柔顺膝关节康复器结构及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持续被动运动(Continuous Passive Motion,简称CPM)是目前膝关节损伤患者术后康复训练的重要方法。传统的CPM康复训练器械多是机械-电机式的,虽然可以达到很高的位置精度,但为患者提供的是刚性、被动的锻炼。传统的CPM机与患者的刚性接触容易对患者造成二次伤害;另一方面,被动运动无法满足患者康复后期肢体的肌肉力量训练要求,而大量的临床观察和统计表明:术后进行主-被动综合训练与只进行被动训练相比,可明显减轻患者疼痛,加快关节功能康复。因此,研究开发一种柔顺的主-被动结合的新型膝关节康复训练器,具有重要的学术意义和实际应用价值。
     围绕这一目标,论文完成的主要工作和取得的成果有:
     (1)论文首次研究并提出了一种利用气动人工肌肉和气缸串联组成复合驱动器作为动力源的新型柔顺膝关节康复器械新结构。利用气动人工肌肉的柔顺性,克服了传统CPM机只提供刚性训练的弊端。利用气缸的长行程解决了气动肌肉行程短导致膝关节弯曲角度小的技术难题。通过单独控制气缸两腔压力来灵活驱动活塞自由伸缩,实现了膝关节康复器主动训练功能。
     (2)为了实现不同康复阶段对不同训练要求的控制,对膝关节康复器的控制系统进行研究。根据研究的实际情况,确定了PC机+数据采集卡的控制方法,软件控制平台选择LabVIEW软件对传感器和控制阀进行控制。各训练参数在模块中均可调,满足了人机交互要求。通过控制各驱动器工作压力及压力变化方式,实现了膝关节康复器的周期、平稳动作。
     (3)研究建立了柔顺膝关节康复器的理论模型,并对柔顺康复器样机的工作特性进行了试验研究。结果表明:康复器在被动和主动运动方式下的最大转角分别为82°和130°。在试验对象体重为45kg的情况下,康复器完成一个弯曲伸展周期的时间为25s,速度为6°/s,平均角加速度为2.5°/s~2。试验结果同时表明康复器满足了柔顺性和主.被动训练相结合的功能要求。
     所研发的柔顺膝关节康复器实现了柔顺性和主-被动训练相结合的功能要求,同时整个康复器样机结构紧凑,重量轻,具有很好的应用前景。
Continuous Passive Motion (CPM for short) is the important method at present of rehabilitation training for knee joint injuries sufferer after operation. But the traditional CPM machines are mostly driven by machinery and motor which provide position with high precision but high rigid and only passive motion. It can easily cause secondary damage to patients while training. On the other hand the passive motion can't meet the demand of muscle strength training in the later rehabilitation period. However most clinical observation and statistics shows that: compared with totally passive training, passive training combining with active training after operation can relieve pain and promote functional recovery of the knee joint. So to design a new compliant and active rehabilitation apparatus has great scientific significance and application value.
     According to these objects, the main contents and achievements in this thesis are summarized as follows:
     (1) The thesis has put forward for the first time using pneumatic muscle actuator (PMA for short) connecting in series with pneumatic cylinders as the compound actuator to study a new compliant knee joint rehabilitation apparatus. Using the compliance of the PMA has overcome the traditional CPM shortcoming of only providing rigid training. The stroke of PMA is short and could not provide enough stroke to the knee joint, however the pneumatic cylinder has long stoke which can solve this problem. By respectively controlling the pressure of two cavities of the cylinder, the piston can move controllably in the pneumatic cylinder which has realized the active training for the apparatus.
     (2) In order to control different training demands in different rehabilitation steps, the thesis has researched on the control technology of the rehabilitation apparatus. Through considering the actual condition of the research, the method of using PC with data acquisition card has been chosen. The software of LabVIEW has been chosen to control the sensor and valves. The control module has been built for test in which all the parameters can be adjusted to meet the demands of human-computer interaction. With control program to control the pressure and its change, the apparatus can move periodically and steadily.
     (3) The research has built the theoretical model of the compliant knee joint rehabilitation apparatus and tested its performance. The experiments show that under the passive motion the maximum turning angle is 82°while 130°under active motion, the apparatus can completed the motion in 25 seconds with speed of 6°per second and acceleration of 2.5°/s~2 when carrying a person of 45kg. which has met the demands of rehabilitation training. Also through tests, the apparatus has been proved to be able to provide both compliance and active motion.
     The results show that, using PMAs connecting in series with pneumatic cylinders as the new actuator can meet the new demands of compliance and active motion on the rehabilitation apparatus. Also the whole machine is compact and light, it will have great application prospect.
引文
[1]孙建东,金德闻.一种下肢被动运动康复训练器[J].中国康复医学杂志,2001,16(5):298-299
    [2]李奕,李子清.CPM对全膝关节置换术后康复的研究进展[J].长江大学学报(自科版)理工卷,2007,4(4):157-160
    [3]郑诗俊.功能锻炼对TKA术后膝关节功能恢复的影响[J].河南中医,2007,5(27):65
    [4]杨晓琴,易敏.持续被动活动的开始时间对全膝置换术后功能康复的影响[J].外科护理,2006,30(12):2886-2887
    [5]Chen.Boqing,Zimmerman.JeraR.Continuous Passive Motion after Total Knee Arthroplasty[J].American Journal of Physical Medicine and Rehabilitation,2000,5(79):421-426
    [6]李素香,余占洪,段永壮.膝关节镜术后自主锻炼与CPM锻炼对膝关节功能恢复的影响[J].临床研究,2007,2(4):47
    [7]王国华.膝关节手术后CPM的应用[J].中医正骨,2007,8(19):74
    [8]周毅萍.膝关节周围骨折后CPM机的应用与护理[J].现代中西医结合杂志,2007,4726
    [9]张元平,李凯,郭飞.膝关节周围骨折后功能康复方法的研究进展[J].第四军医大学学报,2006,27(19):1814-1815
    [10]孙建东,金德闻.一种下肢被动运动康复训练器[J].中国康复医学杂志,2001,5(16):298-299,317
    [11]金德闻,张济川.康复工程学的研究与发展[J].现代康复,2000,4(5):643-646
    [12]孙春瑞,刘玲玲,史艳敏.下肢骨折后患者的康复训练[J].河北中医,2003,8(25):628
    [13]胡兆燕,程云章,龚德利.下肢关节功能康复训练器的研制[J].中国医疗器械杂志,2000,4(24):214-215
    [14]隋立明,张立勋.气动肌肉驱动仿生关节的理论分析[J].机床与液压,2007,6(35):113-116
    [15]傅晓云,方敏,李宝仁.气动人工肌肉驱动的直线关节的研究[J].机床与液压,2006(8):75-76
    [16]宁丽欣,徐燕,李东文.持续被动活动在全膝关节成形术后的应用进展[J].中国康复医学杂志,2007,22(3):286-288
    [17]王兆霞,李峥.持续性被动运动在全膝关节置换术后康复运动中的应用[J].中国实用护理杂志,2007,23(2):29-30
    [18]Jennifer Morris.The Value of Continuous Passive Motion in Rehabilitation Following Total Knee[J].Physiotherapy,1995,9(81):557-560
    [19]北京中康健宇科技发展有限公司[Z].http://www.ZKJY.com.cn,2009
    [20]钱振美.卧式下肢康复机器人的研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2006
    [21]Nicholas J London,Margaret Brown.Continuous Passive Motion.Evaluation of a new portable low cost machine[J].Physiotherapy,1999,85(11):616-618
    [22]姬永琴,李晓玲,陈晚英.下肢CPM机的改进与应用[J].中国实用护理杂志,2007,23(4):72
    [23]王广欣.下肢关节康复训练器[P].实用新型专利号:200620200436,2006
    [24]Christian Fleischer.Controlling Exoskeletons with EMG signals and a Biomechanical Body Model[D].Institute of Computer Engineering and Microelectronics,Technische Universit(a|¨)t Berlin,2007
    [25]Christian Fleischer,G(u|¨)nter Hommel.Calibration of an EMG-Based Body Model with six Muscles to control a Leg Exoskeleton[A].Proceedings of the Joint Conf.on Robotics:ISR2006 and Robotik 2006,2006,185-203
    [26]Daisuke SASAKI,Toshiro NORITSUGU,Masahhiro TAKAIWA.Wearable Master-slave Training Device for Lower Limb Constructed with Pneumatic Rubber Artificial Muscles[A].Proceedings of the 7~(th) JFPS International Symposium on Fluid Power,TOYAMA,2008,493-498
    [27]A.Cullell,J.C.Moreno,E.Rocon.Biologically based design of an actuator system for a knee-ankle-foot orthosis[J].Mechanism and Machine Theory,2008,1-13
    [28]曾瑞萍,邱思,曾燕转.CPM机在全膝人工关节置换术后应用的效果研究[J].现代护理,2006,12(13):1219-1220
    [29]周琳,马爱玲.CPM机在下肢骨折术后的临床应用[J],西部医学,2008,20(3)
    [30]郑仪君.持续被动运动器在膝关节骨折后康复中的应用[J].南方护理学报,2002,9(3):47-48
    [31]王国华.膝关节手术后CPM的应用[J].中医正骨,2007,19(8):74
    [32]倪国玉,孙燕,方琳.人工膝关节置换手术病人围手术期功能康复锻炼[J].护理研究,2001,15(5):276-277
    [33]杨玉环.人工膝关节置换术后下肢别动关节活动器的应用和康复护理[J].中国中医骨伤科杂志,2007,15(11):69
    [34]洪时清,洪小灵,洪涛等.膝关节康复器的研制及临床应用[J].中医正骨,2005,17(7):41-42
    [35]郑诗俊.人工全膝关节置换术后早期康复功能锻炼配合CPM机锻炼对膝关节功能恢复的影响[D].南京:南京中医药大学硕士毕业论文,2006
    [36]郭立华,许盛涛,于欣.CPM对下肢骨折后膝关节的运动指导[J].吉林医学,2007,28(12):1373-1374
    [37]林碧娥,江美金.CPM在膝关节损伤康复中的应用[J].福建医疗杂志,2000,22(4):129
    [38]孙康,魏瑄.何为膝关节运动自由度和限度[J].骨与关节损伤杂志,2001,16(5):389
    [39]张秀丽,陈百成,王学谦等.成人正常膝关节的运动状态分析[J].中华骨科杂志,2005,25(1):54-57
    [40]周飞虎,王岩.国人正常膝关节三维几何形态测量及相关研究[D].北京:解放军军医进修学院硕士学位论文,2003
    [41]米俊达,张绍祥.膝关节不同功能位断面解剖及三维可视化研究[D].重庆:中国人民解放军第三军医大学硕士学位论文,2006
    [42]郝智秀,金德闻,张济川等.含半月板的活体股胫关节接触特性有限元分析[J].清华大学学报(自然科学版),2008,48(2):176-179
    [43]陈世益,袁旬华,HC.Wang.人类髌股关节三位运动规律的研究[J].中国运动医学杂志,1997,16(2):107-113
    [44]朱端阳.气动人工肌肉特性及控制研究[D].武汉:华中科技大学硕士学位论文,2005
    [45]SMC(中国)有限公司.现代实用气动技术[M].第2版.北京:机械工业出版社,2003
    [46]卫玉芬,李小宁.气动肌肉驱动机器人手臂的设计与控制研究[D].南京:南京理工大学博士论文,2005
    [47]胡仁喜,王恒海,齐东明.LabVIEW8.2.1虚拟仪器实例指导教程[M].第1版.北京:机械工业出版社,2008
    [48]戴敬.LabVIEW基础教程[M].第1版.北京:国防工业出版社,2002
    [49]Robert H.Bishop(美).LabVIEW 6i实用教程[M].第1版.北京:电子工业出版社,2003
    [50]龙永华,顾永刚.LabVIEW8.2.1与DAQ数据采集[M].第1版.北京:清华大学出版社.2008
    [51]Masanori Sugisak,Huailin Zhao.The characteristics of Mckibben muscle based on the pneumatic experiment system[J].Artif Life Robotics,2007,11:223-226
    [52]隋立明,包钢,王祖温.气动肌肉在康复工程中的应用[J].中国临床康复,2004,8(2): 320-321
    [53]叶骞,王祖温,包钢.气动人工肌肉.液压与气动,2000(2):12-15
    [54]范伟.气动人工肌肉驱动器的研究现状及发展趋势[J].机床与液压,2003,1:32-36
    [55]杨钢,李宝仁,傅晓云.气动人工肌肉系统动态特性研究[J].中国机械工程,2006,2(17):1294-1298
    [56]卫玉芬,李小宁.气动肌肉的驱动特性研究[J].液压与气动,2004(7):24-26
    [57]郭卫东.虚拟样机技术与ADAMS应用实例教程[M].第1版.北京:北京航空航天大学出版社,2008
    [58]钱振美.卧式下肢康复机器人的研究[D].哈尔滨:哈尔滨工程大学硕士论文,2006
    [59]谢斌.下肢关节康复器在膝关节僵直术后功能锻炼中的应用[J].当代护士,2007(4):37
    [60]袁璐.全膝关节置换术后膝关节屈曲角度的影响因素[J].中国医学物理学杂志,2007,24(1):52-56
    [61]郑义君,杨绿频.持续被动运动器在膝部骨折后康复中的应用[J].广西医学,2007,29(5):709-710
    [62]闫汝蕴,张大成,彭英等.双侧全膝关节置换术后系统康复的临床研究[J].中国康复医学杂志,2003,18(9):517-519
    [63]吕发明,王磊.CPM在全膝关节表面置换术后功能康复中的应用[J].中医正骨,2007,19(5):59
    [64]付红云,高艳.伸膝装置粘连手术前后康复指导[J].现代康复,1999,3(5):593
    [65]纪青,张波,王毅.人工膝关节置换术后康复训练几点体会[J].中国矫形外科杂志,2003,11(6):1095
    [66]李雪波,刘沛珍,陈秋芳.全膝人工关节置换术患者早期功能锻炼效果观察[J].南方护理杂志,2003,10(2):12-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700