加热表面上气泡传热及动力学特性的LBM模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气泡的运动、变形长大是气液两相流及传热传质领域中十分重要的现象,对气泡传热及动力学特性的研究也是气液两相流及传热传质领域的重要课题。一般来讲,根据所处环境的不同,气液两相流可以分为等温和非等温系统。在等温系统中,压力主导气液界面的非稳定变形,不涉及相变。而在非等温系统中,相变主导气泡变形且伴随界面处的传热传质。气泡现象在自然界和工业生产过程中广泛存在。例如:制冷系统中制冷剂的循环过程;液压系统的气穴现象;天然气的开采和运输以及沸腾现象等。研究气泡动力学特性和传热传质机理有助于工业设备的设计及操作。因此,对气液两相流及传热传质的研究受到越来越多的重视。
     格子Boltzmann方法作为一种新兴的数值方法,具有并行能力强,物理图像清晰,边界条件易处理等诸多优点。因此,在气液两相流问题的研究上体现了较大的优势和很强的适应性。本文以气液两相流为研究对象,应用格子Boltzmann方法,对气泡分别在等温和非等温环境中的动力学特性和传热传质机理进行数值模拟研究。所获结果不仅为格子Boltzmann方法在两相流领域的应用进行了一些探索,也为相关领域的理论和实验研究提供了有意义的参考。
     首先,为了验证格子Boltzmann方法用于研究等温系统气液两相流的适用性,基于自由能模型,模拟了气泡群在黏性不可压缩流体中的上升过程。由于气液密度比过大容易造成数值不稳定问题,本文采用精度更高酌八点差分和十八点差分格式以避免产生数值震荡。在此基础上对气泡群的流动特点和相互作用规律进行数值研究。模拟结果表明气泡之间的影响程度不仅取决于相对位置和距离,还取决于相对体积的大小。另外,鉴于自由能模型在处理界面时的特点,该方法可以向非等温系统的气液两相流推广应用。
     为了进一步研究格子Boltzmann方法的传热模型,本文对单相流体在三角形和矩形结构表面的流动特性和换热特性进行了数值研究,探索格子Boltzmann方法在解决传热问题中的可行性。通过对流场的平均温度、出口温度和壁面平均Nu数的比较发现,矩形结构表面具有较好的对流换热性能。在场协同原理基础上对该结论进行分析。数值结果不仅证明了格子Boltzmann方法适用于研究对流换热问题,还为等温两相流推广到非等温系统的研究奠定基础。
     联合上述自由能模型和热模型,可以构造一个能够描述相变的格子Boltzmann复合模型,本文应用该模型对蒸汽泡在水平和竖直加热表面上的行为机理进行了数值研究。详细地讨论了不同沸腾状态下气泡的动力学特性及传热传质机理。模拟结果表明,当水平壁面发生核态沸腾时,微对流对气泡的生长过程起到非常关键的作用。当水平壁面发生流动沸腾时,热量主要以核态沸腾和强制对流的方式传递。对多气泡在竖直壁面上生长过程的研究表明,过渡沸腾是一个膜态沸腾和核态沸腾在加热壁面上交替进行的过程。对气泡脱离直径和脱离频率的研究呈现了正确的参数关联。
     借鉴二维模型处理气液相变时的思路,本文提出一个新的三维格子Boltzmann相变模型。应用新模型在三维条件下模拟了单气泡和双气泡在水平壁面上生长、融合及脱离的过程,并与实验结果比较。数值结果准确、清晰地展现了沸腾过程中气泡的动力学特性,证实了新模型模拟沸腾现象的准确性和可行性。
     最后,利用格子Boltzmann方法在处理复杂边界时的独特优势,对气泡在不同结构的强化表面上的生长过程及传热传质机理进行数值研究。详细讨论了气泡当量直径、脱离频率以及平均Nu数对沸腾过程中气泡动力学特性和传热传质的影响。数值结果表明,T型强化表面具有最好的换热性能;而水平壁面具有最低的换热性能。在此基础上,分析了强化表面能够增强核态沸腾热传递的原因。
Bubble motion and deformation are extremely important phenomena in the field of gas-liquid two-phase flow. The investigations on characteristics of bubble thermokinetics are also important subject of scientific research in gas-liquid two-phase flow. Generally speaking, depending on the circumstances, gas-liquid two-phase flow can be divided into isothermal and non-isothermal system. In isothermal system, pressure leads to unsteady deformation of gas-liquid interface, which does not involve phase-change. In non-thermal system, phase-change leads to bubble deformation accompanying with heat and mass transfer at interface. Bubble phenomena exist extensively in nature and industrial processes, such as the cyclic process of refrigerant in refrigerating system, cloud cavitation in hydraulic system, exploit and transit of natural gas, boiling phenomenon and so on. The investigations on the characteristics of bubble dynamics and on the mechanism of heat and mass transfer are conductive to the industrial equipment design and operation. Therefore, the studies of two-phase flow have begun to receive more and more attention.
     As an emerging numerical method, lattice Boltzmann method (LBM) has strong parallel computing ability, clear physical image and terseness advantage in deal with complex boundary. Thus, it has advantages and applicability for simulation of gas-liquid two-phase flow. In this paper, LBM is used to numerically investigate the characteristics of bubble dynamics and the mechanism of heat and mass transfer in isothermal and non-isothermal system, respectively. The obtained results furnish a reference for generalizing LBM in relevant theoretical and experimental studies.
     At first, to verify the feasibility of LBM in research of two-phase flow in isothermal system, based on the free energy model, multiple bubbles rising in a quiescent viscous incompressible fluid is simulated. Due to the numerical instability caused by a large density ratio, eight-point and eighteen-point difference schemes are used to avoid numerical oscillation. The simulation results present flow characteristics and interaction as follows. The strength of influence between two bubbles depends on not only the distance and the relative position, but also the initial size. In addition, this method can be extended to non-isothermal system in consideration of the characteristics in capturing the interface.
     In order to further study on lattice Boltzmann thermal model, the characteristics of flow and heat transfer of fluid in the triangular and rectangular structure surfaces are investigated. Through the comparisons of average temperature, outlet temperature and average Nu, it is found that the rectangular structure surface possesses better heat transfer performance. This conclusion is analysed based on field synergy principle. The numerical results not only prove the feasibility of thermal model in research of convection heat transfer, but also lay the foundation for the studies of two-phase flow in non-thermal system.
     Combining the free energy model with the thermal model above, a hybrid LBM can be used to describe phase-change. This hybrid model is used to simulate the dynamics behaviour of vapor bubble growth on horizontal and vertical superheated wall. The simlated results shows micro-convection plays a crucial role during nucleate boiling process. While during the flow boiling, the main ways of heat transfer are nucleate boiling and forced convection. Multi-bubble growth on and departure form vertical wall is studied by present model. The simulated results show transition boiling is a combination of film and nucleate boiling alternatively existing on the superheated wall. The numerical results exhibited correct parametric dependencies of the bubble departure diameter and bubble release frequency.
     A new three-dimensional lattice Boltzmann model for phase change is proposed. The processes of bubbles growth, coalescences and departure on horizontal wall are simulated by this new model. The simulated results show the dynamics characteristics of vapor bubble during nucleate boiling accurately and clearly. The results confirm the applicability and feasibility of the model for numerical simulation of boiling phenomenon.
     Finally, the process of bubble growth on enhanced surface and heat/mass transfer mechanism on enhanced surface are investigated due to terseness advantage of lattice Boltzmann method in deal with complex boundary. The effect of bubble equivalent diameter, release frequence and Nu on nucleate boiling are analysed detailly. Simulated results present that the T-shaped surface possesses the best heat transfer performance, while the plain surface possesses the lowest heat transfer performance. Based on the numerical results, the reasons for high heat transfer performance of enhanced surfaces are analyzed.
引文
[1]孙涛,李维仲,杨柏丞,等.气泡群上升过程相互作用的格子boltzmann三维数值模拟[J].化工学报,2013,64(5):1586-1591.
    [2]Darmana D., Deen N. G., Kuipers J. A. M. Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model [J].Chemical Engineering Science,2005,60(12):3383-3404.
    [3]Montes F. J., Galan M. A., Cerro R. L. Mass transfer from oscillating bubbles in bioreactors [J].Chemical engineering science,1999,54(15):3127-3136.
    [4]Batchelor G. K., An introduction to fluid dynamics.2000:Cambridge university press.
    [5]Hill J. M., One-dimensional stefan problems:An introduction.1987:Longman Scientific & Technical.
    [6]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity [J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.
    [7]Plesset M.S., Chapman R. B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J].J. Fluid Mech,1971,47(2):283-290.
    [8]Mikic B. B., Rohsenow W. M., Griffith P. On bubble growth rates [J]. International Journal of Heat and Mass Transfer,1970,13(4):657-666.
    [9]Haberman W. L., Morton R. K. An experimental study of bubbles moving in liquids.1954.
    [10]Hnat J. G., Buckmaster J. D. Spherical cap bubbles and skirt formation [J].physics of Fluids,1976,19:182.
    [11]Bhaga D.,Weber M.E. Bubbles in viscous liquids:Shapes, wakes and velocities [J]. Journal of Fluid Mechanics,1981,105(1):61-85.
    [12]Manga M., Stone H. A. Collective hydrodynamics of deformable drops and bubbles in dilute low reynolds number suspensions [J]. Journal of Fluid Mechanics,1995,300(1):231-263.
    [13]Hartunian R.A.,Sears W. R., On the instability of small gas bubbles moving uniformly in various liquids[D].Cambridge Univ Press,1956.
    [14]Wu M.,Gharib M. Experimental studies on the shape and path of small air bubbles rising in clean water [J].Physics of Fluids,2002,14(7):L49-L52.
    [15]Duineveld P. C. The rise velocity and shape of bubbles in pure water at high reynolds number [J].Journal of Fluid Mechanics,1995,292:325-332.
    [16]Zhang L., Yang C., Mao Z.-S. Unsteady motion of a single bubble in highly viscous liquid and empirical correlation of drag coefficient [J]. Chemical Engineering Science,2008, 63(8):2099-2106.
    [17]Magnaudet J., Eames I. The motion of high-reynolds-number bubbles in inhomogeneous flows [J].Annual Review of Fluid Mechanics,2000,32(1):659-708.
    [18]Gaertner R. F. Photographic study of nucleate pool boiling on a horizontal surface [J].Journal of Heat Transfer,1965,87:17.
    [19]Judd R. L., Hwang K. S. Comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation [J].J. Heat Transfer;(United States),1976,98(4).
    [20]Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. AIChE Journal,1960,6(4):533-538.
    [21]Chen T.,Chung J.N. Coalescence of bubbles in nucleate boiling on microheaters [J].International journal of heat and mass transfer,2002,45(11):2329-2341.
    [22]Dhir V. K. Nucleate and transition boiling heat transfer under pool and external flow conditions [J]. international Journal of heat and fluid flow,1991,12(4):290-314.
    [23]Berenson P. J. Experiments on pool-boiling heat transfer [J]. International Journal of Heat and Mass Transfer,1962,5(10):985-999.
    [24]Chen T., Chung J. N. Heat-transfer effects of coalescence of bubbles from various site distributions [J].Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,2003,459(2038):2497-2527.
    [25]Han C.Y.,Griffith P., The mechanism of heat transfer in nucleate pool boiling[R]. Cambridge, Mass:MIT Division of Sponsored Research,1962.
    [26]Staniszewski B. E., Nucleate boiling bubble growth and departure[R]. Cambridge, Mass. Massachusetts Institute of Technology, Division of Industrial Cooperation,1959.
    [27]Zuber N. Nucleate boiling. The region of isolated bubbles and the similarity with natural convection [J]. International Journal of Heat and Mas;; Transfer,1963,6(1):53-60, IN51-IN52,61-78.
    [28]Van Helden W. G. J., Van der Geld C. W. M., Boot P. G. M. Forces on bubbles growing and detaching in flow along a vertical wall [J].International journal of heat and mass transfer,1995,38(11):2075-2088.
    [29]Thorncroft G. E., Klausnera J. F., Mei R. An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling [J]. International journal of heat and mass transfer,1998,41(23):3857-3871.
    [30]Okawa T., Ishida T., Kataoka I., et al. An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling [J]. Experimental thermal and fluid science,2005,29(3):287-294.
    [31]Nakayama W., Daikoku T., Kuwahara H., et al. Dynamic model of enhanced boiling heat transfer on porous surfaces [J]. Journal of Heat Transfer,1980,102:445.
    [32]Thome J.R., Enhanced boiling heat transfer[M]. Vol.4.1990:Hemisphere Publishing Corporation New York.
    [33]Thome J. R. Engineering data book iii [J]. Wolverine Tube Inc,2004.
    [34]Chien L. H.,Webb R. L. A parametric study of nucleate boiling on structured surfaces, part i:Effect of tunnel dimensions [J]. Journal of heat transfer,1998,120(4):1042-1048.
    [35]Chien L. H.,Webb R. L. A parametric study of nucleate boiling on structured surfaces, part ii:Effect of pore diameter and pore pitch [J]. Journal of heat transfer,1998,120 (4): 1049-1054.
    [36]Chien L.-H., Webb R. L. Measurement of bubble dynamics on an enhanced boiling surface [J].Experimental thermal and fluid science,1998,16(3):177-186.
    [37]Chien L.-H.,Webb R. L. Visualization of pool boiling on enhanced surfaces [J].Experimental thermal and fluid science,1998,16(4):332-341.
    [38]Kuo C.-J., Kosar A., Peles Y., et al. Bubble dynamics during boiling in enhanced surface microchannels [J].Microelectromechanical Systems, Journal of,2006,15(6):1514-1527.
    [39]Xin M.-D., Chao Y.-D. Analysis and experiment of boiling heat transfer on t-shaped finned surfaces [J]. Chemical Engineering Communications,1987,50(1-6):185-199.
    [40]Chern I.L., Glimm J., McBryan O., et al. Front tracking for gas dynamics [J]. Journal of Computational Physics,1986,62(1):83-110.
    [41]Marshall G. A front tracking method for one-dimensional moving boundary problems [J].SIAM journal on scientific and statistical computing,1986,7(1):252-263.
    [42]Charrier P..Tessieras B. On front-tracking methods applied to hyperbolic systems of nonlinear conservation laws [J].SIAM journal on numerical analysis,1986,23(8):461-472.
    [43]Unverdi S.0.,Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows [J]. Journal of computational physics,1992,100(1):25-37.
    [44]Duineveld P. C. Bouncing and coalescence of two bubbles in water [J].Ph. D. thesis, Twente University,1994.
    [45]Esmaeeli A., Tryggvason G. Direct numerical simulations of bubbly flows. Part 1. Low reynolds number arrays [J].Journal of Fluid Mechanics,1998,377(1):313-345.
    [46]Esmaeeli A.,Tryggvason G. Direct numerical simulations of bubbly flows. Part 2. Moderate reynolds number arrays [J].Journal of Fluid Mechanics,1999,385:325-358.
    [47]Gupta S.C. Moving boundaries due to distributed sources in a slab [J].Applied scientific research,1995,54(2):137-160.
    [48]Li W.Z.,Yan Y. Y. An alternating dependent variables (adv) method for treating slip boundary conditions of free surface flows with heat and mass transfer [J].Numerical Heat Transfer:Part B:Fundamentals,2002,41(2):165-189.
    [49]Li W. Z., Yan Y. Y. Direct-predictor method for solving steady terminal shape of a gas bubble rising through a quiescent liquid [J]. Numerical Heat Transfer:Part B: Fundamentals,2002,42(1):55-71.
    [50]Yan Y. Y., Li W. Z. Numerical modelling of a vapour bubble growth in uniformly superheated liquid [J]. International Journal of Numerical Methods for Heat &# 38; Fluid Flow,2006, 16(7):764-778.
    [51]Ryskin G., Leal L. G. Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique [J]. Journal of Fluid Mechanics,1984,148:1-17.
    [52]Ryskin G., Leal L. G. Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid [J]. Journal of Fluid Mechanics,1984,148:19-35.
    [53]Dandy D. S., Leal L. G. Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate reynolds numbers [J]. Journal of Fluid Mechanics,1989,208(1): 161-192.
    [54]Hirt C. W., Nichols B. D. Volume of fluid (vof) method for the dynamics of free boundaries [J].Journal of computational physics,1981,39(1):201-225.
    [55]Rudman M. A volume-tracking method for incompressible multifluid flows with large density variations [J]. International Journal for Numerical Methods in Fluids,1998, 28(2):357-378.
    [56]Gueyffier D., Li J., Nadim A., et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows [J].Journal of Computational Physics,1999,152(2):423-456.
    [57]Puckett E.G., Almgren A.S., Bell J.B., et al. A high-ordei projection method for tracking fluid interfaces in variable density incompressible flows [J]. Journal of Computational Physics,1997,130(2):269-282.
    [58]Lorstad D., Fuchs L. High-order surface tension vof-model for 3d bubble flows with high density ratio [J].Journal of Computational Physics,2004,200(1):153-176.
    [59]Tomiyama A., Sou A., Minagawa H., et al. Numerical analysis of a single bubble by vof method [J].JSME international journal. Ser. B, Fluids and thermal engineering,1993, 36(1):51-56.
    [60]Chen L., Garimella S. V., Reizes J. A., et al. The development of a bubble rising in a viscous liquid [J]. Journal of Fluid Mechanics,1999,387:61-96.
    [61]Osher S.,Sethian J. A. Fronts propagating with curvature-dependent speed:Algorithms based on hamilton-jacobi formulations [J]. Journal of computational physics,1988,79(1): 12-49.
    [62]Sussman M., Smereka P. Axisymmetric free boundary problems [J]. Journal of Fluid Mechanics,1997,341 (1):269-294.
    [63]Sussman M., Almgren A.S., Bell J.B., et al. An adaptive level set approach for incompressible two-phase flows [J].Journal of Computational Physics,1999,148(1):81-124.
    [64]Tornberg A.-K. Interface tracking methods with application to multiphase flows 2000.
    [65]张一夫,楔形流道内气泡动力学行为数值模拟及实验研究[D].大连:大连理工大学,2010.
    [66]Smolianski A., Haario H., Luukka P. Vortex shedding behind a rising bubble and two-bubble coalescence:A numerical approach [J]. Applied mathematical modelling,2005, 29(7):615-632.
    [67]Chang Y.-C., Hou T. Y., Merriman B., et al. A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J]. Journal of computational Physics, 1996,124(2):449-464.
    [68]Son G. A numerical method for bubble motion with phase change [J]. Numerical Heat Transfer:Part B:Fundamentals,2001,39(5):509-523.
    [69]Wang S.-L., Sekerka R.F. Algorithms for phase field computation of the dendritic operating state at large supercoolings [J]. Journal of Computational Physics,1996, 127(1):110-117.
    [70]Antanovskii L. K. A phase field model of capillarity [J]. Physics of Fluids,1995,7:747.
    [71]Jacqmin D. Calculation of two-phase navier-stokes flows using phase-field modeling [J].Journal of Computational Physics,1999,155(1):96-127.
    [72]胡守信.直管道中绕平板平面流动的格子气仿真[J].计算物理,1989,16(4):457-464.
    [73]钱跃竑,Dd'Humieres, Y. Pomeau,等.格子气流体动力学及其最新进展[J].力学与实践,1990,12:7-16.
    [74]李元香,陈炬桦,黄樟灿.LB方法的一个简单多速模型[J].计算物理,1995,12(4):547-553.
    [75]郭照立,郑楚光,李青,等,流体动力学的格子Boltzmann方法[M].2002:湖北科学技术出版社.
    [76]何雅玲,王勇,李庆,格子boltzmann方法的理论及应用[M].2009:科学出版社.
    [77]郭照立,郑楚光,格子boltzmann方法的原理及应用[M].2009:科学出版社.
    [78]Qian Y.-H., Succi S., Orszag S. A. Recent advances in lattice boltzmann computing [J]. Annu. Rev. Comput. Phys,1995,3:195-242.
    [79]Chen S., Doolen G. D. Lattice boltzmann method for fluid flows [J]. Annual review of fluid mechanics,1998,30(1):329-364.
    [80]Yu D., Mei R., Luo L.-S., et al. Viscous flow computations with the method of lattice boltzmann equation [J].Progress in Aerospace Sciences,2003,39(5):329-367.
    [81]Li-shi L. The lattice-gas and lattice boltzmann methods:Past, present, and future[C]. 2000.
    [82]Rothman D. H., Keller J.M. Immiscible cellular-automaton fluids [J].Journal of statistical physics,1988,52(3):1119-1127.
    [83]Gnnstensen A. K., Rothman D. H., Zaleski S. Lattice boltzmann model of immiscible fluids [J].Physical Review A,1991,43(8).
    [84]Shan X., Chen H. Lattice boltzmann model for simulating flows with multiple phases and components [J].Physical Review E,1993,47(3):1815.
    [85]He X., Chen S., Zhang R. A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability [J].Journal of Computational Physics,1999,152(2):642-663.
    [86]Swift M. R., Osborn W. R., Yeomans J. M. Lattice boltzmann simulation of nonideal fluids [J].Physical Review Letters,1995,75(5):830-833.
    [87]Inamuro T., Ogata T., Tajima S., et al. A lattice boltzmann method for incompressible two-phase flows with large density differences [J]. Journal of Computational Physics, 2004,198(2):628-644.
    [88]Lee T.,Lin C.L. A stable discretization of the lattice boltzmann equation for simulation of incompressible two-phase flows at high density ratio [J].Journal of Computational Physics,2005,206(1):16-47.
    [89]Zheng H. W., Shu C., Chew Y. T. A lattice boltzmann model for multiphase flows with large density ratio [J].Journal of Computational Physics,2006,218(1):353-371.
    [90]Takada N., Misawa M., Tomiyama A., et al. Simulation of bubble motion under gravity by lattice boltzmann method [J]. Journal of Nuclear Science and Technology,2001,38(5): 330-341.
    [91]Inamuro T., Ogata T., Ogino F. Numerical simulation of bubble flows by the lattice boltzmann method [J]. Future Generation Computer Systems,2004,20(6):959-964.
    [92]Gupta A.,Kumar R. Lattice boltzmann simulation to study multiple bubble dynamics [J].International Journal of Heat and Mass Transfer,2008,51(21-22):5192-5203.
    [93]Yu Z., Yang H., Fan L.-S. Numerical simulation of bubble interactions using an adaptive lattice boltzmann method [J]. Chemical Engineering Science,2011,66(14):3441-3451.
    [94]Huang H., Zheng H., Lu X.-y., et al. An evaluation of a 3d free-energy-based lattice boltzmann model for multiphase flows with large density ratio [J]. International Journal for Numerical Methods in Fluids,2009.
    [95]Yan Y. Y., Zu Y. Q., Dong B. Lbm, a useful tool for mesoscale modelling of single-phase and multiphase flow [J]. Applied Thermal Engineering,2011,31(5):649-655.
    [96]Yang Z. L., Dinh T.-N., Nourgaliev R. R., et al. Numerical investigation of bubble growth and detachment by the lattice-boltzmann method [J]. International journal of heat and mass transfer,2001,44(1):195-206.
    [97]Hazi G., Markus A. On the bubble departure diameter and release frequency based on numerical simulation results [J]. International Journal of Heat and Mass Transfer,2009, 52 (5-6):1472-1480.
    [98]Gong S., Cheng P. A lattice boltzmann method for simulation of liquid-vapor phase-change heat transfer [J].International Journal of Heat and Mass Transfer,2012.
    [99]Gong S., Cheng P. Lattice boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling [J]. International Journal of Heat and Mass Transfer,2013,64:122-132.
    [100]Dong Z., Li W., Song Y. A numerical investigation of bubble growth on and departure from a superheated wall by lattice boltzmann method [J]. International Journal of Heat and Mass Transfer,2010,53(21-22):4908-4916.
    [101]Ryu S.,Ko S. Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice boltzmann method [J].Nuclear Engineering and Design,2012.
    [102]Wolfram S. Cellular automaton fluids 1:Basic theory [J]. Journal of Statistical Physics,1986,45(3-4):471-526.
    [103]Hardy J., Pomeau Y., De Pazzis 0. Time evolution of a two-dimensional model system. Ⅰ. Invariant states and time correlation functions [J]. Journal of Mathematical Physics, 1973,14:1746.
    [104]Hardy J., De Pazzis 0., Pomeau Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions [J].Physical Review A,1976,13(5): 1949.
    [105]Pomeau B. H. Y., Frisch U.'Lattice-gas automata for the navier-stokes equation [J]. Phys. Rev. Lett,1986,56(14):1505.
    [106]McNamara G. R., Zanetti G. Use of the boltzmann equation to simulate lattice-gas automata [J].Physical Review Letters,1988,61(20):2332.
    [107]Higuera F. J., Jimenez J. Boltzmann approach to lattice gas simulations [J].EPL (Europhysics Letters),1989,9(7):663.
    [108]Higuera F. J., Succi S., Benzi R. Lattice gas dynamics with enhanced collisions [J]. EPL (Europhysics Letters),1989,9(4):345.
    [109]Chen S., Chen H., Martnez D., et al. Lattice boltzmann model for simulation of magnetohydrodynamics [J].Physical Review Letters,1991,67(27):3776.
    [110]Qian Y. H., d'Humieres D., Lallemand P. Lattice bgk models for navier-stokes equation [J].EPL (Europhysics Letters),1992,17(6):479.
    [111]Bhatnagar P. L., Gross E. P., Krook M. A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and neutral one-component systems [J]. Physical review,1954,94(3):511.
    [112]Palmer B. J., Rector D. R. Lattice-boltzmann algorithm for simulating thermal two-phase flow [J]. Physical Review E,2000,61 (5):5295.
    [113]Gonnella G., Lamura A., Sofonea V. Lattice boltzmann simulation of thermal nonideal fluids [J]. Physical Review E,2007,76(3):036703.
    [114]李元香,康立山,陈毓屏,格子气自动机[M].1994:清华大学出版社.
    [115]He X.,Luo L.-S. Theory of the lattice boltzmann method:From the boltzmann equation to the lattice boltzmann equation [J].Physical Review E,1997,56(6):6811.
    [116]Succi S., The lattice boltzmann equation:For fluid dynamics and beyond[M].2001: Oxford university press.
    [117]Chen S., Martinez D.,Mei R. On boundary conditions in lattice boltzmann methods [J]. Physics of fluids,1996,8:2527.
    [118]Ziegler D. P. Boundary conditions for lattice boltzmann simulations [J]. Journal of Statistical Physics,1993,71(5-6):1171-1177.
    [119]He X., Zou Q., Luo L.-S., et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice boltzmann bgk model [J]. Journal of Statistical Physics,1997,87(1-2):115-136.
    [120]Noble D.R., Chen S., Georgiadis J.G., et al. A consistent hydrodynamic boundary condition for the lattice boltzmann method [J].Physics of Fluids,1995,7:203.
    [121]Noble D.R., Georgiadis J. G., Buckius R.O. Direct assessment of lattice boltzmann hydrodynamics and boundary conditions for recirculating flows [J].Journal of statistical physics,1995,81(1-2):17-33.
    [122]Zou Q.,He X. On pressure and velocity boundary conditions for the lattice boltzmann bgk model [J]. Physics of Fluids,1997,9:1591.
    [123]Inamuro T., Yoshino M.,Ogino F. A non-slip boundary condition for lattice boltzmann simulations [J].arXiv preprint comp-gas/9508002,1995.
    [124]Tong C. Q., He Y.L., Tang G. H., et al. Mass modified outlet boundary for a fully developed flow in the lattice boltzmann equation [J]. International Journal of Modern Physics C,2007,18(07):1209-1221.
    [125]Zhao-Li G., Chu-Guang Z., Bao-Chang S. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice boltzmann method [J]. Chinese Physics,2002,11 (4):366.
    [126]Latt J., Chopard B., Malaspinas O., et al. Straight velocity boundaries in the lattice boltzmann method [J].Physical Review E,2008,77(5):056703.
    [127]Shan X., Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice boltzmann equation [J].Physical Review E,1994,49(4):2941.
    [128]Swift M. R., Orlandini E., Osborn W. R., et al. Lattice boltzmann simulations of liquid-gas and binary fluid systems [J].Physical Review E,1996,54(5):5041.
    [129]Inamuro T., Konishi N., Ogino F. A galilean invariant model of the lattice boltzmann method for multiphase fluid flows using free-energy approach [J]. Computer physics communications,2000,129(1):32-45.
    [130]Kalarakis A. N., Burganos V. N., Payatakes A. C. Galilean-invariant lattice-boltzmann simulation of liquid-vapor interface dynamics [J]. Physical Review E,2002,65(5):056702.
    [131]Cahn J. W., Hilliard J. E. Free energy of a nonuniform system. I. Interfacial free energy [J].The Journal of Chemical Physics,1958,28:258.
    [132]Brereton G., Korotney D. Coaxial and oblique coalescence of two rising bubbles [J].Dynamics of bubbles and vortices near a free surface, AMD,1991,119.
    [133]Tuckerman D. B., Pease R. F.W. High-performance heat sinking for vlsi [J].Electron Device Letters, IEEE,1981,2(5):126-129.
    [134]Peng X.F.,Peterson G.P. Convective heat transfer and flow friction for water flow in microchannel structures [J]. International Journal of Heat and Mass Transfer,1996, 39(12):2599-2608.
    [135]Qu W..Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink [J]. International Journal of Heat and Mass Transfer,2002,45(12):2549-2565.
    [136]Sobhan C. B., Garimella S. V. A comparative analysis of studies on heat transfer and fluid flow in microchannels [J].Microscale Thermophysical Engineering,2001,5 (4): 293-311.
    [137]Wu H.Y.,Cheng P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions [J]. International Journal of Heat and Mass Transfer,2003,46(14):2547-2556.
    [138]Morini G. L. Single-phase convective heat transfer in microchannels:A review of experimental results [J].International Journal of Thermal Sciences,2004,43(7): 631-651.
    [139]Chen Y., Zhang C., Shi M., et al. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks [J]. international communications in heat and mass transfer,2009,36(9):917-920.
    [140]Inamuro T., Yoshino M., Inoue H., et al. A lattice boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem [J]. Journal of Computational Physics,2002,179(1):201-215.
    [141]Kao P. H., Yang R. J. Simulating oscillatory flows in rayleigh-benard convection using the lattice boltzmann method [J]. International journal of heat and mass transfer,2007, 50(17):3315-3328.
    [142]Clever R. M., Busse F.H. Transition to time-dependent convection [J].J. Fluid Mech,1974,65(4):625-645.
    [143]Liu Y., Cui J., Jiang Y. X., et al. A numerical study on heat transfer performance of microchannels with different surface microstructures [J].Applied Thermal Engineering,2011,31 (5):921-931.
    [144]Guo Z. Y., Li D. Y., Wang B. X. A novel concept for convective heat transfer enhancement [J]. International Journal of Heat and Mass Transfer,1998,41(14):2221-2225.
    [145]Guo Z.Y., Tao W. Q., Shah R. K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer [J]. International Journal of Heat and Mass Transfer,2005,48(9):1797-1807.
    [146]董志强,多相和多组分流动中热质传递的lattice boltzmann方法的数值研究[D].大连:大连理工大学,2009.
    [147]Merte Jr H., Clark J. A. Pool boiling in an accelerating system [J]. Journal of Heat Transfer,1961,83:233.
    [148]Mukherjee A., Numerical and experimental study of lateral merger of vapor bubbles formed on a horizontal surface during nucleate pool boiling[D]. University of California, Los Angeles,2004.
    [149]Haider S.I.,Webb R. L. A transient micro-convection model of nucleate pool boiling [J]. International Journal of Heat and Mass Transfer,1997,40(15):3675-3688.
    [150]Dhir V. K. Mechanistic prediction of nucleate boiling heat transfer-achievable or a hopeless task? [J].Journal of heat transfer,2006,128:1-12.
    [151]Maity S., Effect of velocity and gravity on bubble dynamics[D].UCLA,2000.
    [152]Kandlikar S. G. An improved correlation for predicting two-phase flow boiling heat transfer coefficient in horizontal and vertical tubes. in National heat transfer conference.21.1983.
    [153]Hara T. The mechanism of nucleate boiling heat transfer [J]. International Journal of Heat and Mass Transfer,1963,6(11):959-969.
    [154]Kocamustafaogullari G.,Ishii M. Interfacial area and nucleation site density in boiling systems [J]. International Journal of Heat and Mass Transfer,1983,26(9): 1377-1387.
    [155]Sakashita H., Kumada T. Method for predicting boiling curves of saturated nucleate boiling [J].International journal of heat and mass transfer,2001,44(3):673-682.
    [156]Tien C. L. A hydrodynamic model for nucleate pool boiling [J]. International Journal of Heat and Mass Transfer,1962,5(6):533-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700