基于ICT萘酰亚胺阳离子比率荧光探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针能够将分子识别的信息转换成荧光信号为外界所感知,具有诸如最高可达单分子检测的高灵敏度、能够实现开关操作、对亚微粒具有可视的亚纳米空间分辨能力和亚毫秒时间分辨能力、原位检测(荧光成像技术)以及利用光纤进行远距离检测等众多优点。比率荧光信号优于荧光强度响应信号,提高了灵敏度,引入自动校准功能,可实现定量检测。所谓比率检测就是指两个荧光发射强度或吸收强度的比值随着底物浓度的变化而变化。比率检测一个突出优点就是通过强度比值的变化提高动态响应的范围,建立起内标从而极大的削弱其他因素的干扰。
     4-氨基-1,8-萘酰亚胺是一个推-拉电子体系的荧光团,通过改变电子供体(通常是共轭氮原子)对共轭体系的供电能力(ICT),就可以实现荧光波长的移动。在本论文中,设计合成了一系列基于ICT原理识别阳离子的1,8-萘酰亚胺类比率荧光探针。利用N-丁基-4-溴-5-硝基-1,8-萘酰亚胺的高反应活性以及5位硝基反应活性远远大于4位溴取代基的特性,向1,8-萘酰亚胺的4,5二位引入不同的阳离子受体,得到了分别针对铜离子、锌离子、镉离子和pH的比率荧光探针。
     设计合成了两个系列共15个铜离子比率荧光探针。在CuBF系列中,铜离子的结合减弱了共轭氮原子对荧光团的供电能力,从而引起了荧光波长的蓝移。经过结构的改造,其中CuBF1、CuBF7-11能够在常见金属离子(Li~+,Na~+,K~+,Mg~(2+),Ca~(2+),Fe~(3+),Mn~(2+),Al~(3+),Co~(2+),Ni~(2+),Cu~(2+),Zn~(2+),Cd~(2+),Hg~(2+),Ag~+,Pb~(2+))中专一性的识别铜离子。CuRF系列则是基于脱氢和ICT原理的结合,铜离子与受体的作用能够诱使共轭氮原子上的氢脱去,共轭氮原子显负电增强了对荧光团的供电能力,从而引起荧光波长的红移,同时也造成了吸收光谱的红移。CuRF系列也是专一性的识别铜离子。总结了保证荧光不被铜离子淬灭的两种方法,提出并验证了第三种方法,即受体中含有合适的电子供体,能够补偿铜离子的缺电性,从而阻断铜离子与荧光团之间的电子传递或者能量传递过程,荧光得以保持。在CuBF系列和CuRF系列中,补偿铜离子缺电性的电子供体分别是芳环π电子体系和脱氢后带负电荷的氮原子。
     设计合成了两个锌离子比率、比色荧光探针ZnRF1-2。锌离子与ZnRF1-2的作用能够脱去共轭氮原子上的氢,从而使得荧光光谱和吸收光谱发生红移。荧光由黄绿色变成了红色,溶液颜色也由淡黄色变成了粉红色,非常便于可视检测。ZnRF1-2和CuRF系列类似,也是基于脱氢原理和ICT原理的结合。推而广之,这种探针的设计思路可以被运用来设计其他金属离子的比率荧光探针。
Fluorescent probes can transfer molecular recognition events into fluorescence signals and then make a bridge between man and molecule. The advantages of molecular fluorescence for sensing can be summarized: high sensitivity of detection down to the single molecule, "on-off switchability, subnanometer spatial resolution and submillisecond temporal resolution, observation in situ, remote sensing by using optical fibres, et al. Ratiometric fluorescent signals, in contrast with intentisy-responsive ones, have higher sensitivity and can be used in quantitative detection. Ratiometric measurements involve the observation of changes in the ratio of the intensity of the absorption or the emission at two wavelengths. They permit signal rationing and thus increase the dynamic range and provide built-in correction for environmental effects.4-amino-l,8-naphthalimide fluorophore contains an electron-donating group (often an amino group) conjugated to an electron-withdrawing group, it undergoes ICT, intramolecular charge transfer, from the donor to the receptor upon excitation by light. When the electron-donating character is changed, a shift in fluorescence emission spectra would be expected. In this thesis, a series of ratiometric 1,8-naphthalimide fluorescent probes for cations based on the ICT mechanism were designed and synthesized. On the basis of the high reactivity of the precursor N-butyl-4-bromo-5-nitro- 1,8-naphthalimide, we introduced different cation receptors into the 4 and 5 positions, and then obtained ratiometric fluorescent probes for Cu~(2+), Zn~(2+), Cd~(2+), and pH, respectively.Two types of Cu~(2+) ratiometric fluorescent probes, totally including fifteen coupounds, have been designed and synthesized. The binding of Cu~(2+) by CuBF compounds reduces the electron-donating ability of the electron donor. Owing to the reduction of conjugating, a blue shift in emission spectra is observed. Probes CuBF1 and CuBF7-ll exhibit Cu~(2+)-only sensitive among metal ions such as Li~+, Na~+, K~+, Mg~(2+), Ca~(2+), Fe~(3+), Mn~(2+), Al~(3+), Co~(2+), Ni~(2+), Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+), Ag~+, Pb~(2+). CuRF coupounds are based on the combination of deprotonation and ICT mechanisms. The secondary amines conjugated to 1,8-naphthalimide could be deprotonated by Cu~(2+), and as a result, large red shifts in both absorption and fluorescence spectra were obtained, from which one could sense Cu~(2+) colorimetrically and ratiometrically. CuRF are also sense only Cu~(2+) among metal ions. Two methods about how to ensure fluorescence not to be quenched by Cu~(2+) have been summarized, and a third one is
    presented, that is to compensate the electron-deficiency of Cu2+ with a proper donor. Thus the ET (electron transfer or energy transfer) would be suppressed from fluorophore to copper, and as a result fluorescence is maintained. The donors in CuBF and CuRF are aromatic n electrons and deprotonated nitrogen atoms, respectively.Two ratiometric and colorimetric fluorescent probes ZnRFl-2 for Zn2+ have been designed and synthesized. The secondary amine conjugated to 1,8-naphthalimide could be deprotonated by Zn2+, and as a result, large red shifts in both absorption and fluorescence spectra were obtained, from which one could sense Zn2+ colorimetrically and ratiometrically. These visible emissions, the solutions color changing from piromrose yellow to red and fluorescence from green to red, allow Zn2+ to be readily recognized by the naked eye. Probe ZnRFl-2 for Zn2+ was developed from our former Cu2+ sensors on the base of the same deprotonation mechanism. With the improvement of selectivity for metal ion receptors, we believe that this design strategy would help to extend the development of ratiometric fluorescent probes for other metal ions.Two ratiometric fluorescent probes for Cd2+ CdBFl-2 have been designed and synthesized. The binding of Cd2+ by CdBFl reduced the electron-donating ability of the conjugated nitrogen atom, and blue-shifted the fluorescence emission from 531 nm to 487 nm. However, in the case of Zn2+, the secondary amine conjugated to 1,8-naphthalimide could be deprotonated, and fluorescence emission red-shifted from 531 nm to 558 nm. Thus, CdBFl is a multi-analytes sensing probe.Two fluorescent probes HF1-2 for ratiometric low pH measurements have been designed and synthesized. The two probes have narrow pH-sensitive windows. For HF1 based on ICT mechanism, the fluorescence emission blue-shifted from 566 nm to 522 nm when the solution became more acidic from pH 2.57 to 1.70. In addition, HF1 is non-metal ion sensitive. For HF2 based on intramolecular hydrogen binding, the fluorescence emission red-shifted from 497 nm to 527 nm when the solution became more acidic from pH 2.23 to 1.30.
引文
[1] Lehn J.-M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. Angew. Chem., Int. Ed. Engl. 1990, 29 (11): 1304-1309.
    [2] Lehn J.-M.著,沈兴海等译,超分子化学-概念和展望.北京:北京大学出版社,2002.
    [3] 夏其昌.蛋白质化学研究技术与进展.北京:科学出版社,1997.
    [4] Blackburn G. M., Gait M. J. Nucleic acids in chemistry and biology. 2nd ed. Oxford: Oxford University Press, 1996.
    [5] Rurack K., Genger U. R. Rigidization, preorientation and electronic decoupling-the 'magic triangle' for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 2002, 31: 116-127.
    [6] de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T. Signaling Recognition Events with Fluorescent Sensors and Swithes. Chem. Rev. 1997, 97: 1515-1566.
    [7] Stokes G. G. Philos. Trans. R. SOC. London, A. 1852, 143: 463.
    [8] Valeur B. Molecular Fluorescence: Principles and Applications. Wiley-Vch Verlag GmbH, 2001.
    [9] Weller A. Pure Appl. Chem. 1968, 16:115.
    [10] Fabbrizzi L., Licchelli M., Taglietti A. The design of fluorescent sensors for anions: taking profit from the metal-ligand interaction and exploiting two distinct paradigms. J. Chem. Soc., Dalton Trans. 2003, 3471-3479.
    [11] De Santis G., Fabbrizzi L., Licchelli M. et al. Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching. Angew. Chem., Int. Ed. Engl. 1996, 35(2): 202-204.
    [12] 刘育,尤长城,张衡益编著,超分子化学和承受体的分子识别与组装.天津:南开大学出版社.2001.
    [13] Cram D. J. The design of molecular hosts, guests and their complexes. Angew. Chem., Int. Ed. Engl. 1988, 27(8): 1009-1020.
    [14] Hartley J. H., James T. D., Ward C. J. Synthetic receptors. J. Chem. Soc., Perking Trans. 1. 2000, 3155-3184.
    [15] Inouye M. Artificial-signaling receptors for biologically important chemical species. Coord. Chem. Rev. 1996, 148: 265-283.
    [16] Linton B., Hamilton A. D. Formation of Artificial Receptors by Metal-Templated Self-Assembly. Chem. Rev. 1997, 97: 1669-1680.
    [17] Wong C-H. Mimics of Complex Carbohydrates Recognized by Receptors. Acc. Chem. Res. 1999, 32: 376-385.
    [18] Lavigne J. J., Anslyn E. V. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angew. Chem., Int. Ed. 2001, 40: 3118-3130.
    [19] Gale P. A., Anzenbacher J. P., Sessler J. L. Calixpyrroles Ⅱ. Coord. Chem. Rev. 2001, 222: 57-102.
    [20] Kovbasyuk L., Kramer R. Allosteric Supermolecular Recptors and Catalysts. Chem. Rev. 2004, 104: 3161-3187.
    [21] Nishikiori S. I., Yoshikawa H., Sang Y. et al. Inorganic-Organic Hybrid Molecular Architectures of Cyanometalate Host and Organic Guest Systems: Specific Behavior of the Guests. Acc. Chem. Res. 2005, 38: 227-234.
    [22] Ueno A. Review: fluorescent cyclodextrins for molecular sensing. Supramolecular Science. 1996, 3 (1-3): 31-36.
    [23] 吴寿昌.冠醚化学.北京:科学出版社.1992.
    [24] 小田良平,庄野利之,田夫盐夫.冠醚化学.原子能出版社.1985.
    [25] Bradshaw J. S., Izatt R. M. Crown Ethers: The Search for Selective Ion Ligating Agents. Acc. Chem. Res. 1997, 30: 338-345.
    [26] Schmidtchen F. P., Berger M. Artificial Organic Host Molecules for Anions. Chem. Rev. 1997, 97: 1609-1646.
    [27] Beer P. D. Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species. Acc. Chem. Res. 1998, 31: 71-80.
    [28] Tobey S. L., Anslyn E. V. Synthetic Receptors for Anion Recognition. Am. Chem. Soc. Natl. Meet. Chicago, IL, USA, Aug. 2001, 26-31.
    [29] Beer P. D., Gale P. A. Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angew. Chem., Int. Ed. 2001, 40: 486-516.
    [30] Schmidtchen F. P. Artificial Host Molecules for the Sensing of Anions. Top. Curr. Chem. 2005, 255: 1-29.
    [31] Stibor I., Zlatuskova P. Chiral Recognition of Anions. Top. Curr. Chem. 2005, 255: 31-63.
    [32] Lhotak P. Anion Receptors Based on Calixarenes. Top. Curr. Chem. 2005, 255: 65-95.
    [33] Beer P. D., Bayly S. R. Anion Sensing by Metal-Based Receptors. Top. Curr. Chem. 2005, 255: 125-162.
    [34] Suksai C., Tuntulani T. Chromogenic Anion Sensors. Top. Curr. Chem. 2005, 255: 163-198.
    [35] Houk R. J. T., Tobey S. L., Anslyn E. V. Abiotic Guanidinium Receptors for Anion Molecular Recognition and Sensing. Top. Curr. Chem. 2005, 255: 199-229.
    [36] Zhang X. X., Bradshaw J. S., Lzatt R. M. Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors. Chem. Rev. 1997, 97: 3313-3361.
    [37] Ogoshi H., Mizutani T. Multifunctional and Chiral Porphyrins: Model Receptors for Chiral Recognition. Acc. Chem. Res. 1998, 31:81-89.
    [38] Yang D., Li X., Fan Y-F. et al. Enantioselective Recognition of Carboxylates: A Receptor Derived from α-Aminoxy Acids Functions as a Chiral Shift Reagent for Carboxylic Acids. J. Am. Chem. Soc. 2005, 127: 7996-7997.
    [39] 贾丽华.新萘酰亚胺类荧光分子探针的合成及对金属离子的识别:(博士学位论文).大连:大连理工大学,2003.
    [40] 郭祥峰.亲水性萘酰亚胺阳离子荧光分子探针的设计、合成及性能:(博士学位论文).大连:大连理工大学,2004.
    [41] 崔大为.2-亚胺基-噻唑啉作为受体的荧光探针的设计、合成及光谱研究:(博士学位论文).大连:大连理工大学,2005.
    [42] Martfnez-Manez R., Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003,103(11): 4419-4476.
    [43] Wiskur S. L., Ait-Haddou H., Lavigne J. J. et al. Teaching old indicators new tricks. Acc. Chem. Res. 2001,34: 963-972.
    [44] Bissell R. A., de Silva P., Gunaratne H. Q. N. et al. Molecular fluorescent signalling with 'fluor-spacer-receptor' systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev. 1992,21(3): 187-195.
    [45] Valeur B., Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000,205(1): 3-40.
    [46] Prodi L., Bolletta F., Montalti M. et al. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 2000,205(1): 59-83.
    [47] Rurack K. Flipping the light switch 'ON' - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A. 2001,57:2161-2195.
    [48] Fabbrizzi L., Licchelli M., Rabaioli G. et al. The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev. 2000,205(1): 85-108.
    [49] He H., Mortellaro M. A., Leiner M. J. P. et at. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc. 2003,125: 1468-1469.
    [50] Lee J. Y., Kim S. K., Jung J. H. et al. Bifunctional Fluorescent Calix[4]arene Chemosensor for Both a Cation and an Anion. J. Org. Chem. 2005,70: 1463-1466.
    [51] Perry M. J. The role of monoclonal antibodies in the advancement of immunoassay technology. In Monoclonal Antibodies: Principles and Applications. Wiley-Liss: New York. 1995: pp 107-120.
    [52] Buryak A., Severin K. An Organometallic Chemosensor for the Sequence-Selective Detection of Histidine- and Methionine-Containing Peptides in Water at Neutral pH. Angew. Chem., Int. Ed. 2004, 43:4771-4774.
    [53] Buryak A., Severin K. A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids. J. Am. Chem. Soc. 2005,127:3700-3701.
    [54] Folmer-Andersen J. F., Lynch V. M., Anslyn E.V. Colorimetric Enantiodiscrimination of r-Amino Acids in Protic Media. J. Am. Chem. Soc. 2005,127, 7986-7987.
    [55] Tse W. C, Boger D. L. A Fluorescent Intercalator Displacement Assay for Establishing DNA Binding Selectivity and Affinity. Acc. Chem. Res. 2004,37: 61-69.
    [56] Kodadek T., Reddy M. M., Olivos H. J. et al. Synthetic Molecules as Antibody Replacements. Acc. Chem. Res. 2004,37: 711-718.
    [57] Lavigne J. J., Anslyn E. V. Teaching old indicators new tricks: a colorimetric chemosensing ensemble for tratrate/malate in beverages. Angew. Chem., Int. Ed. 1999,38(24): 3666-3669.
    [58] Piatek A. M., Bomble Y. J., Wiskur S. L. et al. Threshold Detection Using Indicator-Displacement Assays: An Application in the Analysis of Malate in Pinot Noir Grapes. J. Am. Chem. Soc. 2004,126: 6072-6077.
    [59] Zhong Z., Anslyn E. V. A colorimetric sensing ensemble for Heparin. J. Am. Chem. Soc. 2002, 124: 9014-9015.
    [60] Ait-Haddou H., Wiskur S. L., Lynch V. M. et al. Achieving Large Color Changes in Response to the Presence of Amino Acids: A Molecular Sensing Ensemble with Selectivity for Aspartate. J. Am. Chem. Soc. 2001,123:11296-11297.
    [61] McCleskey S. C, Metzger A., Simmons C. S. et al. Competitive indicator methods for the analysis of citrate using colormetric assays. Tetrahedron. 2002, 58: 621-628.
    [62] Zhong Z., Anslyn E. V. Controlling the Oxygenation Level of Hemoglobin by Using a Synthetic Receptor for 2,3-Bisphosphoglycerate. Angew. Chem., Int. Ed. 2003,42: 3005-3008.
    [63] Wiskur S. L., Floriano P. N., Anslyn E. V. et al. A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angew. Chem., Int. Ed. 2003, 42: 2070-2072.
    [64] Zhu L., Zhong Z., Anslyn E. V. Guidelines in Implementing Enantioselective Indicator-Displacement Assays for r-Hydroxycarboxylates and Diols. J. Am. Chem. Soc. 2005, 127: 4260-4269.
    [65] Han M. S., Kim D. H. Naked-Eye Detection of Phosphate Ions in Water at Physiological pH: A Remarkably Selective and Easy-To-Assemble Colorimetric Phosphate-Sensing Probe. Angew. Chem., Int. Ed. 2002,41(20): 3809-3811.
    [66] Wiskur S. L., Anslyn E. V. Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes: A Colorimetric Assay for the Aging of Scotch. J. Am. Chem. Soc. 2001,123: 10109-10110.
    [67] Metzger A., Anslyn E. V. A Chemosensor for Citrate in Beverages. Angew. Chem., Int. Ed. 1998, 37(5): 649-652.
    [68] Fabbrizzi L., Leone A., Taglietti A. A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal - Ligand Interactions. Angew. Chem., Int. Ed. 2001, 40(16): 3066-3069.
    [69] Fabbrizzi L., Marcotte N., Stomeo F. et al. Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angew. Chem., Int. Ed. 2002,41(20): 3811-3814.
    [70] Hortala M. A., Fabbrizzi L., Marcotte N. et al. Designing the Selectivity of the Fluorescent Detection of Amino Acids: A Chemosensing Ensemble for Histidine. J. Am. Chem. Soc. 2003, 125: 20-21.
    [71] Fabbrizzi L., Foti F., Taglietti A. Metal-Containing Trifurcate Receptor that Recognizes and Senses Citrate in Water. Org. Lett. 2005, 7(13) 2603-2606.
    [72] Demchenko A. P. The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip. 2005, 5: 1210-1223.
    [73] Epstein C. B., Butow R. A. Microarray technology - enhanced versatility, persistent challenge. Curr. Opin. Biotechnol. 2000,11: 36-41.
    [74] Luppa P. B., Sokoll L. J., Chan D. W. Clin. Chim. Acta. 2001,314: 1-26.
    [75] Templin M. F., Stoll D., Schrenk M. et al. Protein microarray technology. Trends Biotechnol. 2002,20: 160-166.
    [76] Demchenko A. P. The future of fluorescence sensor arrays. Trends Biotechnol. 2005, 23: 456-460.
    [77] Lakowicz J. R. Principles of fluorescence spectroscopy. New York, 1999, 237-265.
    [78] de Silva A. P., Fox D. B., Moody T. S. et al. The development of molecular fluorescent switches. Trends Biotechnol. 2001,19: 29-34.
    [79] Feringa B. L. Molecular Switches. Wiley-Vch Verlag GmbH, 2001.
    [80] Martinho J. M. G. Heavy-atom quenching of monomer and excimer pyrene fluorescence. J. Phys. Chem. 1989,93:6687-4692.
    [81] Marchesi J. R. A microplate fluorimetric assay for measuring dehalogenase activity. J. Microbiol. Methods. 2003,55:325-329.
    [82] McFarland S. A., Finney N. S. Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. J. Am. Chem. Soc. 2001,123: 1260-1261.
    [83] Babendure J. R., Adams S. R., Tsien R. Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 2003,125:14716-14717.
    [84] Knemeyer J. P., Marme N., Sauer M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 2000, 72: 3717-3724.
    [85] Johansson M. K., Cook R. M. Chemistry. 2003,9: 3466-3471.
    [86] Blough N. V., Simpson D. J. Chemically mediated fluorescence yield switching in nitroxide-fluorophore adducts: optical sensors of radical/redox reactions. J. Am. Chem. Soc. 1988, 110: 1915-1917.
    [87] Tyagi S., Marras S. A., F. R. Kramer. Nat. Biotechnol. 2000,18: 1191-1196.
    [88] Pal T. K., Mallik G. K., Laha S. et al. Spectrochim. Acta A. 1987,43: 853-860.
    [89] Ge X., Tolosa L., Rao G. Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal. Chem. 2004, 76: 1403-1410.
    [90] Tolosa L., Ge X., Rao G. Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal. Biochem. 2003,314: 199-205.
    [91] Jayaraman S., Biwersi J., Verkman A. S. Am. J. Physiol. 1999,276: 747-757.
    [92] Koronczi I., Reichert J., Heinzmann G. et al. Development of a submicron optochemical potassium sensor with enchanced stability due to internal reference. Sens. Actuators B. 1998, 51: 188-195.
    [93] Minta A., Kao J. P., Tsien R. Y. J. Biol. Chem. 1989,264: 8171-8178.
    [94] Oheim M., Naraghi M., Muller T. H. et al. Cell Calcium. 1998,24: 71-84.
    [95] Song A., Parus S., Kopelman R. High-Performance Fiber-Optic pH Microsensors for Practical Physiological Measurements Using a Dual-Emission Sensitive Dye. Anal. Chem. 1997,69: 863-867.
    [96] Xu H., Aylott J. W., Kopelman R. et al. A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol-Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma. Anal. Chem. 2001,73: 4124-4133.
    [97] Park E. J., Brasuel M., Behrend C. et al. Ratiometric Optical PEBBLE Nanosensors for Real-Time Magnesium Ion Concentrations Inside Viable Cells. Anal. Chem. 2003, 75: 3784-3791.
    [98] Trautwein A. X. Bioionorganic chemistry. Wiley-VCH, Weinheim, 1997.
    [99] Yang J. S., Lin C. S., Hwang C. Y. Cu~(2+)-Induced Blue Shift of the Pyrene Excimer Emission: A New Signal Transduction Mode of Pyrene Probes. Org. Lett. 2001,3: 889-892.
    [100] Liao J. H., Chen C. T., Fang J. M. A novel phosphate chemosensor utilizing anion-induced fluorescence change. Org. Lett. 2002,4(4): 561-564.
    [101] Yamauchi A., Hayashita T., Nishizawa S. et al. Benzo-15-crown-5-fluoroionphore/γ-cyclodextrin complex with remarkably high potassium ion sensitivity and selectivity in water. J. Am. Chem. Soc. 1999, 121: 2319-2320.
    [102] Maloney K. M., Shnek D. R., Sasaki D. Y. et al. Fluorescence signaling of ligand binding and assembly in metal-chelating lipid membranes. Chem. Biol. 1996, 3: 185-192.
    [103] Kramer R. Fluorescent chemosensors for Cu~(2+) ions: Fast, selectivity, and highly sensitive. Angew. Chem., Int. Ed. 1998, 37: 772-773.
    [104] Mahara A., Iwase R., Sakamoto T. et al. Bisprene-conjugated 2'-O-methyloligonucleotide as a highly specific RNA-recognition probe. Angew. Chem., Int. Ed. 2002,41(19): 3648-3650.
    [105] Sahoo D., Narayanaswami V., Kay C. M. et al. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry. 2000,39:6594-6601.
    [106] Chandrasekharan N., Kelly L. A. A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J. Am. Chem. Soc. 2001,123: 9898-9899.
    [107] Speiser S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies. Chem. Rev. 1996, 96: 1953-1976.
    [108] Szollosi J., Damjanovich S., Matyus L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry. 1998,34: 159-179.
    [109] Miyawaki A., Liopis J., Heim R. et al. Fluorescent indicators for Ca~2+ based on green fluorescent proteins and calmodulin. Nature. 1997, 388: 882-887.
    [110] Takakusa H., Kikuchi K., Urano Y. et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J. Am. Chem. Soc. 2002,124: 1653-1657.
    [111] Zlokarnic G., Negulescu P. A., Knapp T. E. et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science. 1998,279: 84-88.
    [112] Wichmann O., Wittbrodt J., Schultz C. A small-molecule FRET probe to monitor phospholipase A2 activity in cells and organisma. Angew. Chem., Int. Ed. 2006,45: 508 -512.
    [113] Robert M. C. Fluorescence resonance energy transfer, current opinion in biotechnology. 1995, 6: 103-110.
    [114] Dagmar K., David P. Millar RNA conformation and folding studies with fluorescence resonance energy transfer. Methods. 2001,23: 240-254.
    [115] Zelphati O., Szoka F. C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA. 1993,93: 11493-11501.
    [116] Ashok A. D., Maxime D., Jocelyn R. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proc. Natl. Acad. Sci. USA. 1999,96: 3670-3677.
    [117] Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca~2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985,260:3440-3450.
    [118]Minta A.,Tsien R.Y.J. Biol. Chem. 1989,264,19449.
    [119] Raju B., Murphy E., Levy L. et al. Am. J. Physiol. 1989,256, C540.
    [120] Maruyama S., Kikuchi K., Hirano T. et al. A novel, cell-permeable, fluorescent probe for ratiometric imaging of Zinc ion. J. Am. Chem. Soc. 2002, 124: 10650-10651.
    [121] Laws W. R., Brand L. Analysis of two-state excited-state reaction. The fluorescence decay of 2-naphthol. J. Phys. Chem., 1979, 83: 795-802.
    [122] Demchenko A. P., Klymchenko A. S., Pivovarenko V. G. et al. Multiparametric color-changing fluorescence probes. J. Fluorescence. 2003, 13: 291-295.
    [123] Mordon S., Devoisselle J. M., Soulie S. Fluorescence spectroscopy of Ph in vivo using a dual-emission fluorophore (C-SNAFL-1). J. Photochem. Photobioi., B. 1995, 28:19-23.
    [124] Juskowiak B. Efficient quenching of the fluorescence of binaphthyl-based amphiphiles by mercury(H) complexes. Anal. Chem. Acta. 1996, 320:115-124.
    [125] Grabowski Z. R., Dobkowski J. Twisted intraolecular charge transfer (TICT) excited states: energy and molecular structure. Pure. Appl. Chem. 1983, 55(2): 245-252.
    [126] Rettig W. Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew. Chem., Int. Ed. Engl. 1986, 25: 971-988.
    [127] Grabowski Z. R., Rotkiewicz K., Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103:3899-4031.
    [128] Hamasaki K., Ikeda H., Nakamura A. Fluorescent sensors of molecular recognition. Modified cyciodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J. Am. Chem. Soc. 1993, 115: 5035-5040.
    [129] Malval J. P., Lapouyade R. Derivatization of 4-(Dimethylamino)benzamide to dual fluorescent ionophores: Divergent spectroscopic effects dependent on N or O amide chelation. Helv. Chim. Acta. 2001, 84: 2439-2451.
    [130] Wen Z. C., Jiang Y. B. Ratiometric dual fluorescent receptors for anions under intramolecular charge transfer mechanism. Tetrahedron. 2004, 60:11109-11115.
    [131] Rurack K., Danel A., Rotkiewicz K. A versatile fluorophore for the design of brightly emissive molecular sensors. Org. Lett. 2002, 4(26): 4647-4650.
    [132] 赵春柳,张桂兰,袁中香等.激发态分子内质子转移有机分子的研究进展.光电子激光.1999,10(4):380-384.
    [133] Rodembusch F. S., Campo L. F., Rigacci A. et al. A new ESIPT fluorescent dye-doped silica aerogel. Macromol. Symp. 2005, 229: 188-193.
    [134] Kim S., Seo J., Jung H. K. et al. White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv. Mater. 2005, 17: 2077-2082.
    [135] 吕凤婷,高莉宁,房喻.基于激发态分子内质子转移的新一代荧光探针.化学进展.2005,17(5):773-779.
    [136] Chowdhury P., Panja S., Chatterjee A. et al. Prototropism in 2-acetyi benzimidazole and 2-benzoyl benzimidazole. J. Photochem. Photobiol. A. 2005, 170:131-141.
    [137] Henary M. M., Fahrni C. J. Excited state intramolecular proton transfer and metal ion complexation of 2-(2'-hydroxyphenyl)benzazoles in aqueous solution. J. Phys. Chem. A. 2002, 106: 5210-5220.
    [138] Fabrni C. J., Henary M. M., VanDerveer D. G. Excited-state intramolecular proton transfer in 2-(2'-tosylaminophenyl)benzimidazole. J. Phys. Chem. A. 2002,106: 7655-7663.
    [139] Henary M. M., Wu Y., Fahrni C. Zinc(II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer. Chem. Eur. J. 2004,10: 3015-3025.
    [140] Shynkar V. V., Klymchenko A. S., Piemont E. et al. Dynamics of intermolecular hydrogen bonds in the excited states of 4'-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J. Phys. Chem. A. 2004,108: 8151-8159.
    [141] Gerard B., Jones G., Porco J. A. A biomimetic approach to the rocagiamides employing photogeneration of oxidopyryliums derived from 3-hydroxyflavones. J. Am. Chem. Soc. 2004, 126: 13620-13621.
    [142] Klymchenko A. S., Demchenko A. P. Electrochromic modulation of excited-state intramolecular proton transfer: The new principle in design of fluorescence sensors. J. Am. Chem. Soc. 2002,124: 12372-12379.
    [143] Yushchenko D. A., Bilokin M. D., Pyvovarenko O. V. et al. Synthesis and fluorescence properties of 2-aryl-3-hydroxyquinolones, a new class of dyes displaying dual fluorescence. Tetrahedron Lett. 2006,47: 905-908.
    [144] Roshal A. D., Grigorovich A. V., Doroshenko A. O. et al. Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J. Phys. Chem. A. 1998, 102:5907-5914.
    [145] Schmidtke S. J., Underwood D. F., Blank D. A. Porting excited-state dynamics and intramolecular proton transfer in 1-acylaminoanthraquinones via the intermolecular solvent response. J. Phys. Chem. A. 2005, 109: 7033-7045.
    [146] Peng X., Wu Y., Fan J. et al. Colorimetric and ratiometric fluorescence sensing of fluoride: Tuning selectivity in proton transfer. J. Org. Chem. 2005, 70: 10524-10531.
    [147] Chou P. T., Chen Y. C, Yu W. S. et al. Excited-state intramolecular proton transfer in 10-hydroxybenzo[h]quinoline. J. Phys. Chem. A. 2001, 105: 1731-1740.
    [148] Basaric N., Wan P. Competing excited state intramolecular proton transfer pathways from phenol to anthracene moieties. J. Org. Chem. ASAP Article.
    [149] Lukeman M., Wan P. A new type of excited-state intramolecular proton transfer: Proton transfer from phenol OH to a carbon atom of an aromatic ring observed for 2-phenylphenol. J. Am. Chem. Soc. 2002, 124: 9458-9464.
    [150] Lukeman M., Wan P. Excited-state intramolecular proton transfer in o-hydroxybiaryls: A new route to dihydroaromatic compounds. J. Am. Chem. Soc. 2003,125: 1164-1165.
    [151] Kim T. H., Kim H. J., Kwak C. G. Aromatic oxadiazole-based conjugated polymers withexcited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. J. Poly. Sci. A. 2006,44: 2059-2068.
    [152] Doroshenko A. O., Posokhov E. A., Verezubova A. A. Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl-l,3,4-oxadiazole. J. Phys. Org. Chem. 2000, 13: 253-265.
    [153] Stewart W. W. Lucifer dyes-fluorescent dyes for biological tracing. Nature. 1981,292: 17-21.
    [154] Ramachandram B., Saroja G., Sankaran N. B. et al. Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts. J. Phys. Chem. 2000, 104: 11824-11832.
    [155] Licchelli M., Biroli A. O., Poggi A. et al. Excimer emission induced by metal ion coordination in 1,8-naphthalimide-tethered iminopyridine ligands. Dalton Trans. 2003,4537-4545.
    [156] Tsuge K., DeRosa F., Lim M. D. et al. Intramolecular reductive nitrosylation: Reation of nitric oxide and a Copper(II) complex of a cyclam derivative with pendant luminescent chromophores. J. Am. Chem. Soc. 2004,126: 6564-6565.
    [157] Battaini G., Monzani E., Perotti A. et al. A double arene hydroxylation mediated by dicopper(II)-hydroperoxide species. J. Am. Chem. Soc. 2003, 125:4185-4198.
    [158] Boll I., Kramer R., Brunner J. et al. Templated metal catalysis for single nucleotide specific DNA sequence detedtion. J. Am. Chem. Soc. 2005,127:7849-7856.
    [159] Collin J. R., Dietrich-Buchecker C. O., Gavina P. et al. Shuttles and muscles: Linear molecular machines based on transition metals. Acc. Chem. Res. 2001,34: 477-487.
    [160] Amendola V., Fabbrizzi L., Mangano C. et al. Molecular machines based on metal ion translocation. Acc. Chem. Res. 2001,34:488-493.
    [161] Livoreil A., Dietrich-Buchecker C. O., Sauvage J. P. Electrochemically triggered swinging of a [2]-catenate. J. Am. Chem. Soc. 1994,116:9399-9400.
    [162] Waggoner D. J., Bartnikas T. B., Gitlin J. D. Neurobiol. Disease. 1999,6: 221-230.
    [163] Vulpe C, Levinson B., Whitney S. et al. Nat. Genet. 1993, 3: 7-13.
    [164] Valentine J. S., Hart P. J. Proc. Natl. Acad. Sci. U.S.A. 2003,100:3617-3622.
    [165] Brown D. R., Kozlowski H. Dalton Trans. Biolgical inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. 2004,1907-1917.
    [166] Solomon E., Sundaram U. M., Machonkin T. Multicopper oxidases and oxygenases. Chem. Rev. 1996,96:2563-2605.
    [167] Millhauser G. L. Copper binding in the prion protein. Acc. Chem. Res. 2004,37(2): 79-85.
    [168] Solomon E. I., Chen P., Metz M. et al. Oxygen binding, Activation, and reduction to water by copper proteins. Angew. Chem., Int. Ed. 2001,40:4570-4590.
    [169] Solomon E. I., Szilagyi R. K., George S. D. et al. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 2004,104: 419-458.
    [170 Huang C. H., Stone A. T. Transformation of the plant growth regulator daminozide (alar) and structurally related compounds with Cu(II) ions: Oxidation versus hydrolysis. Acc. Chem. Res. Environ. Sci. Technol. 2003, 37: 1829-1837.
    [171] Ohtsu H., Shimazaki Y., Odani A. et al. Synthesis and characterization of imidazolate-bridged dinuclear complexes as active site models of Cu, Zn-SOD. J. Am. Chem. Soc. 2000,122: 5733-5741.
    [172] Li L., N arducci Sarjeant A. A., Vance M. A. et al. Exogenous nitrile substrate hydroxylation by a new dicopper-hydroperoxide complex. J. Am. Chem. Soc. 2005,127: 15360-15361.
    [173] Itoh K., Hayashi H., Furutachi H. et al. Synthesis and reactivity of a (μ-1,1-hydroperoxo)(μ-hydroxo)dicopper(II) complex: Ligand hydroxylation by a bridging hydroperoxo ligand. J. Am. Chem. Soc. 2005,127: 5212-5223.
    [174] Kim E., Chufan E. E., Kamaraj K. et al. Synthetic models for heme-copper oxidases. Chem. Rev. 2004,104:1077-1133.
    [175] Zheng Y., Orbulescu J., Ji X. et al. Development of Fluorescent Film Sensors for the Detection of Divalent Copper. J. Am. Chem. Soc. 2003, 125: 2680-2686.
    [176] Grandini P., Mancin F., Tecilla P. et al. Fluorescent chemosensors for Cu~2+ ions: fast, selective, and highly sensitive. Angew. Chem., Int. Ed. 1999,38:3061-3064.
    [177] Zheng Y., Cao X., Orbulescu J. et al. Peptidyl Fluorescent Chemosensors for the Detection of Divalent Copper. Anal. Chem. 2003, 75: 1706-1712.
    [178] Torrado A., Walkup G. K., Imperiali B. Exploiting polypeptide motifs for the design of selective Cu(II) ion chemosensors. J. Am. Chem. Soc. 1998,120:609-610.
    [179] Zheng Y., Huo Q., Kele P. et al. A new fluorescent chemosensor for copper ions based on tripeptide Glycyl-Histidyl-Lysine (GHK). Org. Lett. 2001,21:3277-3280.
    [180] Boiocchi M., Fabbrizzi L., Licchelli M. et al. A two-channel molecular dosimeter for the optical detection of copper(II). Chem. Commun. 2003,1812-1813.
    [181] Zheng Y., Gattas-Asfura K. M., Konka V. et al. A dansylated peptide for the selective detection of copper ions. Chem. Commun. 2002,2350-2351.
    [182] Ghosh P., Bharadwaj P. K. Ni(II), Cu(II), and Zn(II) Cryptate-Enhanced Fluorescence of a Trianthrylcryptand: A Potential Molecular Photonic OR Operator. J. Am. Chem. Soc. 1996, 118: 1553-1554.
    [183] Kaur S., Kumar S. Photoactive chemosensors 3: a unique case of fluorescence enhancement with Cu(II). Chem. Commun. 2002,2840-2841.
    [184] Banthia S., Samanta A. Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor. J. Phys. Chem. B. 2002, 106: 5572-5577.
    [185] Ramachandram B., Samanta A. Modulation of metal-fluorophore communication to develop structurally simple fluorescent sensors for transition metal ions. Chem. Commun. 1997,1037-1038.
    [186] Benshafrut R., Haran A., Shvarts D. et al. Synthesis and characterization of a new tetradentate ligand for Cu(II) metal ions. J. Org. Chem. 2002, 67: 4040-4044.
    [187] Gunnlaugsson T., Kruger P. E., Lee T. C. et al. Dual responsive chemosensors for anions: the combination of fluorescent PET (photoinduced electron transfer) and colorimetric chemosensors in a single molecule. Tetrahedron Lett. 2003,44: 6575-6578.
    [188] Gunnlaugsson T., Kruger P. E., Jensen P. et al. Simple naphthalimide based anion sensors: deprotonation induced colour changes and CO2 fixation. Tetrahedron Lett. 2003,44: 8909-8913.
    [189] Kodama M., Kimura E. Equilibria and kinetics of Copper(II) complex formation of a linear and of 13-15-membered macrocyclic dioxo-tetra-amines. J. Chem. Soc., Dalton Trans. 1979, 325-329.
    [190] Kodama M., Kimura E. Square planar co-ordination of the 12-membered macrocyclic tetraamine ligand l,4,7,10-tetra-azacyclododecane-2,6-dione. J. Chem. Soc, Dalton Trans. 1981, 694-700.
    [191] Kimura E. Pure Appl. Chem. 1986, 58:1461.
    [192] Fabbrizzi L., Kaden T. A., Perotti A. et al. Complexation of divalent and trivalent nickel and copper ions by rigid and flexible dioxo tetraaza macrocycles. Inorg. Chem. 1986,25: 321-327.
    [193] Fernandez Y. D., Gramatges A. P., Amendola V. et al. Using micelles for a new approach to fluorescent sensors for metal cations. Chem. Commun. 2004, 1650-1651.
    [194] Fabbrizzi L., Licchelli M., Pallavicini P. et al. An anthracene-based fluorescent sensor for transition metal ions. Angew. Chem., Int Ed. Engl. 1994,33(19): 1975-1977.
    [1955] Jiang L. J., Luo Q. H., Duan C. Y. et al. A new dioxotetraamine ligand appended with fluorenyl and its copper(II) complex. Synthesis, crystal structure and solution behavior. Inorg. Chim. Acta. 1999,295: 48-55.
    [196 Peters A. T., Behesti Y. S. S. Benzo[k,1]xanthene-3,4-dicarboximides and benzimidazoxanthenoisoquinolinones-yellow and orange dyes for synthetic-polymer fibres. J. Soc. Dyers. Colour. 1989, 105:29-35.
    [197] Xu Z., Xiao Y., Qian X. et al. Ratiometric and selective fluorescent sensor for Cu~2+ based on internal charge transfer (ICT). Org. Lett. 2005,7:889-892.
    [198] de Silva A. P., Rice T. E. A small supramolecular system whichemulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC). Chem. Commun. 1999, 163-164.
    [199] Yang R., Li K., Wang K. et al. Porphyrin assembly on -cyclodexitrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Anal. Chem. 2003,75: 612-621.
    [200] de Silva A. P., Nimal Gunaratne H. Q., Lynch P. L. M. J. Chem. Soc, Perkin Trans 2. 1995, 4: 685-690.
    [201] Saeva F. D. J. Photochem. Photobiol. A: Chem. 1994, 78: 201.
    [202] de Silva A. P., Nimal Gunaratne H. Q., McCoy C. P. Direct visual indication of Ph windows: 'off-on-off' fluorescent PET (photoinduced electron transfer) sensors/swithches. Chem. Commun. 1996,2399-2400.
    [203] Bailar J. C. Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1973,188.
    [204] Berg J. M., Shi Y. The galvanization of biology: A growing appreciation for the roles of zinc. Science. 1996,271: 1081-1085.
    [205] Clarke N. D., Berg J. M. Zinc fingers in Caenorhabditis elegans: Finding families and probing pathways. Science. 1998,282: 2018-2022.
    [206] Andrews G. K. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals. 2001,14: 223-237.
    [207] Coleman J. E. Zinc enzymes. Curr. Opin. Chem. Biol. 1998,2:222-234.
    [208] Truong-Tran A. Q., Carter J., Ruffin R. E. et al. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001,14: 315-330.
    [209] Lippard S. J., Berg J. M. Principles of bioinorganic chemistry. University science books. Mill Valley, 1994.
    [210] Burdette S. C, Lippard S. J. ICCC34-golden edition of coordination chemistry reviews. Coordination chemistry for the neuroscience. Coord. Chem. Rev. 2001,333-361
    [211]Guajungco M. P. Lees G. J. Neurobiol. Dis. 1997,4:137.
    [212] Komatsu K., Kikuchi K., Kojima H. et al. Selective zinc sensor molecules with various affinities for Zn~2+, Revealing dynamics and regional distribution of synaptically released Zn~2+ in hippocampal slices. J. Am. Chem. Soc. 2005,127:10197-10204.
    [213] Burdette S. C, Frederickson C. J., Bu W. et al. ZP4, an improved neuronal Zn~2+ sensor of the Zinpyr family. J. Am. Chem. Soc. 2003,125:1778-1787.
    [214] Kawabata E., Kikuchi K., Urano Y. et al. Design and synthesis of Zinc-selective chelators for extracellular applications. J. Am. Chem. Soc. 200S, 127: 818-819.
    [215] Hirano T., Kikuchi K., Urano Y. et al. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J. Am. Chem. Soc. 2002,124: 6555-6562.
    [216] Gee K. R., Zhou Z. L., Qian W. J. et al. Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. J. Am. Chem. Soc. 2002,124: 776-777.
    [217] Hirano T., Kikuchi K., Urano Y. et al. Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J. Am. Chem. Soc. 2000,122: 12399-12400.
    [218] Taki M., Wolford I. L., O'Halloran T. V. Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photo microscopy. J. Am. Chem. Soc. 2004,126:712-713.
    [219] Woodroofe C. C, Lippard S. J. A novel two-fluorophore approach to ratiometric sensing of Zn~2+. J. Am. Chem. Soc. 2003,125: 11458-11459.
    [220] Ajaaghosh A., Carol P., Sreejith S. A ratiometric fluorescence probe for selective visual sensing of Zn~2+. J. Am. Chem. Soc. 2005,127: 14962-14963.
    [221] Sclafani J. A., Maranto M. T., Sisk T. M. et al. An aqueous ratiometri fluorescence probe for Zn(II). Tetrahedron Lett. 1996,37: 2193-2196.
    [222] Thompson R. B., Cramer M. L., Bozym R. A. et al. Excitation ratiometric fluorescent biosensor for zinc ion at picomolar levels. J. Biomed. Opt. 2002, 7: 555-560.
    [223] Bozym R. A., Thompson R. B., Stoddard A. K. et al. Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. ACS Chem. Bio. 2006, 1: 103-111.
    [224] Lim N. C, Schuster J. V., Porto M. C. et al. Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-Type and ratiometric probes. Inorg. Chem. 2005, 44: 2018-2030.
    [225] Royzen M., Durandin A., Young V. G. et al. A sensitive probe for the detection of Zn(II) by time-resolved fluorescence. J. Am. Chem. Soc. 2006,128: 3854-3855.
    [226] Wu Z., Zhang Y., Ma J. S. et al. Ratiometric Zn~2+ sensor and strategy for Hg~2+ selective recognition by central metal ion replacement. Inorg. Chem. ASAP Article.
    [227] Xu Z., Qian X., Cui J. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore. Org. Lett. 2005, 7: 3029-3032.
    [228] Gunnlaugsson T., Lee T. C, Parkesh R. Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Org. Lett. 2003,5: 4065-4068.
    [229] Chioi M., Kim M., Lee K. D. et al. A new reverse PET chemosensor and its chelatoselective aromatic cadmiation. Org. Lett. 2001,3: 3455-3457.
    [230] Shiraishi Y., Kohno Y., Hirai T. Bis-azamacrocyclic anthracene as a fluorescent chemosensor for cations in aqueous solution. J. Phys. Chem. B 2005,109: 19139-13147.
    [231] Prodi L., Moontalti M., Zaccheroni N. et al. Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium. Tetrahedron Lett. 2001,42: 2941-2944.
    [232] Akkaya E. U., Huston M. E., Czarnik A. W. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J. Am. Chem. Soc. 1990, 112: 3590-3593.
    [233] Huston M. E., Engleman C, Czarnik A. W. Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. J. Am. Chem. Soc. 1990, 112:7054-7056.
    [234] Bronson T. T., Michaelis D. J., Lamb R. D. et al. Efficient immobilization of a cadmium chemosensor in a thin film: Generation of a cadmium sensor prototype. Org. Lett. 2005,7:1105-1108.
    [235] Gunnlaugsson T., Lee T. C, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron. 2004, 60:11239-11249.
    [236] Cui D., Qian X., Liu F. et al. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Org. Lett. 2004,6:2757-2760.
    [237] Baruah M., Qin W., Basaric N. et al. BODIPY-based hydroxyaryl derivatives as fluorescent pH probes. J. Org. Chem. 2005,70: 4152-4157.
    [238] Ihmels H., Meiswinkel A., Mohrschladt C. J. et al. Anthryl-substituted heterocycles as acid-sensitive fluorescence probes. J. Org. Chem. 2005,70:3929-3938.
    [239] Baki C. N., Akkaya E. U. Boradiazaindacene-appended calyx[4]arene: fluorescence sensing of pH near newutrality. J. Org. Chem. 2001,66: 1512-1513.
    [240] Gunnlaugsson T., Leonard J. P., Senechal K. et al. pH responsive Eu(III)-phenanthroline supramolecular conjugate: novel "off-on-off' luminescent singaling in the physiological pH range. J. Am. Chem. Soc. 2003, 125: 12062-12063.
    [241] Blair S., Lowe M. P., Mathieu C. E. et al. Narrow-range optical pH sensors based on luminescent Europium and Terbium complexes immobilized in a sol gel glass. Inorg. Chem. 2001,40: 5860-5867.
    [242] Qin W., Baruah M., Stefan A. et al. Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution. Chem. Phys. Chem. 2005, 6:2343-2351.
    [243] Badugu R., Lakowicz J. R., Geddes C. D. A wavelength-ratiometric pH sensitive probe based on the boronic acid moiety and suppressed sugar response. Dyes and Pigments. 2004,61: 227-234.
    [244] Charier S., Ruel O., Baudin J. B. et al. An efficient fluorescent probe for ratiometric pH measurements in aqueous solutions. Angew. Chem., Int. Ed. 2004,43:4785-4788.
    [245] Charier S., Ruel O., Baudin J. B. et al. Photophysical of a seires of efficient fluorescent pH probes for dual-emission-wavelength measurements in aqueous solutions. Chem. Eur. J. 2006, 12: 1097-1113.
    [246] Liu J. X., Diwu Z. J., Klaubert D. H. Fluorescent molecular probes III. 2'-7'-bis-(3-carboxypropyl)-5-(and-6)-crboxyfluorescein (BCPCF): a new polar dual-excitation and dual-emission pH indicator with a pKa of 7.0. Bioorg. Med. Chem. Lett. 1997,7: 3069-3072.
    [247] Whitaker J. E., Haugland R. P., Prendergast F. G. Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal. Biochem. 1991,194: 330-344.
    [248] Gunnlaugsson T. A novel Eu(III)-based luminescent chemosensor: deterimining pH in a highly acidic environment. Tetrahedron Lett. 2001,42: 8901-8905.
    [249] Diwu Z., Chen C. S., Zhang C. et al. A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells. Chem. Biol. 1999,6:411-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700