多核磁耦合体系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多核金属磁耦合体系在分子磁性材料、生命体系等领域得到了广泛的应用,是配位化学最活跃的研究领域之一。多核金属耦合体系的研究作为现代化学研究的一个边缘学科,已成为物理学、化学、生命科学和材料科学的交汇点。近年来,多核金属体系的研究迅速发展,各种新奇的配合物不断涌现。该类体系因为顺磁离子相互作用而具有特殊功能:金属离子通过电子传递的相互作用,以及它们与桥基和端基配体的协调作用,呈现出不同于单核配合物的化学活性、物理性质和生物活性。因此,用理论化学手段研究多金属耦合体系中顺磁离子之间的相互作用及磁-构效关系,具有重要意义。
     本文在密度泛函(DFT)的框架下,结合对称性破损方法,对几类体系的磁耦合行为做了较系统的研究,得到了以下结果:
     1、给出了配位场条件下的磁耦合常数表达式
     我们以局域d-电子模型为基础,从配位场条件下的磁轨道表达式出发,计算出各个微观状态(单行列式)的能量,用微扰理论描写单三重态的能量差,得到双同核体系的磁耦合常数表达式。磁耦合常数的表达式中包含库仑积分、交换积分和K-S轨道能量差,用单行列式来计算这些参数的数值。即利用DFT方法可以用交换积分和库仑积分得出参数的性质,来求算同核过渡双金属分子的磁耦合常数。
     2、给出了直线型三核和三角形型三核体系磁耦合常数的表达式
     对直线型三核体系,假设每个磁中心只有一个成单电子(以三核铜(Ⅱ)体系为例),两个端基铜离子的配位环境是等价的。采用较简便的方法,即比较高自旋态与低自旋态的自旋排布波函数,由自旋态能量差与磁耦合常数的关系式,得出了直线型三核体系磁耦合常数的表达式。
Study on polymetal coupling interaction system is always the most active and wide field in cooperation chemistry. Many special characters induced by interaction among paramagnetic ions, attracted much attention in the field of physics, chemistry, biology and material science. Nowadays, the research on polynuclear complexes develops rapidly, and many novel complexes have been synthesized. The metal ions in polymetal coupling interaction system depend on electron transfer interaction and harmonized interaction among them and bridged groups and terminal groups, presents chemical reactivity, physical property and biological activity different from mononuclear complexes. As a result, it is important to investigate interaction among paramagnetic ions and magneto-structural correlation in such systems by theoretical chemistry method. In this paper, magnetic coupling behavior of some systems has been performed using the broken symmetry approach with the framework of density functional theory (DFT). Many conclusive are derived as follows:
    1. The formula of exchange coupling constant under ligand field is given. A DFT based ligand field model for magnetic exchange coupling in homonuclear transition metal dimmer complexes is presented. It is based on a model of localized d-electrons. Firstly, the energy of all microstates (single determinants) were calculated. Secondly, perturbation theory yielded for the magnetic coupling constants. In this formula, magnetic coupling constant is
    expressed by Coulomb integrals (J_(aa), J_(bb) and J_(ab)), exchange integrals (K_(ab))
    and the K-S orbital energy difference (ε(b)-ε(a)). We used single
    determinants to express these parameters. So on a procedure allowing to express its parameters in terms of exchange and Coulomb integrals from DFT calculations of a homonuclear dimmer complex., we gained the expression of the magnetic coupling costants.
引文
[1] J. A. Crayston, J. N. Devine, and J. C. Walton, Conceptual and Synthetic Strategies for the Preparation of Organic Magnets, Tetrahedron, 2000, 56, 7829-7857.
    [2] 李国栋编著,当代磁学,中国科学技术大学出版社,1999.
    [3] 宛德福,马兴隆,磁性物理学,电子科学技术大学出版社,1994.
    [4] Kahn O, Molecular Magnetism, VCH, New York, 1993.
    [5] Miller J. S., Organometallic- and Organic-Based Magnets: New Chemistry and New Materials for the New Millennium~+, Inorg. Chem., 2000, 39, 4392-4408.
    [6] Heisenberg W. Z. Many-Body Problem and Resonance in Quantum Mechanics, Zeitschrift fur Physik, Phys., 1928, 28, 411.
    [7] 金松寿著,量子化学基础及其应用,上海科学技术出版社,1980.
    [8] P. Curler, Proprietes magnetiques des corps a diverses temperatures. Ann. de Chim. Phys. 1895, 5(7), 289-405
    [9] Bleany, B.; Bowers, K. D. Proc. Roy. Soc. (London)A 1952, 214, 451.
    [10] R. D. Wilett, D. Gatteschi, O. Kahn, Magneto-structural correlation in exchange couple system, NATO ASI serirs, C140, Reidel, Dordrecht, 1985
    [11] D. Gatteschi, O. Kahn, J. S. Miller, et al. Molecular magnetic material, ATO ASI serirs, Kluwer, Dordrecht, 1991
    [12] O. Kahn, In quantum chemistry: the challenge of transition metal and coordination chemistry, A. Veilard (Ed), Reidel, Dordrecht, 1986, 403-412
    [13] 沈昊宇,廖代正,生物体系和模型化合物顺磁离子间的磁相互作用,化学通报,1998,10,14—19.
    [14] Sorrell T N, Synthetic models for binuclear copper proteins, Tetrahedron, 1989, 45, 3-68.
    [15] K. Nakatani, J. Y. Carriat, Y. Journaux, Chemistry and physics of the novel molecular-based compound exhibiting a spontaneous magnetization below Tc=14 K, MnCu(obbz).cntdot. 1H2O(obbz=oxamidobis(benzoato)). Comparison with the antiferromagnet MnCu(obbz). cntdot. 5H2O. Crystal structure and magnetic properties of NiCu(obbz). cntdot. 6H2O, J. Am. Chem. Soc. 1989, 111, 5739-5748
    [16] Holm R H. Chemical Approaches to Bridged Biological Metal Assemblies. Pure & Appl. Chem.,1995, 67, 217-224
    [17] Que L Jr. Dong Y H. Modeling the Oxygen Activation Chemistry of Menthane Moncoxygenase and Ribonucleotide Reducrase. Ace. Chem. Res. 1996, 29: 190-196
    [18] Solomom, B. I.; Wilcox, D. B., Magneto-structural Correlations in bioinorganic Chemistry. In: Willett, R. D. Magneto-Structural Correlation in Exchange Coupled Systems. Netherland: Dordrecht, 1985, 463.
    [19] Pulver, S.; Forland, W. A.; Fox, B. G.; Lipscomb, J. D.; Solomon, E. I., Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin, J. Am. Chem. Soc. 1993, 115, 12409-12422.
    [20] Weighardt, K., Die aktiven zentren in manganhaltigen metalloproteineu and anorganische modellkomplexe, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153-1172.
    [21] J. Reedijk; Bioinorganic Chemistry; Inorganic Chemistry in a Perspective of Biology, Medicine and the Environment; Naturwissenschafien, 1987, 74, 71-77.
    [22] 水谷羲,第7次生物无机化学会议,1996,51(1),58-59.
    [23] 杨光明,廖代正,设计分子基铁磁体的理论模型,化学通报,1996,12,9-15.
    [24] Wickman, H. H.; Trozzolo, A. M.; Williams, H. J.; Hull, G. W. and Merritt F. R., Spin-3/2 Iron Ferromagnet: Its Mossbauer and Magnetic Properties, Phys. Rev. 1967, 155, 563-566.
    [25] Kahn O, Pei Y, Verdaguer M, et al. Magnetic ordering of manganese(Ⅱ) copper(Ⅱ) bimetallic chains; design of a molecular based ferromagnet, J. Am. Chem. Soc., 1988, 110, 782-789.
    [26] Wang S, Trepanier S T, Zheng J C, et al. Homonuclear and heteronuclear metal complexes with a cyclic tetracopper(Ⅱ) unit. Syntheses, crystal structures, and magnetic properties of [CuⅡ4(dmap)3(OH)(O2CCH3)2(HO2CCH3)(H2O)][PF6]2, [CuⅡ4(dmap)2(O2CCH3)4][PF612,[CuⅡ4(dmap)2(O2CCH3)2(OH)2][HgⅡ(O2CCH3)Cl2]2[HgⅡCl2], and [CuⅡ4(dmap)2(O2CCH3)3(OH)2(H2O)][PF6](dmap=1,3-bis(dimethylamino)-2-propanolato), Inorg. Chem., 1992, 31, 2118-2127
    [27] K. Awaga and Y. Maruyama, Ferromagnetic intermolecular interaction of the organic radical, 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1h-imidazolyl-1-oxy 3-oxide, Chem. Phys. Lett. 1989, 158(6), 556-558.
    [28] K. Awaga, T. Inabe, U. Nagashima and Y Maruyama, Two-dimensional network of the ferromagnetic organic radical, 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-N-oxide, J. Chem. Soc, Chem.Commun., 1989, 21, 1617-1618; ibid. Two-dimensional network of the ferromagnetic organic radical, 2-(4-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imiadzol-1-oxyl 3-N-oxide, 1990, 6, 520-520.
    [29] P. Turek, K. Nozawa, D. Shiomi, K. Awage, T. Inabe, Y. Maruyama and M. Kinoshita, Ferromagnetic coupling in a new phase of the p-nitrophenyl nitronyl nitroxide radical, Chem. Phys. Lett. 1991, 180, 327-331.
    [30] K. Takeda, K. Konishi, M. Tamura and M. Kinoshita, Pressure effects on intermolecular interactions of the organic ferromagnetic crystalline β-phase p-nitrophenyl nitronyl nitroxide, Phys. Rev. B. 1996, 53, 3374-3380.
    [31] M. Mito, T. Kawae, M. Takumi, K. Nagata, M. Tamura, M. Kinoshita and K Takeda, Pressure-induced ferro-to antiferromagnetic transition in a purely organic compound, β-phase para-nitrophenyl nitronyl nitroxide, Phys. Rev. B, 1997, 56, R14255-R14258.
    [32] M. Mito, T. Kawae, M. Takumi, K. Nagata, M. Tamura, M. Kinoshita and K. Takeda, Pressure effects of a genuine organic ferromagnet p-NPNN, J. Magn. Magn. Mater. 1998, 177-181, Part 2, 801-802.
    [33] Fukutome. H., Tamahashi. A., Ozaki. M. A. Design of conjugated polymers with polaronic ferromagnetism, Chem. Phys. Lett. 1987, 133, 34-38.
    [34] Korshak, Yu. V.; Medvedeva, T. V.; Ovchinnikov, A.A.; Spector, V. N. Organic polymer ferromagnet, Nature, 1987, 326, 370-372
    [35] Y. Cao, P. Wang, Z. Hu, S. Z. Li, et al, Chemical and magnetic characterization of organic ferromagnet- poly-bipo, Synth. Met. 1988, 27, B625.
    [36] M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y Hosokoshi, M. Ishikawa, M. Takahashi and M. Kinoshita, Bulk ferromagnetism in the β-phase crystal of the p-nitrophenyl nitronyl nitroxide radical, Chem. Phys. Lett. 1991, 186, 401.
    [37] Y. Nakazawa, M. Tamura, N. Shirakawn, D. Shiomi, M. Takahashi, M. Kinoshita and M. Ishikawa, Low-temperature magnetic properties of the ferromagnetic organic radical, p-nitrophenyl nitronyl nitroxide Phys. Rev. B. 1992, 46, 8906-8914.
    [38] Tatiana Makarova, et al, Magnetic carbon, Nature 2001, 413, 716-718.
    [39] 程鹏,廖代正,桥联多核配合物的合成及其磁交换作用的评估与预测,大学化学,1994,9(1),6-11.
    [40] 陈光,崔崇主编,新材料概论,科学出版社,2003.
    [41] Powell, K.; Heath, S. L.; Gatteschi, D.; Pardi, L.; Sessoli, R.; Spina, G.; Del Giallo, F.; Pieralli, F., Synthesis, Structures, and Magnetic Properties of Fe2, Fe17, and Fe19 Oxo-Bddged Iron Clusters: The Stabilization of High Ground State Spins by Cluster Aggregates, J. Am. Chem. Soc. 1995, 117, 2491-2502.
    [42] M. Julve, M. Verdaguer, M. Philoche-Levaalles, et al. Tunable exchange interaction in. mu.-oxalato copper(Ⅱ) dinuclear complexes, Inorg. Chem. 1983, 22, 368-370.
    [43] M. Verdaguer, Nouv. J. Chim. 1985, 9, 325-334.
    [44] J. J. Girerd, O. Kahn, A Novel Bischelating Ligand with Two Tetradentate N, N, O, S Subunits-Synthesis and Properties of a Dinuclear CuⅡ Complex, Angew. Chem, Int, Ed. Engl. 1982, 21, 953-960.
    [45] A. Canerchi, D. Garreschi, R. Sessoli, and et al. Toward molecular magnets: the metal-radical approach, Acc. Chem. Res. 1989, 22, 392-398.
    [46] 崔建中,程鹏,廖代正等,多金属耦合体系的量子化学计算及其应用,化学通报,1998,9,1-10.
    [47] Hay, P. J.; Thibeault, J. C.; Hoffmann, R., Orbital interactions in metal dimer complexes, J. Am. Chem. Soc. 1975, 97, 884-4899.
    [48] Kahn, O.; Briat, B., Exchange interaction in polynuclear complexes. Part 1. Principles, model and application to the binuclear complexes of chromium(Ⅲ), J. Chem. Soc., Faraday Trans. 2, 1976, 72, 268-281.
    [49] Kahn, O.; Briat, B., Exchange interaction in polynuclear complexes. Ⅱ. Antiferromagnetic coupling in binuclear oxo-bridged iron (Ⅲ) complexes, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 1441-1446.
    [50] Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimmers, J. Chem. Phys. 1981, 74, 5737-5743
    [51] 胡海泉,山东大学2000级博士论文。
    [52] 毕思玮,山东大学2001级博士论文。
    [53] 孙友敏,山东大学2004级博士论文.
    [54] White, S. R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., 1992, 69, 2863-2866.
    [55] White, S. R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 1993, 48, 10345-10356.
    [56] 游效曾,配位化合物的结构与性质,科学出版社,1993.
    [57] J. Li, L. Noodleman, D. A. Case, In Inorganic Electronic Structure and Spectroscopy, E. I. Solomon, A. B. P. Lever, Eds., New York, Wiley, 1999, Vol. Ⅰ, p661-724.
    [1] 戴道生,钱昆明.铁磁学,科学出版社,北京.
    [2] Anderson, Philip W.; Seitz, Frederick Seitz; Turnbull, David, Theory of magnetic exchange interactions: exchange in insulators and semiconductors, Solid State Physics, 1963, 14, 99-214.
    [3] P. W. Anderson, New approach to the theory of superexchange interaction. Phys. Rev. 1959, 115, 2-13.
    [4] J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(Ⅱ)]MnO_3, Phys. Rev. 1955, 100, 564-573.
    [5] 姜寿亭,铁磁性理论,科学出版社,1993.
    [6] P. J. Hay, J. C. Thibeault, R. Hoffmann, Orbital interactions in metal dimer complexes, J. Am. Chem. Soc. 1975, 97, 4884-4899.
    [7] O. Kahn, B. Briat, Exchange interaction in polynuclear complexes. Part 1. Prineiples, model and application to the binuclear complexes of chromium(Ⅱ), J. Chem. Soc., Faraday Trans. 2, 1976, 72, 268-281.
    [8] M. Wolfsberg, L. Helmholz, The Electronic Structure of MnO~(4-), CrO~(4-), and ClO~(4-), J. Chem. Phys. 1952, 20, 837-843
    [9] L. Noodleman, Valence bond description of antiferromagnetic coupling in transition metal dimmers, Exchange interaction in polynuclear complexes. Ⅱ. Antiferromagnetic coupling in binuclear oxo-bridged iron (Ⅲ) complexes, J. Chem. Phys. 1981, 74, 5737-5743.
    [10] L. Noodleman, E. R. Davidson, Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers, Chem. Phys. 1986, 109, 131-143.
    [11] L. Noodleman, D. A. Case, Density functional theory of spin polarization and spin coupling in iron-sulfur clusters, Adv. Inorg. Chem. 1992, 38, 423-470.
    [12] Noodleman L., Case D. A., Aizman A. J. Broken symmetry analysis of spin coupling in iron-sulfur clusters, J. Am. Chem. Soc., 1988, 110, 1001-1005.
    [13] Dai D. D., Whangbo M. H. Spin exchange interactions of a spin dimer: Analysis of broken-symmetry spin states in terms of the eigenstates of Heisenberg and Ising spin Hamiltonians. J. Chem. Phys., 2003, 118, 29-39.
    [14] Ruiz E., Alvarez S., Cano J. Structural Modeling and Magneto-Structural Correlations for Hydroxo-Bddged Copper (Ⅱ) Binuclear Complexes, Inorg. Chem. 1997, 36, 3683-3688
    [15] Joan Cano, Pere Alemany, Santiago Alvarez, Michel Verdaguer, Eliseo Ruiz. Exchange Coupling in Oxalato-Bridged Copper (Ⅱ) Binuclear Compounds: A Density Functional Study, Chem. Eur. J., 1998, 4, 476-484.
    [16] L. Noodleman, Valence bond description of antiferromagnetic coupling in transition metal dimmers, Exchange interaction in polynuclear complexes. Ⅱ. Antiferromagnetic coupling in binuclear oxo-bddged iron (Ⅲ) complexes, J. Chem. Phys. 1981, 74, 5737-5743.
    [17] L. Noodleman, E. R. Davidson, Ligand spin polarization and antiferromagnetic coupling in transition metal dimmers, Chem. Phys. 1986, 109, 131-143.
    [18] L. Noodleman, D. A. Case, Density functional theory of spin polarization and spin coupling in iron-sulfur clusters, Adv. Inorg. Chem. 1992, 38, 423-470.
    [19] M. Atanasov, C. A. Daul, A DFT based ligand field model for magneticexchange coupling in transition metaldimmer complexes:(i) principles, Chemical Physics Letters, 2003, 379, 209-215.
    [20] 任杰,陈志达,无机化学学报,分子磁性的量子化学研究进展,2002,18(8),753-760
    [21] Martin Modl, Michael Dolg, Peter Fulde, and Hermarm Stoll, Analysis of large-scale multi-configuration self-consistent field wave functions by expectation values of local operators, J. Chem. Phys. 1996, 105, 2353-2363.
    [22] Martin Modl, Michael Dolg, and Peter Fulde. Quantum chemical ab initio calculations of the magnetic interaction in alkalithioferrates(Ⅲ) J. Chem. Phys., 1997, 106, 1836-1846.
    [23] Vosko S. H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis, Can. J. Phys. I980, 58, 1200-1211.
    [24] Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1998, 38, 3098-3100.
    [25] Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 1986, 33, 8822-8824
    [26] P. M. Boerrighter, G. Te Velde and E. J. Baelends, Three-dimensional numerical integration for electronic structure calculations, Int. J. Quantum Chem., 1988, 33, 87-113.
    [1] Perdew J P., Savin A., Burke K., Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory, Phys. Rev. A, 1995, 51, 4531-4541.
    [2] Willett R. D., Gatteschi D., Kahn O., Magneto-structural Correlations in Exchange Couple Systems, NATO ASI series, C140, Dordrecht: Reidel, 1985.
    [3] Gatteschi D., Kahn O., Miller J. S. et al., Molecular Magnetic Materials, NATO ASI series, Dordrecht, Luwer, 1991.
    [4] Monfort M.; Ribas J.; Solans X. Crystal Structures and Ferromagnetic Properties of Two New Dinuclear Complexes with Thioeyanato Bridging Ligands: {[Ni_2(1, 2-diamino-2-methylpropane)_3 (NCS)_2]_2(.mu.-NCS)_2}[Ni(1, 2-diarnino-2-methylpropane)_2(NCS)_2].cntdot.H2O and [{Ni_2(1, 2-diamino-2-methylpropane)_4}(.mu.-NCS)_2](PF6)_2. Magneto-Structural Correlations, Inorg. Chem. 1994, 33, 4271-4276.
    [5] Ribas J., Escuer A., Monfort M., et al. Polynuclear Ni~Ⅱ and Mn~Ⅱ azido bridging complexes. Structural trends and magnetic behavior, Coord. Chem. Rev. 1999, 193-195, 1027-1068.
    [6] Oliver Borzyk, Thilo Herb, Christoph Sigwart, Interactions of n-systems via chains, tings and cages-syntheses of model compounds and their spectroscopic investigations, Pure Appl. Chem. 1996, 68, 233-238.
    [7] Kahn O. Molecular Magnetism, VCH, New York, 1993
    [8] Wilcox, D. E.; Long, J. R.; Solomon, E. I. EPR studies of the "EPR-nondetectable" met derivative of hemocyanin: perturbations and displacement of the endogenous bridge in the coupled binuclear copper active site J. Am. Chem. Soc. 1984, 10, 2186.
    [9] Ling, J.; Farooq, A.; Karlin, K. D.; Loehr, T. M.; Sanders-Loehr, Vibrational spectroscopic studies of a hydroxo-bridged dinuclear copper complex, a potential model for multicopper proteins, J. Inorg. Chem. 1992, 31, 2552-2556.
    [10] Hay, P. J.; Thibeault, J. C.; Hoffman, R. Orbital interactions in metal dimer complexes, J. Am. Chem. Soc. 1975, 97, 4884-4899.
    [11] Karlin, K. D.; Tyekla'r, Z. Functional biomimics for copper proteins involved in reversible O2-binding,substrate oxidation oxygenation and nitrite reduc-tion. Adv. Inorg. Biochem. 1994, 9, 123-127.
    [12] 王庆伦,廖代正.混合桥基双核配合物中的轨道互补和反互补效应,化学研究,2003,14(2),74-80。
    [13] 孙友敏,王若曦,刘成卜.氢键桥联双核铜(Ⅱ)配合物磁耦合的密度泛函研究,高等学校化学学报,2005,26(2),294
    [14] Bi S-W, Liu C-B, Hu H-Q. Theoretical study on magneto-structural correlation in unsymmetrical oxamido copper (Ⅱ) complexes, J. Phys. Chem. B. 2002, I06, 10786-10792.
    [15] Hu H-Q, Zhang D-J, Chen Z-D. Influence of structural parameters of Cu_2O_2 core on magnetic coupling in alkoxo-bddged Cu (Ⅱ) binuelear system, Chem. Phys. Lett. 2000, 329, 255-260.
    [16] Hay, P. J.; Thibeault, J. C.; Hoffman, R. Orbital interactions in metal dimer complexes, J. Am. Chem. Soc. 1975, 97, 4884-4899.
    [17] Alvarez, S.; Julve, M.; Verdaguer, M. Oxygen-stable ferrocene reference electrodes, Inorg. Chem. 1990, 29, 4507-4509.
    [18] Thompson, L. K.; Xu, Z. Q.; Goeta, A. E.; Howard, J. A. K.; Clase, H. J.; Miller, D. O. Structural and Magnetic Properties of Dicopper(Ⅱ) Complexes ofPolydentate Diazine Ligands, Inorg. Chem. 1998, 37, 3217-3229.
    [19] Xu, Z. Q.; Thompson; L. K.; Miller, D. O. Dicopper(Ⅱ) Complexes Bridged by Single N-N Bonds. Magnetic Exchange Dependence on the Rotation Angle between the Magnetic Planes, Inorg. Chem. 1997, 36, 3985-3995.
    [20] Kahn, O.; Pei, Y.; Verdaguer, M.; Renard, J. P.; Sletten, J. Magnetic ordering of manganese(Ⅱ) copper(Ⅱ) bimetallic chains; design of a molecular based ferromagnet, J. Am. Chem. Soc. 1988, 110, 782-789.
    [21] Nishida Y., Takahashi K., Takahashi K., et al. Preparation and crystal structure of a binuclear copper (Ⅱ) complex bridged by an alkoxo-oxygen atom and an acetate ion, Chem. Lett. 1983, 1815-1818.
    [22] Nishida Y., Takahashi K., Takahashi K., et al. Orbital complementarity and countercomplementarity effects in superexchange interaction through heterobridges in binuclear copper (Ⅱ) complexes, Chem. Lett. 1985, 631-634.
    [23] Nie H., Aubin S M J., Mashuta M S., et al. Dinuclear Copper(Ⅱ) Complexes Incorporating a New Septadentate Polyimidazole Ligand, Inorg. Chem., I996, 35, 3325-3334.
    [24] Mohanta, S.; Nanda, K. K.; Thompson, L. K.; Flo¨rke, U.; Nag, K. Spin Exchange Coupling in Heterobimetallic M~ⅡV~ⅣO (M=Cu, Ni, Co, Fe, Mn) Macrocyclic Complexes. Synthesis, Structure, and Properties, Inorg. Chem. 1998, 37, 1465-1472.
    [25] Bu¨rger, K. -S., Chaudhuri, P.; Wieghardt, K. Moderately strong antiferromagnetic exchange coupling in a dinuclear complex containing a μ-hydroxo-μ-carboxylato dicopper(Ⅱ) core, J. Chem. Soc., Dalton Trans. 1996, 247-248.
    [26] McKee, V.; Zvagulis, M.; Dagdigian, J. V.; Patch, M. G.; Reed, C. A. Hemocyanin models: synthesis, structure, and magnetic properties of a binucleating copper (Ⅱ) system, J. Am. Chem. Soc. 1984, 106, 4765-4772.
    [27] Boxwell, C. J.; Bhalla, R.; Cronin, L.; Turner, S. S.; Walton, P. H. Self-assembly preparation, structure and magnetic studies of a novel dinuclear copper(Ⅱ) complex: [Cu_2(μ-OH)(μ-OAc)(μ-L)][BF_4]_2 [L=bis-1, 3-(cis, cis-1, 3, 5-triaminocyclohexane)xylylidiene], J. Chem. Soc., Dalton Trans. 1998, 2449-2450.
    [28] Christou, G.; Perlepes, S. P.; Libby, E.; Folting, K.; Huffman, J. C.;Webb, R. J.; Hendrickson, D. N. Preparation and properties of the triply bridged, ferromagnetically coupled dinuclear copper(Ⅱ) complexes [Cu2(OAc)3(bpy)2](ClO4) and [Cu2(OH)(H2O)(OAc)(bpy)2](ClO4)2, Inorg. Chem. 1990, 29, 3657-3666.
    [29] Soto, L.; Garci'a-Lozano, J.; Escriva', E.; Legros, J. -P.; Tuchagues, J. -P.; Dahan F.; Fuertes, A. Synthesis, characterization and magnetic properties of. mu. -oxalato- and .mu.-oxamido-bridged copper(Ⅱ) dimers. Crystal and molecular structures of [Cu_2(mepirizole)_2(C2O4)(H2O)_2](PF6)_2.cntdot.mepirizole.cntdot.3H_2O and [Cu_2(mepirizole)_2(C2O4)(NO_3)_2(H_2O)]_2[Cu_2(mepirizole)_2(C_2O4)(NO3)_2], Inorg. Chem. 1989, 28, 3378-3386.
    [30] Beneto', M.; Soto, L.; Garci'a-Lozano, J.; Escriva', E.; Legros, J. -P.;Dahan, F. Crystal and molecular structure and properties of the first characterized copper(Ⅱ) one-dimensional polymer containing mepirizole [4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidin e], J. Chem. Soc. Dalton Trans. 1991, 1057-1061.
    [31] Soto, L.; Garci'a-Lozano, J.; Escriva', E.; Beneto', M.; Dahan, F.;Tuchagues, J. -P.; Legros, J. -P. Crystal and molecular structure and magnetic properties of a new μ-oxalato binuclear copper(Ⅱ) complex containing mepirizole, J. Chem. Soc. Dalton Trans. 1991, 2619-2624.
    [32] Komatsuzaki, H.; Ichikawa, S.; Hikichi, S.; Akita, M.; Moro-oka, Y. Characterization of a Dinuclear (μ-Hydroxo)(μ-pyrazolato)dimanganese(Ⅱ) Complex and Hydrolytic Equilibrium of the Bridging Pyrazolate Ligand, Inorg. Chem. 1998, 37, 3652-3656.
    [33] M. Salah El Fallah, Albert Escuer, Ramon Vicente, et al, Syntheses and Magneto-Structural Study of Several Polynuclear Copper(Ⅱ) Complexes Derived from 1, 3-Bis(dimethylamino)-2-propanolato, Inorg. Chem, 2004, 43, 7218-7226.
    [34] Gutierrez, L.; Alzuet, G.; Real, J. A.; Cano, J.; Borra's, J.;Castin~eiras, A. Countercomplementarity and Strong Ferromagnetic Coupling in a Linear Mixed μ-Acetato, μ-Hydroxo Trinuclear Copper(II) Complex. Synthesis, Structure, Magnetic Properties, EPR, and Theoretical Studies, Inorg. Chem. 2000, 39, 3608-3614.
    [35]Gutierrez, L.; Alzuet, G; Real, J. A.; Cano, J.; Borra's, J.; Castin~eiras, A. Strong Ferromagnetic Coupling in Linear Mixed μ-Acetato, μ-Hydroxo Trinuclear Copper(II) Complexes with N-sulfonamide derivatives- Synthesis, Structure, EPR and Magnetic Properties, Eur J. Inorg. Chem. 2002, 2002(8), 2094-2102.
    [1] Kahn, O., Molecular Magnetism, VCH, New York, 1993.
    [2] Triki, S., Gomez-Garcia, C. J.,
    [3] Ruiz, E., et al., Asymmetric azido-Copper (Ⅱ) bridges: ferro- or antiferromagnetic? Experimental and theoretical magneto-structural studies, Inorg. Chem. 2005, 44(15), 5501-5508.
    [4] Whangbo, M-H., Dai, D., Koo, H-L., Spin dimer and classical spin analyses of the ordered magnetic structures of alkali iron pyrophosphates NaFeP_2O_7 and LiFeP_2O_7, Dalton Trans. 2004, 19, 3019-3025.
    [5] Nie, H., Aubin, S., Mashuta, M. S., et al., Dinuclear copper (Ⅱ) complexes incorporating a new septadentate polyimidazole ligand, Inorg. Chem. 1996, 35(11), 3325-3334.
    [6] Ruiz, E.; Cano, J.; Alvarez, S.; Magnetic coupling in end-on azido-bridged transition metal complexes: a density functional study, J. Am. Chem. Soc. 1998, 120(43), 11122-11129.
    [7] Ruiz, E., Alemany, P., Alvarez, S. et al., Toward the prediction of magnetic coupling in molecular systems: hydroxo- and alkoxo-bridged Cu(Ⅱ) binuclear complexes, J. Am. Chem. Soc., 1997, 119(6), 1297-1303.
    [8] Cano, J., Ruiz, E., Alemany, P., et al., Theoretical study of the exchange coupling in copper(Ⅱ) binuclear compounds with oxamidate and related polyatomic bridging ligands, J. Chem. Soc., Dalton Trans. 1999, 0, 1669-1676.
    [9] Bi, S., Liu, C., Hu, H., Theoretical study on magneto-structural correlation in unsymmetrical oxamido copper (Ⅱ) complexes, J. Phys. Chem. B 2002, 106(42), 10786-10792.
    [10] Hu, H., Chen, Z., Liu, C., et al., Influence of structural parameters of Cu_2O_2 core on magnetic coupling in alkoxo-bridged Cu(Ⅱ) binuclear system, Chem. Phys. Lett. 2000, 329, 255-260.
    [11] Ren, Q., Chen, Z., Wei, H., et al., Ferromagnetic coupling behavior in oxo-bridged binuclear bis(η~5-cyclopentadienyl) titanium (Ⅲ) complex (Cp_2Zi)_2(μ-O): a density functional theory combined with broken-symmetry approach, J. Phys. Chem. A, 2002, 106 (25), 6161-6166.
    [12] Sun, Y., Liu, C., Qi, Z., et al., Theoretical study on magneto-structural correlation in trinuclear copper (Ⅱ) complexes with the oxamato bridge, J. Mol. Struct (Theochem), 2005, 718, 49-53.
    [13] Chen, Z., Xu, Z., Zhang, L., et al., Magnetic exchange interactions in oxo-bridged diiron(Ⅲ) systems: density functional calculations coupling the broken symmetry approach, J. Phys. Chem. A, 2001, 105(42), 9710-9716.
    [14] Gutierrez, L., Alzuet, G., Real, J. A., et al., Strong ferromagnetic coupling in linear μ-acetato, μ-hydroxo trinuclear copper (Ⅱ) complexes with N-sulfonamide derivatives-synthesis, structure, EPR and magnetic properties, Eur, J. Chem. 2002, 2094-2102.
    [15] Burraws, K. J., Cornish, A. Substrate specificities of the soluble and particulate methane monooxygenases from Methylosinns trichosponium OB3b, J Gen Microbiol, 1984, 130(12), 3327-3333.
    [16] Stanley, S. H. Prisp. Copper stress underlies the fundanmental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms -studies in batch and continuous cultures, Biotechnol Lett, 1983, 5, 487-492.
    [17] Lucia, B., Alessandro, B., Dante, G., EPR spectra of trinuclear complexes. Octachloro diadeninium tricopper (Ⅱ) tetrahydrate, lnorg. Chem. 1983, 22(19), 2681-2683
    [1] (英)Moorjani,K.(爱)Coey,J.M.D.著,赵见高等译,磁性玻璃,科学出版社,1992.
    [2] O. Kahn, Molecular Magnetism, VCH: New York, 1993.
    [3] Bi, S., Liu, C., Hu, H., Theoretical study on magneto-structural correlation in unsymmetrical oxamido copper (Ⅱ) complexes, J. Phys. Chem. B 2002, 106(42), 10786-10792.
    [4] Sun, Y., Liu, C., Qi, Z., et al., Theoretical study on magneto-structural correlation in trinuclear copper (Ⅱ) complexes with the oxamato bridge, J. Mol. Struct (Theochem), 2005, 718, 49-53.
    [5] C. Liu; Y. Sun; B. Zheng, Theoretical study on magneto-structural correlation in axially coordinated complexes of copper (Ⅱ) with nitronyl nitroxide radical Chem. Phys. Lett. 2005, 411, 416—422.
    [6] Hu, H., Chen, Z., Liu, C., et al., Influence of structural parameters of Cu_2O_2 core on magnetic coupling in alkoxo-bridged Cu(Ⅱ) binuclear system, Chem. Phys. Lett. 2000, 329, 255-260.
    [7] Chen, Z., Xu, Z., Zhang, L., et al., Magnetic exchange interactions in oxo-bridged diiron(Ⅲ) systems: density functional calculations coupling the broken symmetry approach, J. Phys. Chem. A, 2001, 105(42), 9710-9716.
    [8] Ren, Q., Chen, Z., Wei, H., et al., Ferromagnetic coupling behavior in oxo-bridged binuclear bis(η~5-cyclopentadienyl) titanium (Ⅲ) complex (Cp_2Ti)_2(μ-O): a density functional theory combined with broken-symmetry approach, J. Phys. Chem. A, 2002, 106 (25), 6161-6166.
    [9] H. -H. T. Nguyen; K. H. Nakagawa; B. Hedman; et al., X-ray Absorption and EPR Studies on the Copper Ions Associated with the Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath). Cu(Ⅰ) Ions and Their Implications, J. Am. Chem. Soc. 1996, 118, 12766-12776.
    [10] S. S. Lemos; H. Yuan; M. L. Perille Collins; et al., Review of multifrequency. EPR of copper in particulate methane monooxygenase Curr. Topics. Biophys. 2002, 26, 43-48.
    [11] Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic bistability in a metal-ion cluster, Nature, 1993, 365, 141-142.
    [12] Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R. Large Clusters of Metal Ions, the Transition from Molecular to Bulk Magnet, Science, 1994, 265, 1054-1058.
    [13] Gehring, S.; Fleischauer, P.; Paulus, H.;Haase, W. Ferromagnetic exchange coupling and magneto-structural correlations in mixed-bridged trinuclear copper(Ⅱ) complexes. Magnetic data and theoretical investigations and crystal structures of two angled Cu~Ⅱ_3 complexes, Inorg. Chem. 1993, 32, 54-60.
    [14] Meenakumari, S.; Tiwary, S. K.; Chakravarty, A. R. Synthesis, Crystal Structure, and Magnetic Properties of a Ferromagnetically Coupled Angular Trinuclear Copper(Ⅱ) Complex [Cu_3(O_2CMe)_4(bpy)_3(H_2O)](PF_6)_2, Inorg. Chem. 1994, 33, 2085-2089.
    [15] Suh, M. P.; Hart, M. Y.; Lee, J. H.; Min, K. S.; Hyeon, C. One-Pot Template Synthesis and Properties of a Molecular Bowl: Dodecaaza Macrotetracycle with μ_3-Oxo and μ_3-Hydroxo Tricopper(Ⅱ) Cores J. Am. Chem. Soc. 1998, 120, 3819-3820.
    [16] S. J. Elliott; D. W. Randall; R. D. Britt; et al., Pulsed EPR Studies of Particulate Methane Monooxygenase from Methylococcus Capsulatus (Bath): Evidence for Histidine Ligation J. Am. Chem. Soc. 1998, 120, 3247-3248.
    [17] R. L. Lieberman; A. C. Rosenzweig, Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 147-164.
    [18] S. J. Elliott; M. Zhu; L. Tso; et al., Regio- and Stereoselectivity of Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 1997, 119, 9949-9955.
    [19] B. Wilkinson; M. Zhu; N. D. Priestley; et al., A Concerted Mechanism for Ethane Hydroxylation by the Particulate Methane Monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc. 1996, 118, 921-922.
    [20] H. Y. Wei; Z. C. Hu; Z. D. Chert, Is [Cu_3(L~2)Cl_2]~(2+) a molecular with geometrically spin frustration? DFT study on magnetic competing interaction in hetero-bridged tricopper (Ⅱ) complex, J. of Mol. Struct. (THEOCHEM), 2005, 713, 145.
    [21] G. Mezei; J. E. McG-rady; R. G. Raptis, First Structural Characterization of a Delocalized, Mixed-Valent, Triangular Cu_3~(7+) Species: Chemical and Electrochemical Oxidation of a Cu~Ⅱ_3 (μ_3-O) Pyrazolate and Electronic Structure of the Oxidation Product, Inorg. Chem. 2005, 44, 7271-7273.
    [22] P. A. Angaridis; P. Baran; R. Boca; et al., Synthesis and Structural Characterization of Tdnuclear Cu~Ⅱ-Pyrazolato Complexes Containing μ_3-OH, μ_3-O, and μ_3-Cl Ligands. Magnetic Susceptibility Study of [PPN]_2[(μ_3-O)Cu_3(μ-pz)_3Cl_3], Inorg. Chem. 2002, 41, 2219-2228.
    [23] R. Boca; L. Dlhan; G. Mezei; et al., Triangular, Ferromagnetically-Coupled Cu~Ⅱ_3-Pyrazolato Complexes as Possible Models of Particulate Methane Monooxygenase (pMMO), Inorg. Chem. 2003, 42, 5801-5803.
    [24] E. I. Solomom; U. M. Sundaram; T. E. Machonkin; et al., Multicopper Oxidases and Oxygenases, Chem. Rev. 1996, 96, 2563-2606.
    [25] 游效曾,配位化合物的结构与性质,科学出版社,1993.
    [26] J. Li, L. Noodleman, D. A. Case, In Inorganic Electronic Structure and Spectroscopy, E. I. Solomon, A. B. P. Lever, Eds., New York, Wiley, 1999, Vol. Ⅰ, p661-724.
    [27] A. L. Feig, S. Lippard, Non-heme iron (11)-dependent oxygenases, J. Chem. Rev., 1994, 94, 759-805.
    [28] G. Blondin, J. J. Girerd, Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models, Chem. Rev. 1990, 90, 1359-1376.
    [29] A. Ceulemans, L. E Chibotaru, G. A. Heylen, K. Pierloot, L. G. Vanquickenborne, Theoretical Models of Exchange Interactions in Dimeric Transition-Metal Complexes, Chem. Rev. 2000, 100, 787-806.
    [30] M. J. Ondrechen, S. Gozashti, X. M. Wu, An electronic mechanism for electron pairing in antiferromagnetic bridged mixed-valence systems, J. Chem. Phys., 1992, 96, 3255-3261.
    [31] 胡海泉,北京大学博士后论文.
    [32] Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon, E. I.; Stack, T. D. P. A Trinuclear Intermediate in the Copper-Mediated Reduction of O_2: Four Electrons from Three Coppers, Science, 1996, 273, 1848-1850.
    [33] P. W. Anderson, H. Hasegawa, Considerations on double exchange, Phys. Rev., 1955, 100, 675-681.
    [34] K. Y. Wong, P. N. Schatz, Progress in lnorg. Chem., 1981, 28, 369-449.
    [35] S. B. Piepho, Vibronic coupling model for the calculation of mixed-valence line shapes: the interdependence of vibronic and MO effects, J. Am. Chem. Soc. 1988, 110, 6319-6326.
    [36] S. B. Piepho, Vibronic coupling model for the calculation of mixed-valence line shapes: a new look at the Creutz-Taube ion, J. Am. Chem. Soc. 1990, 112, 4197-4206.
    [37] A. V. Palii, B. S. Tsukerblat, Mol. Phys., 1992, 76, 1103.
    [38] S. M. Ostrovsky, R. Wemer, K. Nag, W. Haase, Electron localization-delocalization in mixed-valence iron dimmers, Chem. Phys. Lett. 2000, 320, 295-302.
    [39] C. Cruetz, H. Taube, Direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions, Direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions, J. Am. Soc. Chem. 1969, 91, 3988-3989.
    [40] K. S. Murray, Binuclear oxo-bridged iron (Ⅲ) complexes, Coord Chem. Rew, 1974, 12, 1-35.
    [41] C. Zener, Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev., 1951, 82, 403-405.
    [42] G. H. Jonker, J. H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure, Physica, 1950, 16, 337-349.
    [43] Root, D. E.; Henson, M. J.; Machonkin, T.; Mukherjee, P.; Stack, T. D. P.; Solomon, E. I. Electronic and Geometric Structure of a Trinuclear Mixed-Valence Copper(Ⅱ, Ⅱ, Ⅲ) Cluster, J. Am. Chem. Soc. 1998, 120, 4982-4990.
    [44] Yoon, J.; Mirica, L. M.; Stack, T. D. P.; Solomon, E. I. Spectroscopic Demonstration of a Large Antisymmetric Exchange Contribution to the Spin-Frustrated Ground State of a D3 Symmetric Hydroxy-Bridged Trinuclear Cu(Ⅱ) Complex: Ground-to-Excited State Superexchange Pathways, J. Am. Chem. Soc. 2004, 126, 12586-12595.
    [45] Gellert Mezei, John E. McGrady, and Raphael G. Raptis, First Structural Characterization of a Delocalized, Mixed-Valent, Triangular Cu_3~(7+) Species: Chemical and Electrochemical Oxidation of a Cu~Ⅱ_3(μ_3-O) Pyrazolate and Electronic Structure of the Oxidation Product, Inorg. Chem. 2003, 44, 7271-7273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700