化学方法改善亚麻染色性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对亚麻织物利用季铵基改性剂改善其染色性能进行了详细的研究。
     首先通过理论分析和亚麻化学改性实验,确定了以环氧基为活性基的季铵基改性剂适宜于改善亚麻纤维的染色性能。本文通过反复实验和研究,合成了用于改善亚麻染色性能的改性剂REF,优化了其合成工艺,REF的最佳合成工艺为:反应物的摩尔比为1:1,反应液的pH值为7,反应温度为80℃,反应时间为180min,最佳溶剂为:甲醇与乙醇按1:2.5混合的混合液,溶剂与反应物的质量比为1:2。
     利用红外光谱法研究了亚麻改性的化学机理,借助于数理统计原理优化了亚麻织物利用改性剂REF改性的方法和改性工艺。结果表明亚麻织物采用吸尽法的最佳改性工艺为:改性剂浓度为40g/L,NaOH浓度为15g/L,浴比为1:20,温度为60℃,时间为60min。采用浸压法改性的最佳工艺条件为:改性剂浓度为47.88g/L,NaOH浓度为30.69g/L,焙烘温度为124℃,时间为3min。
     以直接枣红6B、活性红X—3B、酸性金黄G为例,采用X光衍射法、红外光谱法、剥色实验及织物表面防水实验,研究了改性亚麻织物与阴离子染料之间的结合状态,结果表明改性亚麻与酸性染料之间主要靠离子间的库仑力结合,与直接染料之间在形成氢键和范德华力的基础上,还形成了离子键结合。改性亚麻与活性染料之间即可发生亲核取代反应形成共价键结合,又可形成离子间的库仑力,而且离子间的相互吸引更有利于染料上的活性基与纤维素发生亲核取代反应。
     从阴离子染料上染改性亚麻织物的吸附等温线、染色亲和力、直接性、染色饱和值几个方面研究了改性亚麻织物染色的热力学原理,结果表明:改性亚麻织物染色的等温吸附线属于Langmiur方程的特征曲线,即按电荷吸附机理进行。而且与普通亚麻织物相比,染料对改性亚麻的直接性约提高1倍,染色亲和力提高约五倍。从染色饱和值看,具有多磺酸基的阴离子染料在季铵化改性亚麻织物上易发生超当量吸附。
     以染色速率、扩散速率为指标研究了改性亚麻织物染色的动力学原理,结果表明:改性亚麻织物染色15min时几乎达到最高上染率。当亚麻织物含氮含量较小时,其染色扩散速率比普通亚麻织物的染色扩散速率增大,但含氮量增大到一定程度时,扩散速率随改性程度的增大而降低。扩散速率随染色温度的提高而提高。即染色温度越高越有利于染料的扩散。
     研究了改性亚麻织物的染色性能,结果表明:与普通亚麻织物相比,改性亚麻织物用阴离子染料染色的干、湿摩擦色牢度和耐水洗色牢度指标大致相同,部分染料染色的改性亚麻织物的色牢度指标比普通亚麻织物提高05级。在充分搅拌的情况下,改性亚麻织物的匀染性和透染性良好。
     研究了改性亚麻织物的服用性能,结果表明:与普通亚麻织物相比,改性亚麻织物的断裂伸长率、弹性恢复性、柔软性、悬垂性、耐磨性、吸湿性较好,且随着改性程度的增加呈增大趋势。但是改性亚麻织物的断裂强力比普通织物差,而且随着改性程度的增大断裂强力呈下降趋势;另外改性亚麻织物的通透性比普通亚麻织物稍差。
The dyeability of flax can be improved provided the fiber is chemically modified by inducing quaternary amino groups, which has been studied in detail in this paper.
    Theoretical analyze and prepare experiments have been done firstly. The results have showed that epoxy based quaternary ammonium compounds are fit for modifying the dyeability of flax. The epoxy based quaternary ammonium salt named REF has been synthetised successfully through repeated testing in this paper. The optimum synthetic technology conditions have been investigated. The results are that the radio of mole of reaction materials is 1:1, pH of reaction bath is 7, for ISOmin at 80 10 . The ideal solvent is the blend of methyl and ethanol that their proportion is 1:2.5.
    The studies on chemical mechanism of modifying on flax have been carried out by infrared spectrometry. The pretreated ways of flax fabric and optimum pretreated technology conditions have been studied using mathematical statistics. The results have showed that the optimum technology conditions of exhaustion process are that the concentration of REF is 40 g/L, and NaOH is 15 g/L at a liquor ratio of 20:1 for Ih at 60 1C . The optimum technology conditions of pad - dry - bake procedure are that REF is 47.88 g/L, and NaOH is 30.69 g/L at 124 'C for 3 minutes.
    Binding states between modified flax fabrics and anion dyes have been investigated by infrared spectrometry, X ?diffraction, peeling of color and experiments on water proofing of modified flax fabric with taking reactive red X-3B, direct Chinese red 6B and acid yellow G for examples. The results show that binding force between modified flax and acid dye is coulomb's force, and besides hydrogen bond and gravitation among molecule, electrovalent bond has been formed among direct dye and modified flax. Reactive dye not only can covalent-ly bind with modified flax by nucleophilic reaction, but also can form electrovalent bond. Attracting among hydronium is of benefit to nucleophilic reaction.
    The thermodynamics principle of dyeing of modified flax fabric has been studied in the aspects of adsorption isotherm, dying appetency, substantivity and saturation value and so on. The results indicate that dyeing adsorption isotherm of modified flax fabric belongs to the characteristic equation curve of Langmiur, which is according to the mechanism of electric adsorption. Moreover dyeing substantive has doubled, and dyeing appetency increase by about quintupling as compared with general flax fabric. Anion dye with several sulfonic groups occurs adsorption of overtaking in the number of mole when dyeing modified flax fabric.
    The kinetics mechanism of dyeing of modified flax fabric has been investigated from the aspects of dyeing speed and pervasion velocity. The results have revealed that the exhaustion
    
    
    
    almost achieves maximum when the dyeing time is 15 minutes. When the amount of nitrogen contained by the modified flax fabric is smaller, the dyeing pervasion velocity increases as compared with general flax fabric. But when the content of nitrogen of modified fabric increases to a certain degree, its dyeing diffuse velocity is in inverse proportion to the content of nitrogen. The pervasion velocity increases with the dyeing temperature Namely, the dyeing temperature is of benefit to diffusing of dye.
    The dyeing performance of modified flax fabric has been studied. The results have revealed that fastness of dry and wet rubbing and washing fastness of flax fabric with REF treatment is the same as that of the flax fabric without REF treatment. The fastness of part of dyed modified flax fabric increase by 0.5 grade as compared with the general flax fabric. The levelness and penetrability of dyeing of flax fabric modified by REF is best provided dye bath is fully stired when dyeing.
    The wearing performance of flax fabric with REF treatment has been studied. The results have showed that elongation at break, elastic recovery percentage of elongation, pliability, pendency, frictional resistance and moisture absorption of modified f
引文
[1] 宋心远等,《印染》37(1998)11
    [2] M. Rupin, Text. Chem. Chem. Colorist, 8(1976) 139
    [3] W.M. Linfild., J.A. Oil Chem. Soc., 35(11) (1958) 590
    [4] W. P. Evans, Chemistry Industry, (1969),893
    [5] D.M. Lewis, J.S.D.C., 109(11) (1993] 357
    [6] S. M. Burkinshaw,X. P. Lei and D. M. Lewis, J. S. D. C., 105(1989)391
    [7] X.P. Lei and D.M. Lewis, J.S.D.C.,106(1990) 352
    [8] S.M.Burkinshaw et al, J.S.D.C.,106(1990) 307
    [9] D. M. Lewis,Mcllrog Ka., Rev. Prog. Coloration,5(1997) 27
    [10] 胡逊等,《印染》9(1996)3
    [11] 夏纪鼎,倪全永主编《表面活性剂和洗涤剂化学与工艺学》中国轻工出版社,(1997)322
    [12] 《分析化学手册》(第二分册)化学工业出版社(1986)466
    [13] T. L. Vigo et al.,Text. Chem. Colorist, 19(1987) 19
    [14] J. M. Taylor,Dyer, 173(1988) 30
    [15] K.R.F.Cockett and D.M.Lewis,J.S.D.C., 92(1976) 399
    [16] Bell,V. A.,D. M. Lewis and M. T. Pailthorpe, Journal of the Society of Dyers and Coloutists, Vol.100 (1984) 223
    [17] Roberts, E. J. and S. P. Rowland, Textile Research Journal 686 (1969) 39
    [18] Soignet, D. M. Berni and R. R. Benerito, Textile Research Journal, 978 (1966)39
    [19] 公开特许公报昭54—30109(1979)
    [20] 宋心远等,《印染》43(1998)12
    [21] 胡逊等,《印染》5(1996)4
    [22] 胡逊等,《印染》5(1996)5
    [23] 蒲宗耀等《苎麻纺织科技》18(1994)12
    [24] N. D. Stewart, Proc. Conf. On reactive dyes (Leeds University, 1989)
    [25] M. Rupin,Jveaute and Rbenerito,Text. Research J.,36(1966)978
    [26] G. E. Evans,J. Shore and CVStead,J. S. D. C., 100(1984)
    [27] 吴伟栋,《印染》5(1994)5
    [28] 蒲宗耀等,《四川纺织科技》2(1991)10
    [29] 蒲宗耀等,《印染》18(1992)
    [30] 蒲宗耀等,《印染》19(1993)5
    [31] 蒲宗耀等,《印染》19(1993)10
    [32] 金咸穰主编,《染整工艺实验》中国纺织出版社(2000)
    [33] 王菊生等编,《染整工艺原理》中国纺织工业出版社(2000)
    [34] G. E. Evans,J. S. D. C., 100(1984)304
    [35] Harry H. Snmmer, J. S. D. C., 102(1986) 301
    [36] S. M. Burkinshaw, J. S. D. C., 105(1989)39
    
    
    [37]M.Rupon,TCC,8(9)(1976)54
    [38]卢家锵等《苎麻纺织科技》14(1991)1
    [39]王春林等《苎麻纺织科技》12(1989)5
    [40]李同信等《印染》15(1989)
    [41]R. Puchta. J. A. Oil Chem. Specialties, 61(2)(1984) 267
    [42]K.J.Baumert. TCC, 28(4) (1996)36
    [43]T.A. Williams, Soap/Cosmetic/Chem. Specialties, 59(8) (1982)28
    [44]F.J.Carrsion, J.S.D.C., 110(1994) 234
    [45]G. K. Hughes,et al, Soap and chem. Specialities, 61(12) (1965) 109
    [46]M. E. Ginne, et al, J.A. Oilchem. Soic., 42(12) (1965)1084
    [47]N.D. Stewart, Proc. Conf. On reactive dyes(Leeds university, 1989)
    [48]D. M. Lewis and X. P. Lei, Text. Chem. Colorist, 21(1989) 23
    [49]J. L. Gardon, J. Appl. Polymer Sci., Part A,8 (1964) 2657
    [50]J. L. Gardon, J. Appl. Polymer Sci., 5(1961] 734
    [51]D. M. Lewis and X. P. Lei, J. S. D. C., 109(1991)107
    [52]V.R.Gaertner, J.Org. Chem., 33(1968) 523
    [53]K.R.F. Cockett and D.M. Lewis, J.S.D.C., 92(1976) 399
    [54]J.Shore, J.S.D.C.,84 (1968) 413
    [55]W.A. Reeves and J. D. Guthire, Text. Researsh J.,23(1953) 522
    [56]R.J. Harper et al.,Text. Chem. Colorist, 20(1988) 25
    [57]M. Sakamoto et al. J.Appl. Polymer Sci., 17(1988) 52
    [58]张济邦,《印染》1(1997)37
    [59]赵阿金,杨栋梁,《印染》1(1997)45
    [60]胡逊等,《印染》6(1996)5
    [61]陶惠麟,黄金秀,《印染》9(1991)12
    [62]陶惠麟,黄金秀,《印染》11(1991)22
    [63]李同信等,《印染》6(1989)5
    [64]陈玉莉,《印染》9(1993)5
    [65]毛明富等,《印染》3(1999)10
    [66]毛明富等,《印染》4(1999)5
    [67]王建晨等,《天津纺织工学院学报》1(1994)6
    [68]闫宏强等,《印染》2(2000)9
    [69]巫拱生等,《纺织学报》5(1984)22
    [70]李梅译,许正军校,《国外纺织技术》10(1997)34
    [71]高洁,汤烈贵主编,《纤维素科学》科学出版社(1999)
    [72]《纺织材料学》编写组编《纺织材料学》中国纺织工业出版社1980 446—534
    [73]潘祖仁,孙经武主编,《高分子化学》化学工业出版社(1983)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700