粘球菌DK1622胞内游离钙离子浓度的测定及钙结合蛋白基因的预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙离子(Ca2+)是重要的信使分子,参与了真核生物的许多细胞行为过程,如DNA合成的起始、有丝分裂、细胞分裂等。细胞胞内游离钙离子浓度([Ca2+]i)受到钙离子通道(Ca2+channels)、钙泵(Ca2+pumps)、钙结合蛋白(Ca2+-binding proteins, CaBPs)的严格调节,使得静息状态下,[Ca2+]i维持在很低水平(10-7 M),远低于胞外液体中Ca2+浓度(10-3 M)。细胞利用形成的Ca2+浓度梯度来传递信息,将信号从细胞表面传递到细胞内部。细胞受到刺激后,受到严格调控的[Ca2+]i发生瞬间变化,引起磷酸化反应、调节蛋白激活、细胞周期调节等一系列反应。
     目前对Ca2+在细菌细胞活动中的作用还不甚清楚,但已经发现细菌中[Ca2+]i严格控制在和真核生物相似的水平(100-300 nM),细菌细胞也有离子通道、初级和次级转运蛋白、钙结合蛋白,这些都可能参与了Ca2+的动态平衡。同时,有证据表明,[Ca2+]i的变化与细菌的许多细胞行为,如枯草芽孢杆菌(Bacillus subtilis)的孢子形成、大肠杆菌(Escherichia coli)的趋化性、蓝细菌(cyanobacteria)的异形胞分化、粘细菌(myxobacteria)的子实体发育等有关,越来越多的证据表明Ca2+在细菌中起到调节剂的作用。
     测定细胞中[Ca2+]i对于研究Ca2+作为胞内信使的作用是必需的。Ca2+起到信使作用的观点是基于对环境信号会诱发[Ca2+]i变化的认识,因此,确定细胞受刺激后胞质Ca2+水平,对于研究Ca2+在信号转导中的作用是至关重要的。由于细菌独特的细胞结构特征(细胞小,胞外有细胞壁)、试剂的毒性及活细菌操作的困难,测定细菌细胞[Ca2+]i是一个挑战。虽然如此,钙结合染料fura-2和光蛋白aequorin、obelin已经在原核生物中成功使用。其中,obelin是一种非常好的Ca2+指示剂,对Ca2+浓度变化反应迅速,且与镁离子(Mg2+)的结合力较aequorin更低。通过分子DNA技术在细菌细胞中组成性表达obelin基因,可以在不同种的细菌中连续监测胞质自由Ca2+浓度的变化。
     粘细菌是一类革兰氏阴性杆状细菌,作为一种高等的原核生物,具有特殊的多细胞行为,主要表现为滑动运动能力、分化发育过程和社会性的细胞行为三个方面,是研究原核生物分化发育和细胞间信号传导的重要模式材料。已有的研究表明,在粘细菌的细胞行为过程中,钙及钙信号(calcium signals)扮演了十分重要的角色,但目前仍没有粘细菌[Ca2+]i测定的报道。虽然S蛋白在粘球菌分化发育末期的粘孢子生成阶段起到钙调蛋白类似组分的功能,但还不清楚粘细菌中还存在其它哪些CaBPs组分。
     本论文通过在黄色粘球菌DK1622中表达obelin基因来测定[Ca2+]i。首先利用表达载体pET15b、pET22b在大肠杆菌BL21 (DE3)中表达obelin基因,其中利用pET22b有正确表达。荧光显微镜下观察菌体,紫外激发,可以观察到黄绿色荧光。然后利用粘球菌自主复制质粒pZJY41和整合质粒pSWU30在DK1622中表达obelin基因,RT-PCR结果显示,obelin可以在DK1622中表达,但荧光显微镜下观察不到菌体荧光。
     本论文根据原核生物中已公布的5个CaBPs序列及EF-hand钙离子结合位点的氨基酸序列的保守性,通过序列比对及保守序列搜索的方法,在DK1622预测的7514个ORF中分析出5个可能编码CaBPs的基因-MX AN 0106、MXAN 0962、MXAN 1334、MXAN 2316、MXAN 5194,并将这五个基因在大肠杆菌中异源表达,其中MXAN 0106、MXAN 2316成功表达,为下一步通过Ca2+-dependent electrophoretic motility-shift assay鉴定蛋白的Ca2+结合能力,在DK1622中寻找CaBPs打下基础。
Calcium is an important messenger that is involved in many eukaryotic cellular processes, such as the initiation of DNA synthesis, mitosis, and cell division. The intracellular free calcium ion concentration ([Ca2+]i) is tightly regulated through Ca2+ channels, Ca2+pumps, and Ca2+-binding proteins (CaBPs). At rest, [Ca2+]i is maintained at very low levels (10-7 M) compared with the concentration of Ca2+in extracellular fluid (10-3 M). This situation creates a Ca2+ concentration gradient, which is utilized by cells to transmit signals from the cell surface to the interior of the cell. Cells respond to a number of stimuli by transient changes in [Ca2+]i. Calcium fluxes activate a series of events, leading to phosphorylation reactions, activation of regulatory proteins, and cell cycle regulation.
     In bacteria, the role of Ca2+ in cellular activities is less clear. It has been demonstrated that bacteria tightly regulate their [Ca2+]i, with values similar to those found in eukaryotes (100 to 300 nM). Similar to eukaryotes, bacterial cells have ion channels, primary and secondary transporters, and CaBPs, which may be involved in Ca2+ homeostasis. There is evidence indicating that calcium functions as a regulator in bacteria and that changes in [Ca2+]i are critical to some bacterial cellular processes, such as sporulation of Bacillus, chemotaxis of Escherichia coli, heterocyst differentiation of cyanobacteria, and fruiting body formation in myxobacteria.
     The ability to measure [Ca2+]i in cells is essential in evaluating the role of calcium as an intracellular messenger. The concept that Ca2+ acts as a messenger is based on the idea that environmental signals induce changes in [Ca2+]i. Therefore, determining [Ca2+]i in response to stimuli has been crucial in establishing the role of calcium in signal transduction. Measuring [Ca2+]i in bacterial cells has been difficult because of the unique structural features of bacteria (including their size and cell wall), toxic effects of reagents and the difficulty of manipulating live bacteria. Nevertheless, the calcium-binding dye fura-2 and the photoproteins aequorin and obelin have been successfully used in bacteria. Obelin is an excellent indicator for Ca2+ because it can respond quickly to allow for following the most rapid transient changes in intracellular calcium and is less sensitive to Mg2+ than aequorin. Using molecular DNA technology to constitutively express the obelin gene in bacteria, it is possible to continuously monitor [Ca2+]i in different genera of bacteria.
     Myxobacteria are rod-shaped Gram-negative bacteria that are characterized by their complicated multicellular behaviors, including gliding motility, morphogenetic and development processes, and cellular social behaviors, which make them an excellent prokaryotic model for the study of cell-to-cell communication, cell differentiation, and development. It has been reported that calcium plays an important role in cellular behaviors of myxobacteria; however, the [Ca2+]i in myxobacteria has not yet been reported. S protein functions in a manner similar to calmodulin during myxospore formation in Myxococcus xanthus, but it is still not clear whether there are other CaBPs.
     The obelin gene was inserted into the expression vectors pET15b and pET22b, and the constructed vectors were transformed into BL21 (DE3) to express obelin in E. coli. Obelin was normally expressed in cells transformed with pET22b, and when the cells were observed using fluorescence microscopy with UV light for excitation, yellow-green fluorescence was detected.
     To measure [Ca2+]i in myxobacteria, the obelin gene was cloned into vectors pZJY41 and pSWU30; resultant vectors were electroporated into M. xanthus DK1622. The total RNA of transformants was isolated, and reverse transcription PCR (RT-PCR) was performed. The results showed that obelin was expressed in DK1622. Unfortunately, fluorescence was not detected when cells were exposed to UV light.
     Local BLASTP was performed between five published CaBP sequences of bacteria and the predicted amino acid sequences of 7514 ORFs of DK1622 using BioEdit software. The amino acid sequences of the 7514 ORFs of DK1622 were also searched using the consensus sequence of the canonical EF-hand motif. Five ORFs, MXAN 0106, MXAN 0962, MXAN 1334, MXAN 2316 and MXAN 5194, were presumed to encode CaBPs. These five genes were heterogeneously expressed in E. coli, and MXAN 0106 and MXAN 2316 were successfully expressed. These data provided the fundation for identifying the calcium-binding ability of these two proteins using a Ca2+-dependent electrophoretic motility-shift assay.
引文
Arrizubieta MJ, Toledo-Arana A, Amorena B, et al. (2004). Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 186: 7490-7498.
    B Wang, W Hu, H Liu, CY Zhang, JY Zhao, DM Jiang, ZH Wu, YZ Li (2007). Adaptation of salt-tolerant myxococcus strains and their motility systems to the ocean conditions. Microb Ecol 54:43-51.
    Benveniste H, Jorgensen MB, Diemer NH, et al. (1988). Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta NeuroL Scand 78:529-536.
    Black EW, Cornwell TL, Lincoln TM, et al. (1989). Fura-2 analysis of cytosolic calcium regulation in elutriated rat gastric parietal cells. J Cell Physiol 139:632-640.
    Blinks, J. R. (1986). in The Sarcoplasmic Reticulum in Muscle Physiology (Entman, M. L., and Van Winkle, W. B., Eds.) Vol. Ⅱ, pp 73-107, CRC Press, Boca Raton, FL.
    Blinks, J. R., and Moore, E. D. W. (1986). in Optical Methods in Cell Physiology (De Weer, P., and Salzberg, B. M, Eds.) Vol.40, pp 229-238. John Wiley, New York.
    Blinks, J. R., Wier, W. G., Hess, P., and Prendergast, F. G. (1982). Prog Biophys Mol Biol 40:1-114.
    Cai X, Lytton J (2004). The cation/Ca2+ exchanger superfamily:phylogenetic analysis and structural implications. Mol Biol Evol 21:1692-1703.
    Campbell AK (1974). Extraction, partial purification and properties of obelin, the calcium-activated luminescent protein from the hydroid Obelia geniculata. Biochem J 143:411-418.
    Chang CF, Shuman H, Somlyo AP (1986). Electron probe analysis, X-ray mapping, and electron energy-loss spectroscopy of calcium, magnesium, and monovalent ions in log-phase and in dividing Escherichia coli B cells. J Bacteriol 167: 935-939.
    Charbonneau, H., Walsh, K. A., McCann, R.O., Prendergast, F. G., Cormier, M. J. and Vanaman, T. C. (1985). Biochemistry 24:6762-6771.
    Cormier, M. J., Hori, K., Karkhanis, Y. D., Anderson, J. M., Wampler, J. E., Morin, J. G., and Hastings, J. W. (1973). J. Cell. Physiol 81:291-297.
    Das S (1997). Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc Natl Acad Sci USA 94:9075-9079.
    Das S, Reusch RN (2001). pH regulates cation selectivity of poly-(R)-3-hydroxybutyrate/polyphosphate channels from E. coli in planar lipid bilayers. Biochemistry 40:2075-2079.
    Dawid W (2000). Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403-427.
    Delfina C., Dominguez (2004). Calcium signalling in bacteria. Mol Microbiol 54: 291-297.
    Dominguez DC (2004). Calcium signalling in bacteria. Mol Microbiol 54:291-297.
    Dworkin M (1996). Recent advances in the social and developmental biology of the myxobacteria. Microbiol Revs 60:70-102.
    Dworkin M (2000). Introduction to the myxobacteria. In:Brun YV, Shimkets LJ (eds) Prokaryotic development. American Society of Microbiology, Washington, D.C., pp 221-242.
    E. Carafoli (1987). Intracellular calcium homeostasis. Annu Rev Biochem 56: 395-433.
    Gangola P, Rosen BP (1987). Maintenance of intracellular calcium in Escherichia coli. J Biochem 262:12570-12574.
    Grabarek Z (2006). Structural basis for diversity of the EF-hand calcium-binding proteins. J Microbiol Biotechn 359:509-525.
    Gray, K.M (1997). Intercellular communication and group behavior in bacteria. Trends Microbiol 5:184-188.
    Hastings, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R., and van Leeuwen, M. (1969). Nature 222:1047-1050.
    He X, Wu C, Yarbrough D, et al. (2008). The cia operon of Streptococcus mutans encodes a unique component required for calcium-mediated autoregulation. Mol MicrobioL 70:112-126.
    Hirofumi N., Inouye M (2007). MazF, an mRNA interferase, mediates programmed cell death during multicellular myxococcus development. Cell 132:55-66.
    Ikura, M. (1996). Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14-17.
    Inouye M., Inouye S, Zusman RD (1979). Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc Natl Acad Sci USA 76:209-213.
    Inouye S, Zusman RD (1983). Structural similarities between the development-specific protein S from a gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc Natl Acad Sci USA 80:6829-6833.
    Ivey DM, Guffanti AA, Zemsky J (1993). Cloning and characterization of a putative Ca2+/H+antiporter gene from Escherichia coli upon functional complementation of Na+/H+antiporter-deficient strains by the overexpressed gene. J Biol Chem 268:11296-11303.
    Kuner JM, Kaiser D (1982). Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol 151:458-61.
    Kvansakul M (2004). Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 23:1223-1233.
    L.J. Van Eldik, J.G. Zendegui, D.R. Marshak, D.M. Watterson (1982). Calcium-binding proteins and the molecular basis of calcium action. Int Rev Cytol 77:1-61.
    Lawler J (1986). The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 103:1635-1648.
    Marisa B, Paolo P, et al. (1999). Targeted recombinant aequorins:tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc Res Techniq 46:380-389.
    Matsushita T, Hirata H, Kusaka I (1988). Calcium channel blockers inhibit bacterial chemotaxis. FEBS Lett 236:437-440.
    Michiels J, Xi C, Verhaert J, et al. (2002). The functions of Ca2+in bacteria:a role for EF-hand proteins? Trends Microbiol 10:87-93.
    Mignot T, Shaevitz JW, Hartzell PL, Zusman DR (2007). Evidence that focal adhesion complexes power bacterial gliding motility. Science 315:853-856.
    Musicki, B., Kishi, Y. and Shimomura, O. (1986). J Chem Soc Chem Commun 21: 1566-1568.
    Norris JR, Jensen HL (1957). Calcium requirements of Azotobacter. Nature 180: 1493-1494.
    O;Hara MB, Hageman JH (1990). Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol 172:4161-4170.
    Ordal GW (1977). Calcium ion regulates chemotactic behaviour in bacteria. Nature 270:66-67.
    P. Cohen, C.B. Klee (1988). Calmodulin, Elsevier, Amsterdam.
    P. Gangola, B.P. Rosen (1987). Maintenance of intracellular calcium in Escherichia coli. J Biol Chem 262:12570-12574.
    Pitta TP, Sherwood EE, Kobel AM, et al. (1997). Calcium is required for swimming by the nonflagellated cyanobacterium Synechococcus strain WH8113. J Bacteriol 179:2524-2528.
    Plaga W., Ulrich SH (1999). Intercellular signalling in Stigmatella aurantiaca. Curr Opin Microbiol 2:593-597.
    R.H. Kretsinger (1979). The informational role of calcium in the cytosol. Adv Cyclic Nucleotide Res 11:1-26.
    Raeymaekers L (2002). Expression of a P-type Ca2+-transport ATPase in Bacillus subtilis during sporulation. Cell Calcium 32:93-103.
    Reichenbach H (2001). Myxobacteria, producers of novel bioactive substances. J hid Microbiol Biotechnol 27:149-156.
    Reusch RN, Huang R, Bramble LL (1995). Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+channels in the plasma membranes of Escherichia coli. Biophys J 69:754-766.
    Rigden, D. J., M. J. Jedrzejas, O. V. Moroz, and M. Y. Galperin (2003). Structural diversity of calcium-binding proteins in bacteria:single-handed EF-hands? Trends Microbiol 11:295-297.
    Rosch JW, Sublett J, Gao G (2008). Calcium efflux is essential for bacterial survival in the eukaryotic host. Mol Microbiol 70:435-444.
    Rose RK, Dibdin GH, Shellis RP (1993). A quantitative study of calcium binding and aggregation in selected oral bacteria. J Dent Res 72:78-84.
    Shi Y, Zhao W (2006). Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC7120. Proc Natl Acad Sci USA 103:11334-11339.
    Shimkets, L. J (1990). Social and developmental biology of myxobacteria. Microbiol Rev 54:473-501.
    Shimomura,O. and Johnson, F. H. (1972). Biochemistry 11:1602-1608.
    Shimomura, O. and Johnson, F. H. (1978). Proc Natl Acad Sci USA.75:2611-2615.
    Shimomura, O., Johnson, F. H. (1966). in Bioluminescence in Progress (Johnson, F. H., and Haneda, Y., Eds.) pp 496-521, Princeton University Press, Princeton, NJ.
    Shimomura,O., Johnson, F. H. and Saiga, Y. (1962). J. Cell Comp. Physiol 59: 223-239.
    Skerker JM, Berg HC (2001). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 98:6901-6904.
    Svetlana V., Eugene S., et al. (2002). obelin from the bioluminescent marine hydroid Obelia geniculata:cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41,2227-2236.
    Swan DG, Hale RS, Dhillon N (1987). A bacterial calcium-binding protein homologous to calmodulin. Nature 329:84-85.
    Teintze M, Inouye M, Inouye S (1988). Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis. J Biol Chem 263:1199-1203.
    Tisa LS, Adler J (1992). Calcium ions are involved in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 89:11804-11808.
    Tisa LS, Adler J (1995). Cytoplasmic free-Ca2+level rises with repellents and falls with attractants in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 92: 10777-10781.
    Torrecilla I, Leganes F, Bonilla I, et al. (2000). Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacterial. Plant Physiol 123:161-175.
    Torrecilla I, Leganes F, Bonilla I, et al. (2004). A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. Microbiology 150:3731-3739.
    Tossavainen H, Permi P, Annila A, et al. (2003). NMR solution structure of
    calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea. Eur J Biochem 270:2505-2512.
    V. Norris, S. Gpant, P. Freestone, et al. (1996). Calcium signalling in bacteria, J Bacteriol 178:3677-3682.
    Wang SL (2008). CabC, an EF-hand calcium-binding protein, is involved in Ca2+-mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol 190 (11):4061-4068.
    Watkins NJ (1995). Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined by using recombinant aequorin. Biochem J 306:865-869.
    Werthen M, Lundgren T (2001). Intracellular Ca2+mobilization and kinase activity during acylated homoserine lactone-dependent quorum sensing in Serratia liquefaciens. J Biochem 276:6468-6472.
    White D, Johnson JA, Stephens K (1980). Effects of specific cations on aggregation and fruiting body morphology in the myxobacterium Stigmatella aurantiaca. J Bacteriol 144:400-405.
    Wolgemuth C, Hoiczyk E, Kaiser D, Oster G (2002). How myxobacteria glide. Curr Biol 12:369-377.
    Womack BJ, Gilmore DF, White D (1989). Calcium requirement for gliding motility in m(?)xobacteria. J Bacteriol 171:6093-6096.
    Xi C (2000). Symbiosis-specific expression of Rhizobium etli casA encoding a secreted calmodulin-elated protein. Proc Natl Acad Sci USA 97:11114-11119.
    Yang, K. Q (2001). Prokaryotic calmodulins:recent developments and evolutionary implications. J Mol Microbiol Biotechnol 3:457-459.
    Yonekawa T, Ohnishi Y, Horinouchi S (2001). A calcium-binding protein with four EF-hand motifs in Streptomyces ambofaciens. Biosci Biotech Bioch 65:156-160.
    Yonekawa T, Ohnishi Y, Horinouchi S (2005). A calmodulin-like protein in the bacterial genus Streptomyces. FEMS Microbiol Lett 244:315-321.
    YQ Zhang, YZ Li, B Wang, ZH Wu, CY Zhang, X Gong, ZJ Qiu, Y Zhang (2005). Characteristics and living patterns of marine myxobacterial isolates. Appl Environ Microbiol 71:3331-3336.
    Yu XC, Margolin W (1997). Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16:5455-5463.
    Zhao Y, Shi Y (2005). CcbP, a calcium-binding protein from Anabaena sp. PCC7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci USA 102:5744-5748.
    胡玮,李越中,张禹清,吴斌(2002)。细菌的细胞程序性死亡。微生物学报42:255-258。
    王海英,张利平(2003)。粘细菌:一类重要的微生物资源。微生物学通报30:115-116。
    周璐,李越中,李健(1999)。粘细菌的多细胞形态发生及其分子调控。生物化学与生物物理进展26:544-547。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700