Lu, D. H. Huang. Study on synthesis and lubricating performance of carbon nanotubes-poly(ethyl acrylate) compound emulsion as additive in water-based fluid. Mocaxue Xuebao(Tribology)(China).2004,24(4):299-303.
    195. H. F. Lu, B. Fei, J. H. Xin, et al. Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon.2007,45(5):936-942.
    196.梁国正,顾嫒娟,双马来酰亚胺树脂.1997,北京:化学工业出版社.
    197.刘润山.双马来酰亚胺树脂增韧及用作先进复合材料基体的发展.复合材料学报.1990,7(004):79-84.
    198. L. R. Bao, A. F. Yee. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites-part i:Uni-weave composites. Composites Science and Technology.2002,62(16):2099-2110.
    199.倪邈.多壁碳纳米管/双马来酰亚胺树脂复合材料结构与性能的研究.浙江大学.2006.
    200.马艳刚.多壁碳纳米管/双马来酰亚胺复合材料微波吸收性能的研究.浙江大学.2006.
    201. U. S. Tewari, S. K. Sharma, P. Vasudevan. Friction and wear studies of a bismaleimide. Tribology International.1988,21(1):27-30.
    202. A. Brandst dter, K. C. Goretta, J. L. Routbort, et al. Solid-particle erosion of bismaleimide polymers. Wear.1991,147(1):155-164.
    203. M. Ramulu, T. Branson, D. Kim. A study on the drilling of composite and titanium stacks. Composite Structures.2001,54(1):67-77.
    204.颜红侠,宁荣昌,马晓燕,et al.双马来酰亚胺复合材料摩擦学性能的研究.材料工程.2004(002):29-31.
    205.颜红侠,宁荣昌.石墨/聚双马来酰亚胺自润滑复合材料的研究.机械科学与技术(西安).1999,18(003):472-474.
    206.颜红侠,宁荣昌,黄英,et al.炭黑/双马来酰亚胺复合材料的性能研究.机械科学与技术(西安).2006,25(009):1102-1104.
    207.颜红侠,宁荣昌.A-a12o3/石墨/双马来酰亚胺自润滑复合材料的研究.机械料学与技术(西安).2001,20(005):751-752.
    208.颜红侠,宁荣昌.纳米si3n4填充聚双马亚酰亚胺摩擦磨损性能研究.摩擦学学报.2001,21(006):452-455.
    209.颜红侠,宁荣昌,梁国正,et al.纳米sio2/双马来酰亚胺复合材料的性能研究.中国塑料.2004,18(011):36-38.
    210.颜红侠,宁荣昌,张军平,et al.载荷对纳米sic/bmi-ba复合材料摩擦性能的影响.塑料工业.2006,34(005):37-39.
    211.胡晓兰,余谋发.硫酸钙晶须改性双马来酰亚胺树脂摩擦磨损性能的研究3.高分子学报.2006.
    212.胡晓兰,梁国正.硼酸铝晶须/双马来酰亚胺树脂摩擦磨损性能.复合材料学报.2004,21(6).
    213.胡晓兰,梁国正.偶联剂对钛酸钾晶须/双马来酰亚胺树脂摩擦磨损性能的影响.高分子学报.2004(006):844-848.
    214. L. Y. Wang, J. P. Tu, W. X. Chen, et al. Friction and wear behavior of electroless ni-based cnt composite coatings. Wear.2003,254(12):1289-1293.
    215. M. Ashida, T. Noguchi, S. Mashimo. Effect of matrix's type on the dynamic properties for short fiber-elastomer composite. Journal of Applied Polymer Science.2003,30(3): 1011-1021.
    216. C. Kajdas, S. S. K. Harvey, E. Wilusz. Encyclopedia of tribology:Elsevier Science Ltd. 1990.
    217. C. Kajdas. Importance of anionic reactive intermediates for lubricant component reactions with friction surfaces. Lubrication Science.2006,6(3):203-228.
    218. S. J. Park, M. S. Cho, S. T. Lim, et al. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly (methyl methacrylate) prepared by in-situ bulk polymerization. Macromolecular rapid communications.2003,24(18): 1070-1073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700