β_2-肾上腺素受体激动剂对大鼠心肌缺血/再灌注损伤的保护作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分选择性β2受体激动剂对麻醉大鼠心肌缺血再灌注损伤的保护作用及其机制的研究
     目的:许多研究表明,β2-受体激动剂Clenbuterol在缺血性心肌病模型中可降低心肌细胞凋亡,并在临床上已应用于心衰的治疗。本实验通过在体大鼠的心肌缺血/再灌损伤模型,观察Clenbuterol对心肌缺血再灌注损伤的保护作用,并探讨其机制。
     方法:大鼠随机分6组:①假手术组;②缺血/再灌组(A/R);③Clenbuterol+A/;④CI118,551+Clenbuterol+A/; (5)Metoprolol+ Clenbuterol+A/R;⑥Metoprolo+A/R.麻醉大鼠,采用结扎左冠状动脉前降支30min后再灌2h,建立急性心肌缺血再灌注损伤模型。
     结果:与A/R比较,Clenbuterol组显著减少梗死面积,提高心肌舒张功能,降低血清中乳酸脱氢酶(LDH)、肌酸激酶(CK)和脂质过氧化物丙二醛(MDA)的含量,并增加超氧化物酶(SOD)和Ca2+-ATPase的活性,减轻心肌细胞水肿、充血和损伤程度,抑制心肌细胞凋亡率。Clenbuterol还可促进缺血/再灌心肌组织ERK1/2磷酸化,提高缺血/再灌后心肌组织Bcl-2/Bax mRNA水平,降低caspase-3蛋白的表达,增强机体抗凋亡能力。以上作用均可被选择性β2受体阻断剂ICI118,551所取消。而Gi蛋白抑制剂百日咳毒素(PTX)可阻断clenbuterol咸少心肌梗死面积和改善心功能的作用。除了不能降低MDA含量和提高Ca2+-ATPase活性的作用外,β1受体阻断剂]metoprolol与clenbuterol对缺血再灌后心肌作用相似,但两者合用没有协同作用。
     结论:Clenbuterol对缺血再灌损伤的心肌组织有显著的保护作用,其保护作用是通过激活β2受体-Gi-ERK1/2信号途径。β2-受体激动剂clenbuterol-与B1受体阻断剂1netoprololl司无协同作用。
     第二部分β2-AR激动剂对心肌细胞缺氧/复氧损伤的影响
     目的:探讨Clenbuterol对原代培养的心肌细胞缺氧/复氧后损伤的影响以及是否通过细胞外信号调节激酶(ERK)、磷酸肌醇3激酶(P13K)-蛋白激酶Akt途径。
     方法:建立原代新生大鼠心肌细胞的缺氧/复氧模型,采用MTT比色法测细胞生存率;Hoechst33342荧光染色法和Annexin-PI双染法检测细胞凋亡率;以及检测细胞培养液中的LDH活性评价缺氧/复氧及相应处理后的细胞损伤程度;分子探针DCFH-DA检测细胞内活性氧的水平;Western Blot检测心肌细胞缺氧/复氧后Bcl-2、Bax、Caspase-3以及ERK及p-ERK1/2蛋白的表达。
     结果:
     1.缺氧/复氧组心肌细胞存活率较正常培养组显著下降,LDH活性,凋亡率增加,ROS含量增加;而Clenbuterol组、Metoprolol组及Clenbuterol+Metoprolol组的细胞存活率显著增高,ROS含量减少,但三者间无显著性差异;选择性β2受体阻断剂ICI118,551S可取消Clenbuterol的作用。
     2.与缺氧/复氧组比较,Clenbuterol处理的缺氧/复氧后心肌细胞Bcl-2,p-ERK蛋白增加,而Bax,Caspase-3表达下降;而PI3K抑制剂LY294002和ERK抑制剂PD98059可使Clenbuterol+缺氧/复氧组的细胞存活率下降,凋亡细胞增多,Bax,Caspase-3表达增加,而Bcl-2表达降低;PD98059可使Clenbuterol+缺氧/复氧组p-ERK表达下降,但LY294002无此作用。
     结论:Clenbuterol对缺氧/复氧后的心肌有保护作用,但与Metoprolol间无协同作用;并且ERK和PI3K/Akt途径也参与其中。
Objective:Considerable evidence indicates that theβ2-adrenoceptor agonist clenbuterol could decrease apoptosis in a rodent model of ischemic cardiomyopathy. In this study, we investigated the effects of clenbuterol on infarct size caused by myocardial ischemia/reperfusion (I/R) in anesthetized rats.
     Methods:Rats were randomized to:1) sham group,2) I/R group,3) clenbuterol +I/R group,4) ICI 118551+clenbuterol+I/R group,5) metoprolol+clenbuterol+I/R group,6) metoprolol+I/R group,7) Pertussis toxin+clenbuterol+I/R group. Under anesthesia, left anterior descending (LAD) coronary artery was occluded for 30 min followed by reperfusion for 2 h.
     Results:Compared with the control I/R group, clenbuterol (0.5mg-kg-1, i.p) had reduced infarct size, improved diastolic function and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) activity, increased SOD activity, and decreased MDA level and LDH, CK release. Clenbuterol increased the phosphorylation of ERK1/2, which resulted in inhibition of myocardial apoptosis as evidenced by the reduction of TUNEL-positive staining, Bax/Bcl-2 mRNA and Caspase-3 protein expression. The G,-protein inhibitor pertussis toxin blocked the clenbuterol-induced improvement in cardiac function and infarct size. Pretreatment with ICI 118551 (a selectiveβ2-AR antagonist) inhibited the effects of clenbuterol mentioned above (P<0.05). Theβ1-AR agonist metoprolol had the similar effects compared with the clenbuterol-treated group but failed to reduce MDA and improve SERCA activity. As a combination therapy, there were no synergistic effects of metoprolol+clenbuterol treatment.
     Conclusions:Clenbuterol pretreatment provides a significant cardioprotection mediated by theβ2-AR-Gi-protein signaling against ischemia/reperfusion injury. There are no synergistic effects in the combined use of clenbuterol and metoprolol.
     Objective:To investigation the effect of clenbuterol on anoxia/reoxygenation (A/R) injury in neonatal rat cardiomyocytes. In addition, we have explored possible mechanisms for the effects.
     Methods:To establish the model of anoxia/reoxygenation injury in primary neonatal cardiomyocytes. Cell viability was determined by the conventional MTT reduction assay; cell injury by lactate dehydrogenase(LDH) leakage; and cardiomyocyte apoptosis by Hoechst33342 and Annexin-PI staining; Intracellular reactive species(ROS) was monitored by the fluorescent DCFH-DA; Expression of apoptosis related factor Bcl-2 and Bax, phosphorylated ERK,caspase-3 were determined by western blot.
     Results:Clenbuterol and metoprolol protected the cardiomyocytes from anoxia/reoxygenation injury, as evidenced by decreased LDH release and increased cell viability. This protective effect concomitantly decreased ROS production and apoptosis in cardiomyocytes. But selectiveβ2 receptor antagonist ICI 118,551 could abolish the effects of clenbuterol. There are no synergistic effects in the combined use of clenbuterol and metoprolol.
     In clenbuterol-pretreated cardiomyocytes, we observed a decrease in the expression of pro-apoptotic protein Bax and caspase-3.We also found that clenbuterol pretreatment enhanced expression of anti-apoptotic protein Bcl-2 and activation of ERK concerning survival. The effects of clenbuterol were reversed by PI3K inhibitor LY294002 and ERK inhibitor PD98059. Only in in phosphorylated ERK1/2, there was no obvious difference between LY294002+clen+A/R group and clen+A/R group.
     Conclusion:Clenbuterol exerts cardioprotective effect against Anoxia/reoxygenation injury by inhibiting oxidative stress and apoptosis. Clenbuterol pretreatment increase the Bcl-2/Bax ratio and phosphorylation of ERK, decrease caspase-3 express. The respective inhibitor of ERK and PI3K, PD98059 and LY294002, prevent the anti-apoptotic effect. But only PD98059 attenuated the increasing phosphorylation of ERK of clenbuterol. So the ERK and PI3K/Akt pathway may be involved in the cardioprotective effect of clenbuterol
引文
1. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146,3-15(1995).
    2. Timmers, L. et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53,501-10 (2009).
    3. Ferdinandy, P., Schulz, R. & Baxter, G. F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59,418-58 (2007).
    4. Kim, J. S., Jin, Y. & Lemasters, J. J. Reactive oxygen species, but not Ca2+ overloading, trigger pH-and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290, H2024-34 (2006).
    5. Lemasters, J. J., Theruvath, T. P., Zhong, Z. & Nieminen, A. L. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787,1395-401 (2009).
    6. Ichas, F. & Mazat, J. P. From calcium signaling to cell death:two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochim Biophys Acta 1366,33-50 (1998).
    7. Kim, J. S., Qian, T. & Lemasters, J. J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 124, 494-503 (2003).
    8. Mason, R. B. et al. Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg 93,99-107 (2000).
    9. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88,581-609 (2008).
    10. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N Engl J Med 357,1121-35 (2007).
    11. Hausenloy, D. J. & Yellon, D. M. The mitochondrial permeability transition pore:its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35,339-41 (2003).
    12. Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R. & Yellon, D. M. Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 289, H237-42 (2005).
    13. Hausenloy, D. J. & Yellon, D. M. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection. Heart Fail Rev 12,217-34 (2007).
    14. Yue, T. L. et al. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86,692-9 (2000).
    15. Brar, B. K. et al. Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 275,8508-14 (2000).
    16. Hamid, S. A. & Baxter, G. F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 100,387-96 (2005).
    17. Communal, C. et al. beta1 integrins expression in adult rat ventricular myocytes and its role in the regulation of beta-adrenergic receptor-stimulated apoptosis. J Cell Biochem 89,381-8 (2003).
    18. Communal, C., Singh, K., Sawyer, D. B. & Colucci, W. S. Opposing effects of beta(1)-and beta(2)-adrenergic receptors on cardiac myocyte apoptosis:role of a pertussis toxin-sensitive G protein. Circulation 100,2210-2 (1999).
    19. Chesley, A. et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 87, 1172-9(2000).
    20. Tong, H., Bernstein, D., Murphy, E. & Steenbergen, C. The role of beta-adrenergic receptor signaling in cardioprotection. Faseb J 19,983-5 (2005).
    21. Salorinne, Y., Stenius, B., Tukiainen, P. & Poppius, H. Double-blind cross-over comparison of clenbuterol and salbutamol tablets in asthmatic out-patients. Eur J Clin Pharmacol 8,189-95 (1975).
    22. Wong, K., Boheler, K. R., Bishop, J., Petrou, M. & Yacoub, M. H. Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovasc Res 37,115-22(1998).
    23. Yacoub, M. H. et al. A novel combination therapy to reverse end-stage heart failure. Transplant Proc 33,2762-4 (2001).
    24. Ahmet, I. et al. Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J Pharmacol Exp Ther 325,491-9 (2008).
    25. Xydas, S. et al. beta(2)-Adrenergic stimulation attenuates left ventricular remodeling, decreases apoptosis, and improves calcium homeostasis in a rodent model of ischemic cardiomyopathy. J Pharmacol Exp Ther 317,553-61 (2006).
    26. Zhu, Y., Prehn, J. H., Culmsee, C. & Krieglstein, J. The beta2-adrenoceptor agonist clenbuterol modulates Bcl-2, Bcl-xl and Bax protein expression following transient forebrain
    第一部分选择性β2受体激动剂对麻醉大鼠心肌缺血再灌注损伤的保护作用及其机制的研究
    目的:许多研究表明,β2-受体激动剂Clenbuterol在缺血性心肌病模型中可降低心肌细胞凋亡,并在临床上已应用于心衰的治疗。本实验通过在体大鼠的心肌缺血/再灌损伤模型,观察Clenbuterol对心肌缺血再灌注损伤的保护作用,并探讨其机制。
    方法:大鼠随机分6组:①假手术组;②缺血/再灌组(A/R);③Clenbuterol+A/R; ④ICI118,551+Clenbuterol+A/R; (5)Metoprolol+ Clenbuterol+A/R; ⑥Metoprolo+A/R.麻醉大鼠,采用结扎左冠状动脉前降支30min后再灌2h,建立急性心肌缺血再灌注损伤模型。
    结果:与A/R比较,Clenbuterol组显著减少梗死面积,提高心肌舒张功能,降低血清中乳酸脱氢酶(LDH)、肌酸激酶(CK)和脂质过氧化物丙二醛(MDA)的含量,并增加超氧化物酶(SOD)和Ca2+-ATPase的活性,减轻心肌细胞水肿、充血和损伤程度,抑制心肌细胞凋亡率。Clenbuterol还可促进缺血/再灌心肌组织ERK1/2磷酸化,提高缺血/再灌后心肌组织Bcl-2/Bax mRNA水平,降低caspase-3
    1. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N Engl J Med 357,1121-35 (2007).
    2. Lin, W. T., Yang, S. C., Chen, K. T., Huang, C. C. & Lee, N. Y. Protective effects of L-arginine on pulmonary oxidative stress and antioxidant defenses during exhaustive exercise in rats.
    Acta Pharmacol Sin 26,992-9 (2005).
    3. Timmers, L. et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53,501-10 (2009).
    4. Salorinne, Y., Stenius, B., Tukiainen, P. & Poppius, H. Double-blind cross-over comparison of clenbuterol and salbutamol tablets in asthmatic out-patients. Eur J Clin Pharmacol 8,189-95 (1975).
    5. Wong, K., Boheler, K. R., Bishop, J., Petrou, M. & Yacoub, M. H. Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovasc Res 37,115-22(1998).
    6. Soppa, G. K. et al. Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. Am J Physiol Heart Circ Physiol 288, H1468-76 (2005).
    7. Burniston, J. G., Tan, L. B. & Goldspink, D. F. Relative myotoxic and haemodynamic effects of the beta-agonists fenoterol and clenbuterol measured in conscious unrestrained rats. Exp Physiol 91,1041-9(2006).
    8. Burniston, J. G., Chester, N., Clark, W. A., Tan, L. B. & Goldspink, D. F. Dose-dependent apoptotic and necrotic myocyte death induced by the beta2-adrenergic receptor agonist, clenbuterol. Muscle Nerve 32,767-74 (2005).
    9. Xydas, S. et al. beta(2)-Adrenergic stimulation attenuates left ventricular remodeling, decreases apoptosis, and improves calcium homeostasis in a rodent model of ischemic cardiomyopathy. J Pharmacol Exp Ther 317,553-61 (2006).
    10. Ahmet, I. et al. Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110,1083-90(2004).
    11. Zhu, Y., Prehn, J. H., Culmsee, C. & Krieglstein, J. The beta2-adrenoceptor agonist clenbuterol modulates Bcl-2, Bcl-xl and Bax protein expression following transient forebrain ischemia. Neuroscience 90,1255-63 (1999).
    12. Liu, P. et al. Effect of beta2-adrenergic agonist clenbuterol on ischemia/reperfusion injury in isolated rat hearts and cardiomyocyte apoptosis induced by hydrogen peroxide. Acta Pharmacol Sin 29,661-9 (2008).
    13. An, W., Yang, J. & Ao, Y. Metallothionein mediates cardioprotection of isoliquiritigenin against ischemia-reperfusion through JAK2/STAT3 activation. Acta Pharmacol Sin 27,1431-7 (2006).
    14. Scarabelli, T. M. et al. Quantitative assessment of cardiac myocyte apoptosis in tissue sections using the fluorescence-based tunel technique enhanced with counterstains. J Immunol Methods 228,23-8 (1999).
    15. Ahmet, I. et al. Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and betal AR blocker in dilated cardiomyopathy postmyocardial infarction. J Pharmacol Exp Ther 325,491-9 (2008).
    16. Nelson, C. W., Wei, E. P., Povlishock, J. T., Kontos, H. A. & Moskowitz, M. A. Oxygen radicals in cerebral ischemia. Am J Physiol 263, H1356-62 (1992).
    17. Kim, Y. M. et al. Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat. Food Chem Toxicol 47,2097-102 (2009).
    18. Ozer, M. K. et al. Ischemia-reperfusion leads to depletion of glutathione content and augmentation of malondialdehyde production in the rat heart from overproduction of oxidants: can caffeic acid phenethyl ester (CAPE) protect the heart? Mol Cell Biochem 273,169-75 (2005).
    19. Akhlaghi, M. & Bandy, B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 46,309-17 (2009).
    20. Lysko, P. G. et al. A comparison of carvedilol and metoprolol antioxidant activities in vitro. J Cardiovasc Pharmacol 36,277-81 (2000).
    21. Zhu, B. Q. et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 11,119-28 (2006).
    22. Tani, M. Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol 52,543-59 (1990).
    23. Osada, M., Netticadan, T., Kawabata, K., Tamura, K. & Dhalla, N. S. Ischemic preconditioning prevents I/R-induced alterations in SR calcium-calmodulin protein kinase Ⅱ. Am J Physiol Heart Circ Physiol 278, H1791-8 (2000).
    24. Bialik, S. et al. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100,1363-72 (1997).
    25. Lv, X. et al. Cytochrome P450 omega-hydroxylase inhibition reduces cardiomyocyte apoptosis via activation of ERK.1/2 signaling in rat myocardial ischemia-reperfusion. Eur J Pharmacol 596,118-26 (2008).
    26. Liu, H. R. et al. Antiapoptotic mechanisms of benidipine in the ischemic/reperfused heart. Br J Pharmacol 142,627-34 (2004).
    27. Xu, Z., Ji, X. & Boysen, P. G. Exogenous nitric oxide generates ROS and induces cardioprotection:involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 286, H1433-40 (2004).
    28. Das, A., Salloum, F. N., Xi, L., Rao, Y. J. & Kukreja, R. C. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 296, H1236-43 (2009).
    29. Yang, X. M. et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44,1103-10 (2004).
    30. Burniston, J. G., Tan, L. B. & Goldspink, D. F. beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol 98,1379-86 (2005).
    31. Sichelschmidt, O. J., Hahnefeld, C., Hohlfeld, T., Herberg, F. W. & Schror, K. Trapidil protects ischemic hearts from reperfusion injury by stimulating PKAII activity. Cardiovasc Res 58,602-10 (2003).
    32. Tong, H., Bernstein, D., Murphy, E. & Steenbergen, C. The role of beta-adrenergic receptor signaling in cardioprotection. Faseb J 19,983-5 (2005).
    1. Hausenloy, D. J., Tsang, A., Mocanu, M. M. & Yellon, D. M. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288, H971-6 (2005).
    2. Behrends, M. et al. Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279, H1111-9 (2000).
    3. Hausenloy, D. J., Mocanu, M. M. & Yellon, D. M. Cross-talk between the survival kinases during early reperfusion:its contribution to ischemic preconditioning. Cardiovasc Res 63, 305-12(2004).
    4. Mocanu, M. M., Bell, R. M. & Yellon, D. M. PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol 34, 661-8 (2002).
    5. Philipp, S. et al. Localizing extracellular signal-regulated kinase (ERK) in pharmacological preconditioning's trigger pathway. Basic Res Cardiol 101,159-67 (2006).
    6. Tong, H., Chen, W., Steenbergen, C. & Murphy, E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 87,309-15 (2000).
    7. Wang, Y., Ahmad, N., Kudo, M. & Ashraf, M. Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning. Am J Physiol Heart Circ Physiol 287, H1125-31(2004).
    8. Tsang, A., Hausenloy, D. J., Mocanu, M. M. & Yellon, D. M. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95,230-2 (2004).
    9. Yang, X. M., Philipp, S., Downey, J. M. & Cohen, M. V. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100,57-63 (2005).
    10. Yellon, D. M. & Baxter, G. F. Reperfusion injury revisited:is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9,245-9 (1999).
    11. Hausenloy, D. J. & Yellon, D. M. New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61,448-60 (2004).
    12. Hausenloy, D. J. & Yellon, D. M. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection. Heart Fail Rev 12,217-34 (2007).
    13. Suzuki, T., Ohta, M. & Hoshi, H. Serum-free, chemically defined medium to evaluate the direct effects of growth factors and inhibitors on proliferation and function of neonatal rat cardiac muscle cells in culture. In Vitro Cell Dev Biol 25,601-6 (1989).
    14. Shneyvays, V., Nawrath, H., Jacobson, K. A. & Shainberg, A. Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243,383-97 (1998).
    15. Koyama, T., Temma, K. & Akera, T. Reperfusion-induced contracture develops with a decreasing [Ca2+]i in single heart cells. Am J Physiol 261, H1115-22 (1991).
    16. Safran, N. et al. Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 217,143-52 (2001).
    17. Kim, S.O. et al. Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart. Biochem Cell Biol 77,559-67 (1999).
    18. Tsutsumi, Y. M., Yokoyama, T., Horikawa, Y., Roth, D. M. & Patel, H. H. Reactive oxygen species trigger ischemic and pharmacological postconditioning:in vivo and in vitro characterization. Life Sci 81,1223-7(2007).
    19. da Silva, R., Grampp, T., Pasch, T., Schaub, M. C. & Zaugg, M. Differential activation of mitogen-activated protein kinases in ischemic and anesthetic preconditioning. Anesthesiology 100,59-69 (2004).
    20. Fryer, R. M., Pratt, P. F., Hsu, A. K. & Gross, G. J. Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296,642-9 (2001).
    21. Skyschally, A. et al. Ischemic postconditioning in pigs:no causal role for RISK activation. Circ Res 104,15-8 (2009).
    22. Mirakian, R., Nye, K., Palazzo, F. F., Goode, A. W. & Hammond, L. J. Methods for detecting apoptosis in thyroid diseases. J Immunol Methods 265,161-75 (2002).
    23. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. & Sugimoto, C. PI3K/Akt and apoptosis: size matters. Oncogene 22,8983-98 (2003).
    24. Stevens, L., Gohlsch, B., Mounier, Y. & Pette, D. Upregulation of myosin heavy chain MHClalpha in rat muscles after unweighting and clenbuterol treatment. Biochem Biophys Res Commun 275,418-21 (2000).
    25. Lochner, A., Genade, S., Tromp, E., Podzuweit, T. & Moolman, J. A. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation 100,958-66 (1999).
    26. Tong, H., Rockman, H. A., Koch, W. J., Steenbergen, C. & Murphy, E. G protein-coupled receptor internalization signaling is required for cardioprotection in ischemic preconditioning. Circ Res 94,1133-41(2004).
    27. Hedin, K. E., Bell, M. P., Huntoon, C. J., Karnitz, L. M. & McKean, D. J. Gi proteins use a novel beta gamma-and Ras-independent pathway to activate extracellular signal-regulated kinase and mobilize A P-1 transcription factors in Jurkat T lymphocytes. J Biol Chem 274, 19992-20001 (1999).
    28. Chesley, A. et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 87,
    1172-9(2000).
    29. Ruiz-Gines, J. A. et al. Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol 35,109-13 (2000).
    30. Pelicano, H. et al. Inhibition of mitochondrial respiration:a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278,37832-9 (2003).
    31. Mason, R. B. et al. Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg 93,99-107 (2000).
    32. Ridnour, L. A. et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 385, 1-10(2004).
    33. Molavi, B. & Mehta, J. L. Oxidative stress in cardiovascular disease:molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol 19,488-93 (2004).
    34. Thomas, D. D. et al. Heme proteins and nitric oxide (NO):the neglected, eloquent chemistry in NO redox signaling and regulation. Antioxid Redox Signal 5,307-17 (2003).
    35. Chen, H. P., Liao, Z. P., Huang, Q. R. & He, M. Sodium ferulate attenuates anoxia/reoxygenation-induced calcium overload in neonatal rat cardiomyocytes by NO/cGMP/PKG pathway. Eur J Pharmacol 603,86-92 (2009).
    36. Song, J. Q., Teng, X., Cai, Y., Tang, C. S. & Qi, Y. F. Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis 14,1299-307 (2009).
    37. Ahmet, I., Morrell, C., Lakatta, E. G. & Talan, M. I. Therapeutic efficacy of a combination of a betal-adrenoreceptor (AR) blocker and beta2-AR agonist in a rat model of postmyocardial infarction dilated heart failure exceeds that of a betal-AR blocker plus angiotensin-converting enzyme inhibitor. J Pharmacol Exp Ther 331,178-85 (2009).
    1. Jennings, R. B., Sommers, H. M., Smyth, G. A., Flack, H. A. & Linn, H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 70,68-78 (1960).
    2. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation 74,1124-36 (1986).
    3. Cave, A. & Garlick, P. Re:Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. J Mol Cell Cardiol 32,1759-60 (2000).
    4. Zhao, Z. Q. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285, H579-88 (2003).
    5. Liu, X. K.., Engelman, R. M., Iyengar, J., Cordis, G. A. & Das, D. K. Amiloride enhances postischemic ventricular recovery during cardioplegic arrest. A possible role of Na(+)-Ca2+
    exchange. Ann N Y Acad Sci 639,471-4 (1991).
    6. Hanlon, P. R. et al. Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury:role of protein kinase C and phosphatidylinositol 3-kinase signaling. Faseb J 19,1323-5 (2005).
    7. Yellon, D. M. & Baxter, G. F. A "second window of protection" or delayed preconditioning phenomenon:future horizons for myocardial protection? J Mol Cell Cardiol 27,1023-34 (1995).
    8. Majno, G. & Joris, I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146,3-15 (1995).
    9. Buja, L. M. Modulation of the myocardial response to ischemia. Lab Invest 78,1345-73 (1998).
    10. Crow, M. T., Mani, K., Nam, Y. J. & Kitsis, R. N. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95,957-70 (2004).
    11. Galluzzi, L. et al. Cell death modalities:classification and pathophysiological implications. Cell Death Differ 14,1237-43 (2007).
    12. Levine, B. & Yuan, J. Autophagy in cell death:an innocent convict? J Clin Invest 115, 2679-88 (2005).
    13. Hamacher-Brady, A., Brady, N. R., Gottlieb, R. A. & Gustafsson, A. B. Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2,307-9 (2006).
    14. Sybers, H. D., Ingwall, J. & DeLuca, M. Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct Metab 12,453-63 (1976).
    15. Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25,193-205 (2007).
    16. Levine, B. & Klionsky, D. J. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell 6,463-77 (2004).
    17. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26,239-57 (1972).
    18. Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M. & Engler, R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94,1621-8 (1994).
    19. Fliss, H. & Gattinger, D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79, 949-56(1996).
    20. Gottlieb, R. ICE-ing the heart. Circ Res 96,1036-8 (2005).
    21. Mocanu, M. M., Baxter, G. F. & Yellon, D. M. Caspase inhibition and limitation of myocardial infarct size:protection against lethal reperfusion injury. Br J Pharmacol 130, 197-200(2000).
    22. Stephanou, A. et al. Distinct initiator caspases are required for the induction of apoptosis in cardiac myocytes during ischaemia versus reperfusion injury. Cell Death Differ 8,434-5 (2001).
    23. Zhao, Z. Q. et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 6,279-90 (2001).
    24. Mani, K. Programmed cell death in cardiac myocytes:strategies to maximize post-ischemic salvage. Heart Fail Rev 13,193-209 (2008).
    25. Imahashi, K., Schneider, M. D., Steenbergen, C. & Murphy, E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95,734-41 (2004).
    26. Golstein, P. & Kroemer, G. Cell death by necrosis:towards a molecular definition. Trends Biochem Sci 32,37-43 (2007).
    27. Festjens, N., Vanden Berghe, T. & Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise:signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757,1371-87 (2006).
    28. Murphy, E., Cross, H. & Steenbergen, C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res 84,1469-70 (1999).
    29. Murphy, E., Perlman, M., London, R. E. & Steenbergen, C. Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68,1250-8 (1991).
    30. Miyamae, M., Camacho, S. A., Weiner, M. W. & Figueredo, V. M. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol 271, H2145-53 (1996).
    31. Piper, H. M., Abdallah, Y., Kasseckert, S. & Schluter, K. D. Sarcoplasmic reticulum-mitochondrial interaction in the mechanism of acute reperfusion injury. Viewpoint. Cardiovasc Res 77,234-6 (2008).
    32. Arroyo, C. M., Kramer, J. H., Dickens, B. F. & Weglicki, W. B. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett 221, 101-4 (1987).
    33. Li, X. Y. et al. Demonstration of free radical generation in the "stunned" myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J Clin Invest 92,1025-41 (1993).
    34. Foster, D. B., Van Eyk, J. E., Marban, E. & O'Rourke, B. Redox signaling and protein phosphorylation in mitochondria:progress and prospects. J Bioenerg Biomembr 41,159-68 (2009).
    35. Rubio-Gayosso, I., Platts, S. H. & Duling, B. R. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290, H2247-56 (2006).
    36. Pain, T. et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87,460-6 (2000).
    37. Steenbergen, C., Perlman, M. E., London, R. E. & Murphy, E. Mechanism of preconditioning. Ionic alterations. Circ Res 72,112-25 (1993).
    38. Murry, C. E., Richard, V. J., Reimer, K. A. & Jennings, R. B. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66,913-31 (1990).
    39. Lecour, S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury:Does it go beyond the RISK pathway? J Mol Cell Cardiol 47,32-40 (2009).
    40. Mocanu, M. M. & Yellon, D. M. PTEN, the Achilles' heel of myocardial ischaemia/reperfusion injury? Br J Pharmacol 150,833-8 (2007).
    41. Uchiyama, T., Engelman, R. M., Maulik, N. & Das, D. K. Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 109, 3042-9 (2004).
    42. Jonassen, A. K., Sack, M. N., Mjos, O. D. & Yellon, D. M. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89,1191-8 (2001).
    43. Hausenloy, D. J., Mocanu, M. M. & Yellon, D. M. Cross-talk between the survival kinases during early reperfusion:its contribution to ischemic preconditioning. Cardiovasc Res 63, 305-12(2004).
    44. Hausenloy, D. J. & Yellon, D. M. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection. Heart Fail Rev 12,217-34 (2007).
    45. Schieke, S. M. et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281,27643-52 (2006).
    46. Burwell, L. S., Nadtochiy, S. M., Tompkins, A. J., Young, S. & Brookes, P. S. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394,627-34 (2006).
    47. Chen, Q., Camara, A. K., Stowe, D. F., Hoppel, C. L. & Lesnefsky, E. J. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 292, C137-47 (2007).
    48. Darling, C. E. et al. Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts:role of ERK1/2. Am J Physiol Heart Circ Physiol 289, H1618-26 (2005).
    49. Balakumar, P., Rohilla, A. & Singh, M. Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury:what could be the next footstep? Pharmacol Res 57,403-12 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700