胸膜肺炎放线杆菌1型3型差异基因及两种蛋白功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸膜肺炎放线杆菌(APP)是引起猪传染性胸膜肺炎疾病的病原菌,该病是世界范围内流行、严重危害现代化养猪业的重要传染病。APP具有众多血清型,其致病力和免疫原性各不相同,主要血清型间无免疫交叉保护,是制约APP致病机理和疫苗研究的瓶颈,严重影响了APP的诊断、检疫和预防。本研究选择毒力存在差异、而无免疫交叉保护的APP血清1型和3型菌株为对象,采用代表性差异分析法(RDA),分别构建了基因组DNA差减基因文库和cDNA差异表达基因文库,系统筛选1型和3型基因组差异基因和差异表达基因,经生物信息学分析后,从中选取自转运黏附素基因(差异基因)的功能区adh和蛋白酶clpP基因(差异表达基因)进行克隆与序列分析,并采用实时定量PCR分析clpP基因的相对表达,分别对adh和clpP基因进行原核表达,得到GST-Adh和GST-ClpP重组蛋白,测定其对昆明小鼠抗APP感染的免疫保护性,并利用凝血酶切除GST,纯化Adh蛋白,检测Adh对猪肺上皮细胞的黏附活性。结果表明,获得APP 1型8条差异基因片段,APP3型11条差异基因片段,经PCR鉴定发现这19条差异基因在15个血清型中分布不同;获得APP 1型22条上调表达基因,APP 3型20条上调表达基因,clpP基因在APP 1型的相对表达量为3型的3.22倍;成功获得融合蛋白GST-Adh和GST-ClpP,大小分别约为81kDa和48kDa,并以可溶性的形式获得表达;GST-Adh蛋白对APP血清5b型的保护率为7/10,对血清1型、3型和5a型无明显保护作用;Adh蛋白对猪肺上皮细胞具有黏附活性,该蛋白及其抗体能抑制APP对猪肺上皮细胞的黏附作用;GST-ClpP蛋白对APP血清1型的保护率为6/10,对血清3型无明显保护作用。本研究为今后APP不同血清型致病机理研究、新型多价疫苗研究以及特异性分子诊断技术的建立提供必要的基础。
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, an extremely contagious and often fatal respiratory disease responsible for major economic losses to the swine industry worldwide. This disease is one of the most infectious diseases that severely hamper the healthy development of the modern swine industry worldwide. The 15 currently known serotypes of A. pleuropneumoniae interfere accurate diagnosis of this disease and serotyping. All serotypes are capable of causing disease, although significant differences in virulence and the unclear pathogenic mechanisms. In addition, these serotypes show significant differences in immunogenicity, and the current inactivated vaccines and subunit vaccines can not provide cross-protection for a large number of serotypes that needs to find serotype-specific protective genes to develop genetic engineering multivalent vaccine. To overcome these challenges, it is urgent to screen and identify gene differences among different serotypes of A. pleuropneumoniae systematically at the molecular level. Therefore, in this study, A. pleuropneumoniae serotypes 1 and 3 were selected as study object because they show significant differences in pathogenicity and immunogenicity. Genomic differential genes and differentially expressed genes between A. pleuropneumoniae serotypes 1 and 3 were screened and identified systematically, and the function of autotransporter adhesin and ClpP protease were studied on. Genomic DNA of A. pleuropneumoniae serotypes 1 and 3 was extracted, and genomic differential genes were screened by using representational difference analysis (RDA). After three rounds of subtractive hybridization and PCR amplification, the RDA products were cloned into the pMD-18T vector to construct genomic subtractive libraries of serotypes 1 and 3. After sequencing, the nucleotide similarities of the differential DNA fragments were determined by BLASTN analysis in GenBank. Southern blotting analysis and PCR-based identification were performed to confirm the differential DNA sequences. 8 differential DNA sequences from the serotype 1 were identified, including the encoding genes of hemolysin ApxⅠ, transferring binding protein, adhesin, ABC transporter protein and hypothetical protein. 11 differential DNA sequences from the serotype 3 were identified, including the encoding genes of hemolysin ApxⅢ, hypothetical proteins, and proteins that participate in LPS synthesis, energy metabolism and carbohydrates synthesis. The distribution of these 19 sequences among the 15 serotypes was identified by using PCR, and each serotype showed a different distribution pattern.
     Specific primers for 5' end sequence of autotransporter adhesin gene were designed, and 5' end sequences ad1 and ad5a of autotransporter adhesin gene of A. pleuropneumoniae serotypes 1 and 5a were amplified, cloned and sequenced respectively. The result of sequence analysis found significant differences in nucleotide sequences between ad1 and ad5a, showing only 50.65% homology. The length of ad1 sequence is 3041bp, the BLASTN homology is 71%, the length of its ORF is 2244bp, encoding 748 amino acids. The length of ad5a sequence is 2147bp, the BLASTN homology is 99%, the length of its ORF is 2145bp, encoding 715 amino acids. The deduced amino acide sequences based on ad1 and ad5a genes and autotransporter adhesin sequences of A. pleuropneumoniae serotypes 5b and 7 reported in Genbank were analyzed by using SMART software. The result showed that autotransporter adhesin gene of serotype 5b was functional gene, but autotransporter adhesin genes of serotypes 1, 5a and 7 were pseudogenes. The results of bioinformatics analysis for autotransporter adhesin sequence of serotype 5b showed that the protein has highly antigenicity and contains 112 epitopes, N terminal 1-67aa is the signal peptide region, a large number of adhesion motifs were distributed in the N terminal 124-612aa. It is inferred that N terminal 68-612aa region of autotransporter adhesin was an important functional area responsible for adhesion. The encoding gene was named adh. The adh gene was cloned into the prokaryotic expression vector pGEX-4T-1 to construct the recombinant expression plasmid, and recombinant protein GST-Adh was successfully expressed in E.coli, with the molecular weight of approximately 81kDa. After GST affinity purification, single GST-Adh was obtained and the GST tag was removed with thrombin. Through observation by using laser scanning confocal microscope, Adh protein can adhere to lung epithelial cells. The results of adhesion inhibition tests revealed that the Adh protein and its antibody can inhibit the adhesion of A. pleuropneumoniae to lung epithelial cells. After immunization 4 weeks with GST-Adh, antibody titers of mice are up to 1:12800. The result of protective immunity test indicates that GST-Adh protein plays a certain role in immune protection against A. pleuropneumoniae serotype 5b infection, with survival rate of 7 / 10, but it fails to confer good protection against serotypes 1, 3, and 5a.
     RNA of A. pleuropneumoniae serotypes 1 and 3 was extracted, and double-stranded cDNA was prepared using the RNA. Differentially expressed genes were screened by using representational difference analysis (RDA). After three rounds of subtractive hybridization and PCR amplification, the RDA products were cloned into the pMD-18T vector to construct cDNA subtractive libraries of serotypes 1 and 3. After sequencing, the nucleotide similarities of the differentially expressed genes were determined by BLASTN analysis in GenBank. Northern blotting analysis was performed to confirm the differentially expressed genes. 22 differentially expressed genes from the serotype 1 were identified, including the encoding genes of hemolysin ApxⅠ, transferring binding protein, adhesin, ABC transporter protein, protease, molecular chaperone, hypothetical protein, and proteins that participate in LPS synthesis, metabolism, bacterial transcription and nucleic acid metabolism. 20 differentially expressed genes from the serotype 3 were identified, including the encoding genes of hemolysin ApxⅢ, lipoprotein, hypothetical proteins, and proteins that participate in LPS synthesis and metabolism.
     TaqMan probes and specific primers for protease gene clpP and housekeeping gene recF were designed, relative expression levels of clpP gene in A. pleuropneumoniae serotypes 1 and 3 were determined by using real-time quantitative PCR. The result showed that the relative expression level of clpP gene in A. pleuropneumoniae serotype 1 is 3.22 times as high as the expression level in A. pleuropneumoniae serotype 3. The clpP gene of A. pleuropneumoniae serotype 1 was amplified, cloned and sequenced. The result of sequence analysis showed that the length of nucleotide sequence is 591bp, encoding 196 amino acids. The clpP gene was cloned into the prokaryotic expression vector pGEX-4T-1 to construct the recombinant expression plasmid, and recombinant protein GST-ClpP was successfully expressed in E.coli, with the molecular weight of approximately 48kDa. After GST affinity purification, single GST-ClpP was obtained. After immunization 4 weeks with GST-ClpP, antibody titers of mice are up to 1:12800. The result of protective immunity test indicates that GST-ClpP protein plays a certain role in immune protection against A. pleuropneumoniae serotype 1 infection, with survival rate of 6 / 10, but it fails to confer good protection against serotype 3.
     In this study, genomic differential genes and differentially expressed genes between A. pleuropneumoniae serotypes 1 and 3 were successfully screened and identified. The recombinant protein for functional area of autotransporter adhesion has the adhesion activity to lung epithelial cell and plays a certain role in immune protection against A. pleuropneumoniae serotype 5b infection. The expression levels of the clpP gene in A. pleuropneumoniae serotypes 1 and 3 are different. The recombinant ClpP protein plays a certain role in immune protection against A. pleuropneumoniae serotype 1 infection. This study may contribute to future research on the pathogenic mechanisms of different serotypes, serotyping-based diagnosis methods and multivalent vaccines.
引文
[1] Pattison I H, Howell DG, Elliot J.A haemophilus-like organism isolated from pig lung and the associated pneumonic lesions[J]. J Comp Pathol, 1957, 67(4):320-330.
    [2]王天奇,董发明,龙塔,等.洛阳地区规模化猪场传染性胸膜肺炎的血清学调查[J].中国兽医杂志,2006,42(11):28-29.
    [3]樊祜卿,储岳峰,贺英,等.四川省部分地区猪传染性胸膜肺炎的流行病学调查[J].中国动物检疫,2009,26(5):49-50.
    [4] Pohl S, Bertsehinger H U, Frederiksen W, et al. Transfer of Haemophilus Pleuropneumoniae and the Pasreurolla haemolytica-like organism causing porcine necrotic pleuropneumonia to the genus Actinobacillus (Actinobacillus Pleuropneumoniae comb.Nov.) on the basis of phenotypic and deoxyribonucleic acid relatedness[J]. Inst J Syst Bacteriol,1983, 33:510-514.
    [5] Negrete-Abascal E, Reyes M E, García R M, et al. Flagella and Motility in Actinobacillus pleuropneumoniae[J].J Bacteriol, 2003,185(2):664-668.
    [6]张彦明,张耀相,刘春花,李健强.胸膜肺炎放线杆菌的分离鉴定及免疫预防[J].中国兽医科技,2002,32(5):21-22.
    [7]蔡宝祥.猪传染性胸膜肺炎的诊断与防治[J].辽宁畜牧兽医,1996,(3):41-42.
    [8] Nielsen R, Andresen LO, Plambeck T, et al. Serological characterization of Actinobacillus pleuropneumoniae biotype 2 strains isolated from pigs in two Danish herds[J]. Vet Microbiol, 1997,54(1):35-46.
    [9] Blackall P J, Klaasen H L,Van Den Bosch H, et al. Proposal of a new serovar of Actinobacillus pleuropneumoniae: serovar 15[J].Vet Microbiol,2002,84:47-52.
    [10] Perry MB. Structural analysis of the lipopolysaccharide of Actinobacillus (Haemophilus) pleuropneumoniae serotype 10[J]. Biochem Cell Biol,1990,68(4):808-810.
    [11] Komal J P, Mittal K R.Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice[J]. Vet Microbiol, 1990, 25(2-3):229-240.
    [12] Jacobsen M J, Nielsen J P, Nielsen R. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model[J]. Vet Microbiol, 1996, 49: 159-168.
    [13] Cruijsen T, van Leengoed LA, Ham-Hoffies M, et al. Convalescent pigs are protected completely against infection with a homologous Actinobacillus pleuropneumoniae strain but incompletely against a heterologous-serotype strain[J]. Infect Immun, 1995, 63: 2341-2343.
    [14] Tadjine M, Mittal KR. Study of antigenic heterogeneity among Actinobacillus pleuropneumoniae serotype 7 strains[J]. Vet Microbiol, 2001, 78(1):49-60.
    [15]白淑民.猪传染性胸膜肺炎病的防治研究进展[J].甘肃畜牧兽医,1999,5:30-33.
    [16]陈小玲,杨旭夫,朱士盛.猪传染性胸膜肺炎的流行现状和防制措施[J].中国兽医杂志,2001,37(11):33-35.
    [17]逯忠新,赵萍,柳纪省,等.猪传染性胸膜肺炎的流行和防制[J].中国兽医杂志,2002,38(3): 82-85.
    [18]吴家强,崔锦鹏,张秀美,等.猪接触传染性胸膜肺炎研究进展[J].畜牧与兽医, 2002,34(10):36-39.
    [19]唐慧稳.猪传染性胸膜肺炎研究现状[J].畜牧兽医杂志,2003,22(4):19-21.
    [20]马国文,霍晓伟,马德慧.猪传染性胸膜肺炎的临床病理学研究[J].哲里木畜牧学院学报,1999,9(1):12-15.
    [21] GagnéA, Lacouture S, Broes A, et al. Development of an immunomagnetic method for selective isolation of Actinobacillus pleuropneumoniae serotype 1 from tonsils[J]. J Clin Microbiol, 1998, 36(1):251-254.
    [22] Angen O, Heegaard PM, Lavritsen DT, et al. Isolation of Actinobacillus pleuropneumoniae serotype 2 by immunomagnetic separation[J]. Vet Microbiol, 2001, 79(1):19-29.
    [23] Nielsen R. Serological characterization of Haemophilus pleuropneumoniae (Actinobacillus pleuropneumoniae) strains and proposal of a new serotype: serotype 10[J]. Acta Vet Scand, 1985, 26(4):581-5.
    [24] Mittal K R, Higgins R, Lariviere S. Determination of antigenic specificity and relationship among Haemophilus pleuropneumoniae serotypes by an indirect hemagglutination test[J]. J Clin Microbiol, 1983, 17(5):787-790.
    [25] Mittal K R. Cross-reactions between Actinobacillus (Haemophilus) pleuropneumoniae strains of serotypes 1 and 9[J]. J Clin Microbiol, 1990, 28(3):535-539.
    [26] Mittal KR, Higgins R, Larivière S. Serological studies of Actinobacillus (Haemophilus) pleuropneumoniae strains of serotype 6 and their antigenic relationship with other serotypes[J]. Vet Rec, 1988, 122(9):199-203.
    [27] Mittal KR, Bourdon S. Cross-reactivity and antigenic heterogeneity among Actinobacillus pleuropneumoniae strains of serotypes 4 and 7[J]. J Clin Microbiol, 1991, 29(7):1344-1347.
    [28] Molnár E, Molnár L. The value of different serological tests in serotyping of Actinobacillus pleuropneumoniae strains[J]. Acta Microbiol Immunol Hung, 1994, 41(3):247-253.
    [29] Inzana TJ, Todd J, Koch C, et al. Serotype specificity of immunological assays for the capsular polymer of Actinobacillus pleuropneumoniae serotypes 1 and 9[J]. Vet Microbiol, 1992, 31(4):351-362.
    [30] Inzana TJ. Simplified procedure for preparation of sensitized latex particles to detect capsular polysaccharides: application to typing and diagnosis of Actinobacillus pleuropneumoniae[J]. J Clin Microbiol, 1995, 33(9):2297-2303.
    [31] Gutierrez CB, Rodriguez Barbosa JI, Gonzalez OR, et al. Viability of Actinobacillus pleuropneumoniae in frozen pig lung samples and comparison of different methods of direct diagnosis in fresh samples[J]. Comp Immunol Microbiol Infect Dis, 1992, 15(2):89-95.
    [32] Nicolet J, Paroz P H, Krawinkler M, et al. An enzyme-linked immunosorbent assay, using an EDTA-extracted antigen for the serology of Haemophilus pleuropneumoniae[J]. Am J Vet Res, 1981,42:2139-2142.
    [33] Trottier YL, Wright PF, Larivière S. Optimization and standardization of an enzyme-linked immunosorbent assay protocol for serodiagnosis of Actinobacillus pleuropneumoniae serotype 5[J]. J Clin Microbiol, 1992, 30(1):46-53.
    [34] Frey J, Beck M, van den Bosch JF,et al. Development of an efficient PCR method for toxin typing of Actinobacillus pleuropneumoniae strains[J]. Mol Cell Probes, 1995, 9(4):277-282.
    [35] Gram T, Ahrens P. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein[J]. J Clin Microbiol, 1998, 36(2):443-438.
    [36] Schaller A, Djordjevic SP, Eamens GJ,et al. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxIVA[J]. Vet Microbiol, 2001, 79(1):47-62.
    [37] Yang W, Pin C, Haibing G, et al. Loop-mediated isothermal amplification targeting the apxIVA gene for detection of Actinobacillus pleuropneumoniae[J]. FEMS Microbiol Lett, 2009, 300(1):83-89.
    [38] de la Puente-Redondo VA, del Blanco NG, Gutiérrez-Martín CB, et al. Detection and subtyping of Actinobacillus pleuropneumoniae strains by PCR-RFLP analysis of the tbpA and tbpB genes[J]. Res Microbiol, 2000, 151(8):669-681.
    [39] Gram T, Ahrens P, Andreasen M, et al. An Actinobacillus pleuropneumoniae PCR typing system based on the apx and omlA genes--evaluation of isolates from lungs and tonsils of pigs[J]. Vet Microbiol, 2000,75(1):43-57.
    [40] Jessing SG, Angen ? , Inzana TJ. Evaluation of a multiplex PCR test for simultaneous identification and serotyping of Actinobacillus pleuropneumoniae serotypes 2, 5, and 6[J]. J Clin Microbiol,2003,41(9): 4095-4100.
    [41] Schuchert JA, Inzana TJ, Angen ? ,et al. Detection and identification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by multiplex PCR[J]. J Clin Microbiol, 2004, 42(9): 4344-4348.
    [42] Angen ?, Ahrens P, Jessing SG. Development of a multiplex PCR test for identification of Actinobacillus pleuropneumoniae serovars 1, 7, and 12[J]. Vet Microbiol,2008,132(3-4): 312-318.
    [43] Zhou L, Jones SC, Angen ?, et al. Multiplex PCR that can distinguish between immunologically cross- reactive serovar 3, 6, and 8 Actinobacillus pleuropneumoniae strains[J]. J Clin Microbiol, 2008, 46(2):800-803.
    [44] Ito H J. Development of a cps-Based Multiplex PCR for Typing of Actinobacillus pleuropneumoniae Serotypes 1, 2 and 5[J].Vet Med Sci, 2010, Jan 13. [Epub ahead of print]
    [45] Xiao G, Cao S, Huang X, et al. DNA microarray-based identification and typing of Actinobacillus pleuropneumoniae[J].Can J Vet Res, 2009, 73(3):190-199.
    [46] Ramjeet M, Deslandes V, Goure J, et al. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies[J]. Anim Health Res Rev, 2008, 9: 25-45.
    [47]韩国全,郭万柱,王利娜,等.猪传染性胸膜肺炎新型疫苗的研究进展[J].猪业科学,2009,(2):25-30
    [48]王春来,杨旭夫,刘杰.胸膜肺炎放线杆菌溶血毒素特性鉴定及免疫原性研究[J] .中国预防兽医学报,2001,23(3):209-214.
    [49] Maas A, Meens J, Baltes N, et al. Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection[J].Vaccine ,2006, 24 (49-50):7226-7237.
    [50] Welch RA. Pore-forming cytolysins of gram-negative bacteria[J]. Mol Microbiol, 1991, 5(3):521-528.
    [51]胡成名,文心田,曹三杰,等.猪胸膜肺炎放线杆菌Apx毒素的分子生物学与致病机理[J].动物医学进展,2007,28 (7) :94-98.
    [52] Chien MS, Chan YY, Chen ZW, et al. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages[J]. Vet Microbiol, 2009,135(3-4):327-333.
    [53] Vanden Bergh PG, Zecchinon LL, Fett T, et al. Probing of Actinobacillus pleuropneumoniae ApxIIIA toxin-dependent cytotoxicity towards mammalian peripheral blood mononucleated cells[J]. BMC Res Notes, 2008,1:121.
    [54] Dreyfus A, Schaller A, Nivollet S, et al. Use of recombinant ApxIV in serodiagnosis of Actinobacillus pleuropneumoniae infections, development and prevalidation of the ApxIV ELISA[J]. Vet Microbiol, 2004, 99(3-4):227-238.
    [55] Haga Y, Ogino S, Ohashi S,et al. Protective efficacy of an affinity-purified hemolysin vaccine against experimental swine pleuropneumonia[J]. Journal of Veterinary Medical Science, 1997,59: 115–120.
    [56] Bagdasarian M M, Nagai M, Frey J,et al. Immunogenicity of Actinobacillus ApxIA toxin epitopes fused to the E.coli heat-labile enterotoxin B subunit[J].Vaccine, 1999, 17(5): 441-447.
    [57] Van Overbeke I, Chiers K, Charlier G, et al.Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells[J]. Vet Microbiol, 2002, 88(1): 59-74.
    [58] Seah J N, Frey J, Kwang J. The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice[J]. Infect Immun, 2002,70(11): 6464-6467.
    [59] Seah JN , Kwang J. Localization of linear cytotoxic and pro-apoptotic epitopes in RTX toxin ApxIII of Actinobacillus pleuropneumoniae[J]. Vaccine, 2004,22: 1494–1497.
    [60] Shin S J, Shin S W, Kang M L,et al. Enhancement of protective immune responses by oral vaccination with Saccharomyces cerevisiae expressing recombinant Actinobacillus pleuropneumoniae ApxIA or ApxIIA in mice[J]. J Vet Sci, 2007,8(4):383-392.
    [61] Du A, Diao Y, Zhang W,et al. Cloning and expression of hemolytic-toxin from Actinobacillus pleuropneumoniae and the immunoprotection in mice[J]. Wei Sheng Wu Xue Bao,2008, 48(3):342-348.
    [62] Wang C, Wang Y, Shao M, et al. Positive role for rApxIVN in the immune protection of pigs against infection by Actinobacillus pleuropneumoniae[J]. Vaccine, 2009, 27(42):5816-5821.
    [63] Byrd W ,Kadis S. Preparation, characterization, and immunogenicity of conjugate vaccines directed against Actinobacillus pleuropneumoniae virulence determinants[J]. Infection and Immunity, 1992,60: 3042–3051.
    [64] Beaudet R, Mcsween G, Boulay G, et al. Protection of mice and swine against infection with Actinobacillus pleuropneumoniae by vaccination[J]. Veterinary Microbiology,1994, 39:71–81.
    [65] Madsen ME, Carnahan KG ,Thwaits RN. Evaluation of pig lungs following an experimental challenge with Actinobacillus pleuropneumoniae serotype 1 and 5 in pigs inoculated with either hemolysin protein and/or outer membrane proteins[J]. FEMS Microbiology Letters,1995, 131: 329–335.
    [66] Van Overbeke I, Chiers K, Ducatelle R,et al. Effect of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of pigs vaccinated with a vaccine containing Apx toxins and transferrin-binding proteins[J]. Journal of Veterinary Medicine,2001, 48: 15–20.
    [67] Habrun B, Bilic V, Cvetnic Z, et al. Porcine pleuropneumonia: the first evaluation of field efficacy of a subunit vaccine in Croatia[J]. Veterinary Medicine Czech,2002, 47: 213–218.
    [68] Tumamao JQ, Bowles RE, Van Den Bosch H,et al. Comparison of the efficacy of a subunit and a live streptomyc independent porcine pleuropneumonia vaccine[J]. Australian Veterinary Journal ,2004,82: 370–374.
    [69] Meeusen EN, Walker J, Peters A, et al. Current status of veterinary vaccines[J]. Clinical Microbiology Reviews, 2007,20: 489–510.
    [70] Ward CK, Inzana TJ. Resistance of Actinobacillus pleuropneumoniae to bactericidal antibody and complement is mediated by capsular polysaccharide and blocking antibody specific for lipopolysaccharide[J]. J Immunol, 1994, 153(5):2110-2121.
    [71] Perry MB. Structural analysis of the lipopolysaccharide of Actinobacillus (Haemophilus) pleuropneumoniae serotype 10[J]. Biochem Cell Biol, 1990, 68(4):808-810.
    [72] Jensen AE, Bertram TA. Morphological and biochemical comparison of virulent and avirulent isolates of Haemophilus pleuropneumoniae serotype 5[J]. Infect Immun, 1986,51(2):419-424.
    [73] Inzana TJ, Mathison B. Serotype specificity and immunogenicity of the capsular polymer of Haemophilus pleuropneumoniae serotype 5[J]. Infect Immun, 1987, 55(7):1580-1587.
    [74] Jacques M, Foiry B, Higgins R, et al. Electron microscopic examination of capsular material from various serotypes of Actinobacillus pleuropneumoniae[J]. J Bacteriol, 1988, 170(7):3314-3318.
    [75] Bertram TA. Actinobacillus pleuropneumoniae: molecular aspects of virulence and pulmonary injury[J]. Can J Vet Res, 1990,54 Suppl:S53-56.
    [76] Inzana TJ, Todd J, Veit HP. Safety, stability, and efficacy of noncapsulated mutants of Actinobacillus pleuropneumoniae for use in live vaccines[J]. Infect Immun, 1993, 61(5):1682-1686.
    [77] Rioux S, Galarneau C, Harel J,et al. Isolation and characterization of a capsule-deficient mutant of Actinobacillus pleuropneumoniae serotype 1[J]. Microb Pathog, 2000, 28(5): 279-289.
    [78] Inzana TJ, Ma J, Workman T, Gogolewski RP,et al. Virulence properties and protective efficacy of the capsular polymer of Haemophilus (Actinobacillus) pleuropneumoniae serotype 5[J]. Infection and Immunity, 1988,56:1880–1889.
    [79] Willson PJ, Rossi-Campos A ,Potter AA. Tissue reaction and immunity in swine immunized with Actinobacillus pleuropneumoniae vaccines[J]. Canadian Journal of Veterinary Research Revue Canadienne de Recherche Veterinaire,1995,59: 299–305.
    [80] Byrd W and Hooke AM. Immunization with temperaturesensitive mutants of Actinobacillus pleuropneumoniae induces protective hemolysin-neutralizing antibodies in mice[J]. Current Microbiology,1997,34: 149–154.
    [81] Perry MB, Altman E, Brisson J-R, et al. Structural characteristics of the antigenic capsular polysaccharides and lipopolysaccharides involved in the serological classification of Actinobacillus pleuropneumoniae strains[J]. Serodiagnosis and Immunotherapy of Infectious Diseases,1990,4: 299–308.
    [82] Haesebrouck F, Chiers K, Van Overbeke I, et al. Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection[J]. Vet Microbiol, 1997,58(2-4):239-249.
    [83] Rioux S, Bégin C, Dubreuil JD, et al. Isolation and characterization of LPS mutants of Actinobacillus pleuropneumoniae serotype 1[J]. Curr Microbiol, 1997,35(3):139-144.
    [84] Paradis SE, Dubreuil D, Rioux S,et al. High-molecular-mass lipopolysaccharides are involved in Actinobacillus pleuropneumoniae adherence to porcine respiratory tract cells[J]. Infect Immun, 1994 ,62(8):3311-3319.
    [85] Dubreuil JD, Jacques M, Mittal KR,et al. Actinobacillus pleuropneumoniae surface polysaccharides: their role in diagnosis and immunogenicity[J]. Anim Health Res Rev, 2000,1(2):73-93.
    [86] Jeannotte ME, Abul-Milh M, Dubreuil JD, et al. Binding of Actinobacillus pleuropneumoniae to phosphatidylethanolamine[J]. Infect Immun, 2003,71(8):4657-4663.
    [87] Udeze FA, Latimer KS, Kadis S. Role of haemophilus pleuropneumoniae lipopolysaccharide endotoxin in the pathogenesis of porcine Haemophilus pleuropneumonia[J]. Am J Vet Res, 1987,48(5):768-773.
    [88] Tascón RI, Vázquez-Boland JA, Gutiérrez-Martín CB,et al. The RTX haemolysins ApxI and ApxII are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis[J]. Mol Microbiol, 1994,14(2):207-216.
    [89] Huang H, Potter AA, Campos M, et al. Pathogenesis of porcine Actinobacillus pleuropneumonia, part II: roles of proinflammatory cytokines[J]. Can J Vet Res, 1999,63(1):69-78.
    [90] Ramjeet M, Cox AD, Hancock MA, et al. Mutation in the LPS outer core biosynthesis gene, galU, affects LPS interaction with the RTX toxins ApxI and ApxII and cytolytic activity of Actinobacillus pleuropneumoniae serotype 1[J]. Mol Microbiol, 2008,70(1):221-235.
    [91] Saze K, Kinoshita C, Shiba F, et al. Effect of passive immunization with serotype specific monoclonal antibodies on Actinobacillus pleuropneumoniae infection of mice[J]. The Journal of Veterinary Medical Science/The Japanese Society of Veterinary Science ,1994,56: 97–102.
    [92] Rioux S, Dubreuil D, Begin C, et al. Evaluation of protective efficacy of an Actinobacillus pleuropneumoniae serotype 1 lipopolysaccharide protein conjugate in mice[J]. Comparative Immunology, Microbiology and Infectious Diseases, 1997,20: 63–74.
    [93] Rioux S, Girard C, Dubreuil JD ,et al. Evaluation of the protective efficacy of Actinobacillus pleuropneumoniae serotype 1 detoxified lipopolysaccharides or O-polysaccharide- protein conjugate in pigs[J]. Research in Veterinary Science,1998 ,65: 165–167.
    [94] Shakarji L, Mikael LG, Srikumar R, et al. Fhua and HgbA, outer membrane proteins of Actinobacillus pleuropneumoniae: their role as virulence determinants[J]. Can J Microbiol, 2006, 52(4):391-396.
    [95] Baltes N, Tonpitak W, Hennig-Pauka I,et al. Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence[J]. FEMS Microbiol Lett, 2003,220(1):41-48.
    [96] Gerlach GF, Anderson C, Klashinsky S, et al. Molecular characterization of a protective outer membrane lipoprotein (OmlA) from Actinobacillus pleuropneumoniae serotype 1[J]. Infect Immun, 1993,61(2):565-572.
    [97] Oldfield NJ, Donovan EA, Worrall KE,et al. Identification and characterization of novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae[J]. Vaccine, 2008, 26(16):1942-1954.
    [98] Van Den Bosch H , Frey J. Interference of outer membrane protein PalA with protective immunity against Actinobacillus pleuropneumoniae infections in vaccinated pigs[J]. Vaccine, 2003,21: 3601–3607.
    [99] Liao Y, Deng J, Zhang A, et al. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3[J]. BMC Microbiol, 2009,9:172.
    [100] Nielson R. Seroepidemiology of Actinobacillus pleuropneumoniae[J]. Can Vet J, 1988, 29 (2): 580-582.
    [101] Gonzalez GC, Yu RH, Rosteck PR Jr,et al. Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes[J]. Microbiology, 1995,141 (Pt 10):2405-2416.
    [102] Fuller TE, Mulks MH. Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes[J]. J Bacteriol, 1995,77(24):7265-7270.
    [103] Baltes N, Tonpitak W, Gerlach GF,et al. Actinobacillus pleuropneumoniae iron transport and urease activity: effects on bacterial virulence and host immune response[J]. Infect Immun, 2001,69(1):472-478.
    [104] Baltes N, Hennig-Pauka I, Gerlach GF. Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection[J]. FEMS Microbiol Lett, 2002,209(2):283-287.
    [105] Kim T, Lee J. Cloning and expression of genes encoding transferrin-binding protein A and B from Actinobacillus pleuropneumoniae serotype 5[J]. Protein Expr Purif, 2006, 45(1): 235-240.
    [106] Gerlach GF, Klashinsky S, Anderson C, et al. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates[J]. Infect Immun, 1992,60(8):3253-3261.
    [107] Zhang Y, Tennent JM, Ingham A, et al. Identification of type 4 fimbriae in Actinobacillus pleuropneumoniae[J]. FEMS Microbiol Lett, 2000,189(1):15-18.
    [108] Van Overbeke I, Chiers K, Charlier G, et al. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells[J]. Vet Microbiol, 2002,88(1):59-74.
    [109] Boekema BK, Van Putten JP, Stockhofe-Zurwieden N, et al. Host cell contact-induced transcription of the type IV fimbria gene cluster of Actinobacillus pleuropneumoniae[J]. Infect Immun, 2004,72(2):691-700.
    [110] Xu Z, Zhou Y, Li L,et al. Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China[J]. PLoS One, 2008, 3(1):e1450.
    [111] Kachlany SC, Planet PJ, Bhattacharjee MK, et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea[J]. J Bacteriol, 2000,182(21):6169-6176.
    [112] Kachlany SC, Planet PJ, DeSalle R,et al. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum[J]. Trends Microbiol, 2001,9(9):429-437.
    [113] Auger E, Deslandes V, Ramjeet M, et al. Host-pathogen interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells[J]. Infect Immun, 2009 ,77(4):1426-1441.
    [114] Labrie J, Pelletier-Jacques G, Deslandes V, et al. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae[J]. Vet Res, 2010,41(1):3.
    [115] Negrete-Abascal E, Tenorio VR, Serrano JJ, et al. Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A[J]. Can J Vet Res, 1994,58(2):83-86.
    [116] Negrete-Abascal E, Tenorio VR, Guerrero AL,et al. Purification and characterization of a protease from Actinobacillus pleuropneumoniae serotype 1, an antigen common to all the serotypes[J]. Can J Vet Res, 1998,62(3):183-190.
    [117] Negrete-Abascal E, García RM, Reyes ME,et al. Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins[J]. FEMS Microbiol Lett, 2000,191(1):109-113.
    [118] García-Cuéllar C, Monta?ez C, Tenorio V,et al. A 24-kDa cloned zinc metalloprotease from Actinobacillus pleuropneumoniae is common to all serotypes and cleaves actin in vitro[J]. Can J Vet Res, 2000,64(2):88-95.
    [119] García González O, García RM, de la Garza M,et al. Actinobacillus pleuropneumoniae metalloprotease: cloning and in vivo expression[J]. FEMS Microbiol Lett, 2004,234(1):81-86.
    [120] Tegetmeyer HE, Fricke K, Baltes N. An isogenic Actinobacillus pleuropneumoniae AasP mutant exhibits altered biofilm formation but retains virulence[J]. Vet Microbiol,2009, 137(3-4):392-396.
    [121] Oldfield NJ, Worrall KE, Rycroft AN, et al. AasP autotransporter protein of Actinobacillus pleuropneumoniae does not protect pigs against homologous challenge[J]. Vaccine, 2009,27(38):5278-5283.
    [122] BosséJT, MacInnes JI. Genetic and biochemical analyses of Actinobacillus pleuropneumoniae urease[J]. Infect Immun, 1997,65(11):4389-4394.
    [123] Tascón Cabrero RI, Vázquez-Boland JA, Gutiérrez CB,et al. Actinobacillus pleuropneumoniae does not require urease activity to produce acute swine pleuropneumonia[J]. FEMS Microbiol Lett, 1997 ,148(1):53-57.
    [124] BosséJT, MacInnes JI. Urease activity may contribute to the ability of Actinobacillus pleuropneumoniae to establish infection[J]. Can J Vet Res, 2000,4(3):145-150.
    [125] Izano EA, Sadovskaya I, Vinogradov E, et al. Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae[J]. Microb Pathog,2007,43(1):1-9.
    [126] Li L, Zhou R, Li T,et al. Enhanced biofilm formation and reduced virulence of Actinobacillus pleuropneumoniae luxS mutant[J]. Microb Pathog, 2008,45(3):192-200.
    [127] Buettner FF, Maas A, Gerlach GF. An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation[J]. Vet Microbiol, 2008, 127(1-2): 106-115.
    [128] Buettner FF, Bendallah IM, Bosse JT,et al.Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence[J]. Infect Immun, 2008, 76(6):2284-2295.
    [129] Dalai B, Zhou R, Wan Y, et al. Histone-like protein H-NS regulates biofilm formation and virulence of Actinobacillus pleuropneumoniae[J]. Microb Pathog, 2009, 46(3):128-134.
    [130] Buettner FF, Bendalla IM, BosséJT,et al. Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor[J]. Proteomics, 2009, 9(9):2383-2398.
    [131] Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host[J]. Adv Food Nutr Res, 2009;55:101-161.
    [132] Klemm P, Schembri MA. Bacterial adhesins: function and structure[J]. Int J Med Microbiol, 2000, 290(1):27-35.
    [133] Girard V, Mourez M. Adhesion mediated by autotransporters of Gram-negative bacteria: structural and functional features[J]. Res Microbiol, 2006,157(5):407-416.
    [134] Desvaux M, Parham NJ, Henderson IR. The autotransporter secretion system[J]. Res Microbiol, 2004,155(2):53-60.
    [135] Henderson IR, Nataro JP. Virulence functions of autotransporter proteins[J]. Infect Immun, 2001,69(3):1231-1243.
    [136] Linke D, Riess T, Autenrieth IB, et al. Trimeric autotransporter adhesins: variable structure, common function[J].Trends Microbiol,2006,14(6):264-270.
    [137] Veiga E, Sugawara E, Nikaido H, et al. Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains[J]. EMBO J, 2002, 21(9):2122-2131.
    [138] Cotter SE, Surana NK, St Geme JW 3rd. Trimeric autotransporters: a distinct subfamily of autotransporter proteins[J]. Trends Microbiol, 2005,13(5):199-205.
    [139] Oliver DC, Huang G, Nodel E, et al. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain[J]. Mol Microbiol, 2003,47(5):1367-1383.
    [140] Jacob-Dubuisson F, Fernandez R, Coutte L. Protein secretion through autotransporter and two-partner pathways[J]. Biochim Biophys Acta, 2004,1694(1-3):235-257.
    [141] Szczesny P, Lupas A. Domain annotation of trimeric autotransporter adhesins--daTAA[J]. Bioinformatics, 2008,24(10):1251-1256.
    [142] Hoiczyk E, Roggenkamp A, Reichenbecher M, et al. Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins[J]. EMBO J, 2000,19(22):5989-5999.
    [143] Meng G, Surana NK, St Geme JW 3rd, et al. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter[J]. EMBO J, 2006,25(11):2297-2304.
    [144] Roggenkamp A, Ackermann N, Jacobi CA, et al. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA[J]. J Bacteriol, 2003,185(13):3735-3744.
    [145] Riess T, Andersson SG, Lupas A, et al. Bartonella adhesin a mediates a proangiogenic host cell response[J]. J Exp Med, 2004,200(10): 1267-1278.
    [146] Nummelin H, Merckel MC, Leo JC, et al. The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll[J]. EMBO J, 2004,23(4):701-711.
    [147] Schmid Y, Grassl GA, Bühler OT, et al. Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells[J]. Infect Immun, 2004, 72(12):6780-6789.
    [148] Yeo HJ, Cotter SE, Laarmann S, et al. Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter[J]. EMBO J, 2004, 23(6):1245-1256.
    [149] Leininger E, Roberts M, Kenimer JG, et al. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells[J]. Proc Natl Acad Sci U S A, 1991,88(2):345-349.
    [150] Serruto D, Adu-Bobie J, Scarselli M, et al. Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity[J]. Mol Microbiol, 2003,48(2):323-334.
    [151] Emsley P, Charles IG, Fairweather NF, et al. Structure of Bordetella pertussis virulence factor P.69 pertactin[J]. Nature, 1996, 381(6577):90-92.
    [152] Lindenthal C, Elsinghorst EA.Identification of a glycoprotein produced by enterotoxigenic Escherichia coli[J]. Infect Immun, 1999, 67(8):4084-4091.
    [153] Anderson BE, McDonald GA, Jones DC, et al. A protective protein antigen of Rickettsia rickettsii has tandemly repeated, near-identical sequences[J]. Infect Immun, 1990,58(9): 2760-2769.
    [154] Hendrixson DR, St Geme JW 3rd. The Haemophilus influenzae Hap serine protease promotes adherence and microcolony formation, potentiated by a soluble host protein[J]. Mol Cell, 1998,2(6):841-850.
    [155] Klemm P, Hjerrild L, Gjermansen M, et al. Structure-function analysis of the self-recognizing Antigen 43 autotransporter protein from Escherichia coli[J]. Mol Microbiol, 2004,51(1):283-296.
    [156] Sherlock O, Schembri MA, Reisner A, et al. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation[J]. J Bacteriol, 2004, 186(23):8058-8065.
    [157] Sherlock O, Vejborg RM, Klemm P.The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation[J]. Infect Immun, 2005,73(4):1954-1963.
    [158] Otto BR, Sijbrandi R, Luirink J, et al. Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli[J]. J Biol Chem, 2005, 280(17):17339-17345.
    [159] Timpe JM, Holm MM, Vanlerberg SL, et al.Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities[J]. Infect Immun, 2003, 71(8):4341-4350.
    [160] Jefferson T, Rudin M, DiPietrantonj C. Systematic review of the effects of pertussis vaccines in children[J]. Vaccine, 2003,21(17-18):2003-2014.
    [161] Cherry JD, Gornbein J, Heininger U, et al.A search for serologic correlates of immunity to Bordetella pertussis cough illnesses[J]. Vaccine, 1998, 16(20):1901-1906.
    [162] Hewlett EL, Halperin SA. Serological correlates of immunity to Bordetella pertussis[J]. Vaccine, 1998, 16(20):1899-1900.
    [163] Storsaeter J, Hallander HO, Gustafsson L, et al. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis[J]. Vaccine, 1998,16(20): 1907-1916.
    [164] Marr N, Oliver DC, Laurent V, et al. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model[J]. Vaccine, 2008,26(34):4306-4311.
    [165] Cutter D, Mason KW, Howell AP, et al. Immunization with Haemophilus influenzae Hap adhesin protects against nasopharyngeal colonization in experimental mice[J]. J Infect Dis, 2002,186(8):1115-1121.
    [166] Winter LE, Barenkamp SJ.Antibodies specific for the Hia adhesion proteins of nontypeable Haemophilus influenzae mediate opsonophagocytic activity[J]. Clin Vaccine Immunol, 2009, 16(7):1040-1046
    [167] Daigneault MC, Lo RY. Analysis of a collagen-binding trimeric autotransporter adhesin from Mannheimia haemolytica A1[J]. FEMS Microbiol Lett, 2009, 300(2):242-248.
    [168] Lisitsyn N, Wigler M. Cloning the differences between two complex genomes[J]. Science, 1993,259(5097):948-951.[169]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].第3版.黄培堂,译.北京:科学出版社,2002.
    [170] Lancashire JF, Turni C, Blackall PJ, et al. Rapid and efficient screening of a Representational Difference Analysis library using reverse Southern hybridisation: identification of genetic differences between Haemophilus parasuis isolates[J]. J Microbiol Methods, 2007, 68(2): 326-330.
    [171] Desrosiers R, Mittal K R, Malo R. Porcine pleuropneumonia associated with Haemophilus pleuropneumoniae serotype 3 in Quebec[J] . Vet Rec, 1984,115 (24):628-629.
    [172]逯忠新,赵萍,邵英德,等.猪传染性胸膜肺炎三价灭活疫苗的研究—菌种选择、疫苗制备及安全性试验[J].中国兽医科技,2002 ,37 (3) :7-9.
    [173] Tascon R L,Vazquez-Bolend J A, Gutierrez-Martin C B,et al. The RTX haemolysins APXⅠand APXⅡare major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae : evidence from mutational analysis[J]. Molecular Microbiology, 1994, 14(2): 207-216.
    [174] Hubank M, Schatz DG. Identifying in mRNA expression by representational difference analysis of cDNA[J]. Nucleic Acids Res, 1994,22(25):5640-5648.
    [175] Tsucbiya H, Tsuchiya Y, Kobayashi T, et al.Isolation of genes differentially expressed between the Yoshida sarcoma and long-survival Yoshida Sarcoma variants: origin of Yoshida sarcoma revisited[J]. J Neurovirol,1996,2(4):240-248.
    [176] Blanc-Potard AB, Tinsley C, Scaletsky I, et al. Representational Difference Analysis between Afa/Dr Diffusely Adhering Escherichia coli and Nonpathogenic E.coli K-12[J]. Infect Immun, 2002,70(10):5503-5511.
    [177] Choi JY, Sifri CD, Goumnerov BC, et al. Identification of Virulence Genes in a Pathogenic Strain of Pseudomonas aeruginosa by Representational Difference Analysis[J].J Bacteriol, 2002,184(4):952-961.
    [178] Taylor DL, Ward PN, Rapier CD, et al.Identification of a differentially expressed oligopeptide binding protein (oppa2) in streptococcus uberis by representational difference analysis of cDNA[J]. J Bacteriol, 2003, 185(17): 5210-5219.
    [179] Marsh IB,Bannantine JP,Paustian ML,et al.Genomic Comparison of Myco-bacterium avium subsp.paratuberculosis Sheep and Cattle Strains by Microarray Hybridization[J]. J Bacteriol. 2006, 188(6):2290-2293.
    [180] Mittal KR, Higgins R, Lariviere S. An evaluation of agglutination and coagglutination techniques for serotyping of Haemophilus pleuropneumoniae isolates[J]. Am J Vet Res, 1987, 48: 219-226.
    [181] Inzana TJ, Clark GF, Todd J. Detection of serotype-specific antibodies or capsular antigen of Actinobacillus pleuropneumoniae by a double-label radioimmunoassay[J]. J Clin Microbiol, 1990,28: 312-318.
    [182] Du A, Diao Y, Zhang W, et al. Cloning and expression of hemolytic-toxin from Actinobacillus pleuropneumoniae and the immunoprotection in mice[J]. Wei Sheng Wu Xue Bao, 2008, 48: 342-348.
    [183] Larue K, Kimber MS, Ford R ,et al. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure[J]. J Biol Chem,2009, 284: 7395-7403.
    [184] Kintz E, Scarff JM, DiGiandomenico A ,et al. Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103[J]. J Bacteriol ,2008,190: 2709-2716.
    [185] Marolda CL, Haggerty ER, Lung M ,et al. Functional analysis of predicted coiled-coil regions in the Escherichia coli K-12 O-antigen polysaccharide chain length determinant Wzz[J]. J Bacteriol,2008,190: 2128-2137.
    [186] Purins L, Van Den Bosch L, Richardson V, et al. Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2[J]. Microbiology,2008,154: 1104-1116.
    [187] Cuthbertson L, Kimber MS, Whitfield C. Substrate binding by a bacterial ABC transporter involved in polysaccharide export[J]. Proc Natl Acad Sci U S A ,2007,104: 19529-19534.
    [188]路菊,孙玮,陈德英.免疫荧光双重染色的激光共聚焦显微镜样品制备及观察[J].免疫学杂志, 2007 ,23 (3) :22-26.
    [189] Charland N , Nizet V , Rubens CE , et al. Streptococcus suis serotype 2 interactions with human brain microvascular endothelial cells[J]. Infection and Immunity, 2000, 68 (2):637-643.
    [190]王世若,王兴龙,韩文瑜.现代动物免疫学[M].第二版.吉林:吉林科技出版社,2001.
    [191] Wells TJ, Tree JJ, Ulett GC, et al. Autotransporter proteins: novel targets at the bacterial cell surface[J]. FEMS Microbiol Lett,2007,274(2):163-172.
    [192] Pina S, Olvera A, BarcelóA, et al. Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains[J]. J Bacteriol, 2009, 191(2):576-587.
    [193] Jacq C, Miller J R, Brownlee G G. A pseudogene structure in 5S DNA of Xenopus laevis[J]. Cell, 1977, 12(1):109-120.
    [194] Zhang Z, Gerstein M. Identification and characterization of over 100 mitochondrial ribosomal protein pseudogenes in the human genome[J]. Genomics, 2003,81(5):468-480.
    [195]赵云航,康相涛,孙桂荣,等.假基因的研究现状及展望[J].中国畜牧兽医,2008,35 (7):70-72.
    [196] Zuckerkandl E. Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine[J].Genetica,2002,115(1):105-129.
    [197] Balakirev ES, Ayala FJ. Pseudogene: are they“junk”or functional DNA? [J].Annu Rev Genet,2003,37:123-151.
    [198] Zhang H, Zhang R, Liang P. Differential screening of differential display cDNA products by reverse northern[J]. Methods Mol Biol,1997,85:87-93.
    [199] Nielsen KK, Boye M. Real-Time Quantitative Reverse Transcription-PCR Analysis of Expression Stability of Actinobacillus pleuropneumoniae Housekeeping Genes during In Vitro Growth under Iron-Depleted Conditions[J]. Appl Environ Microbiol, 2005, 71(6):2949-2954.
    [200] Jimenez N, Canals R, Salo M T, et al. The Aeromonas hydrophila wb*O34 gene cluster: genetics and temperature regulation[J]. J Bacteriol, 2008,190: 4198-4209.
    [201] Provost M, Harel J, Labrie J, et al. Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis[J]. FEMS Microbiol Lett, 2003, 223: 7-14.
    [202] Guo H, Lokko K, Zhang Y, et al.Overexpression and characterization of Wzz of Escherichia coli O86:H2[J]. Protein Expr Purif ,2006,48: 49-55.
    [203] Schmalhorst P S, Krappmann S, Vervecken W, et al. Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus[J]. Eukaryot Cell,2008,7: 1268-1277.
    [204] Kleczka B, Lamerz A C, van Zandbergen G, et al. Targeted gene deletion of Leishmania major UDP-galactopyranose mutase leads to attenuated virulence[J]. J Biol Chem,2007,282: 10498-10505.
    [205] Boyce J D, Harper M, St Michael F, et al. Identification of novel glycosyltransferases required for assembly of the Pasteurella multocida A:1 lipopolysaccharide and their involvement in virulence[J]. Infect Immun,2009,77: 1532-1542.
    [206] Forquin M P, Tazi A, Rosa-Fraile M, et al. The putative glycosyltransferase-encoding gene cylJ and the group B Streptococcus (GBS)-specific gene cylK modulate hemolysin production and virulence of GBS[J]. Infect Immun, 2007,75: 2063-2066.
    [207] Najdenski H, Golkocheva E, Vesselinova A, et al. Proper expression of the O-antigen of lipopolysaccharide is essential for the virulence of Yersinia enterocolitica O:8 in experimental oral infection of rabbits[J]. FEMS Immunol Med Microbiol,2003,38: 97-106.
    [208] Ponte-Sucre A. Availability and applications of ATP-binding cassette (ABC) transporter blockers[J]. Appl Microbiol Biotechnol,2007,76: 279-286.
    [209] Davidson A L, Chen J. ATP-binding cassette transporters in bacteria[J]. Annu Rev Biochem, 2004,73: 241-268.
    [210] Garmory H S, Titball R W. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies[J]. Infect Immun, 2004,72: 6757-6763.
    [211] Porankiewicz J, Wang J, Clarke A K. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond[J]. Mol Microbiol ,1999,32: 449-458.
    [212] Banerjee A, Biswas I. Markerless multiple-gene-deletion system for Streptococcus mutans[J].Appl Environ Microbiol,2008,74: 2037-2042.
    [213] Yu AY, Houry W A. ClpP: a distinctive family of cylindrical energy-dependent serine proteases[J]. FEBS Lett,2007,581: 3749-3757.
    [214] Butler S M, Festa R A, Pearce M J, et al. Self-compartmentalized bacterial proteases and pathogenesis[J]. Mol Microbiol,2006,60: 553-562.
    [215] Lemos J A, Burne R A. Regulation and Physiological Significance of ClpC and ClpP in Streptococcus mutans[J]. J Bacteriol, 2002,184: 6357-6366.
    [216] O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis[J]. Mol Microbiol, 1998, 28: 449-461.
    [217] Wang C, Li M, Dong D, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis[J]. Microbes Infect, 2007, 9: 1376-1383.
    [218]潘风光.MDV致瘤的分子机理: [博士学位论文].吉林长春:吉林大学, 2007.
    [219]张驰宇,成婧,李全双,等.荧光实时定量的研究进展[J].江苏大学学报(医学版) 2006,16 (3):268-270.
    [220]余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异[J].作物学报,2007,33 (7) :1214-1218.
    [221] Gottesman S, Clark WP, Maurizi MR. The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate[J]. J Biol Chem, 1990, 265(14):7886-7893.
    [222] Frees D, Ingmer H. ClpP participates in the degradation of misfolded protein in Lactococcus lactis [J] . Mol Microbiol,1999, 31(1):79-87.
    [223] Volker U , Engelmann S , Maul B , et al . Analysis of induction of general stress proteins of Bacillus subtilis[J]. Microbiology, 1994 , 140(Pt4) :741-752.
    [224] Cao J, Chen D, Xu W,et al. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP[J].Vaccine, 2007,25(27): 4996-5005.
    [225]陈怡婷,曹炬,李岱容. ClpP粘膜免疫预防小鼠发生肺炎链球菌性肺炎和败血症[J].中国免疫学杂志,2009,25(6):556-559.
    [226] Cao J, Li D, Gong Y, et al. Caseinolytic protease: a protein vaccine which could elicit serotype-independent protection against invasive pneumococcal infection[J]. Clin Exp Immunol, 2009,156(1):52-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700