碳源种类对反硝化除磷系统的影响及反硝化聚磷菌(DPB)的分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反硝化除磷过程可以将生物除磷和脱氮两个原本相互独立的过程融为一体,被广泛认为是一个具有良好前景的生物除磷技术。论文通过对比试验,并采用连续运行方式研究了乙酸、丙酸、葡萄糖三种单碳源以及生活污水系统对反硝化除磷系统长期运行状态的影响,确定了不同碳源对系统反硝化除磷的作用与贡献;并使用ERIC-PCR指纹图谱技术研究分析了试验前后各反应器的菌群变化与脱氮除磷的关系以及各反应器的菌群特征,揭示了不同碳源下的菌群特征演变对反应器运行状态的影响。通过对分离的细菌进行反硝化与吸/释磷试验,并利用16SrDNA法对其进行初步鉴定。试验结果表明:
     ①运行良好的反硝化除磷系统,能在短时间内承受因碳源变化带来的冲击;三天后,单碳源系统出现了厌氧释磷和出水磷浓度的波动;两周后,乙酸、丙酸系统逐渐恢复稳定,葡萄糖系统则逐渐失去反硝化吸磷能力。乙酸可以提高生物除磷效果,可以作为富集反硝化聚磷菌DPB的有效碳源;丙酸虽然也可以提高生物除磷效果,但对反硝化除磷的促进作用不明显;葡萄糖的大量存在将使已成为优势菌群的PAOs和DPB逐渐被非聚磷菌取代。乙酸碳源基质的污泥产率系数低于丙酸和葡萄糖,葡萄糖碳源基质有利于获得更高的污泥产率。
     ②对试验前后的各反应器中菌群结构分析表明:生活污水系统和A2N-SBR脱氮除磷系统能稳定运行并取得良好的脱氮除磷效果,菌群结构呈现多样性分布状态;单碳源系统运行初期前三天,原系统稳定复杂的生态特征证明在短时间内能承受由于碳源变化带来的冲击。随着单碳源系统的运行,反应器中微生物在碳源竞争过程中的优胜劣汰,导致各系统在富集了不同优势菌的同时,某些原存的微生物也逐渐消亡。充分证明除温度、pH等因子外,碳源也是控制系统微生物生态位的重要因素之一。
     ③DPB是反硝化除磷系统中一类重要的功能菌群,对生物脱氮除磷起决定性的作用。文献报道的反硝化聚磷菌有:肠杆菌科细菌(Enterobacteriaceae colonies )、气单胞菌属( Aerimonas colonies )、假单胞菌属(Pseudomonas colonies)、莫拉氏菌属(Moraxella colonies)等。研究发现在富集了反硝化聚磷菌的乙酸系统存在两株兼具厌氧释磷、好氧吸磷典型聚磷菌特征和反硝化特征的细菌,编号为P1、P2,P1菌株好氧吸磷量约为厌氧释磷量的3倍,P2菌株好氧吸磷量为释磷量的2倍,而且两菌株反硝化过程不受产生的亚硝酸盐浓度的影响。对P1、P2菌株进行16SrDNA序列测定结果表明,P1菌株属于金黄杆菌属、P2菌株属于微杆菌属,是现有文献未见报道过的具有反硝化聚磷菌特征细菌类群。表明反硝化聚磷菌是一个宽泛的细菌类群,生物除磷系统中是由不同种属的细菌共同发挥脱氮除磷功能。
     课题研究得到国家自然科学基金项目(50278101)与国家水体污染控制与治理重大科技专项(2008ZX07315)的资助。
The processes of denitrification and dephosphorization which were independent originally were integrated into Biological Denitrifying Phosphors and Nitrogen removal process. It was widely considered a bright technology of biological phosphorus removal. In this paper, compared with domestic sewage, the influence of different types of carbon sources on biological denitrifying phosphors and nitrogen removal system was researched. And three types of carbon sources, such as glucose, acetic acid and propionic acid were used. It determined how the different carbon sources made contribution to the systems. ERIC-PCR fingerprinting was used to investigate the relationship between variation of microbial community structure and nitrogen and phosphorus removal during the start and the end of the research, and microbial community structure of the reactors. Through denitrification test and phosphate uptake/release test, a new DPB species, which had seldom been reported in journals, was obtained from the acetic-acid system. And it was identified primarily by 16SrDNA method.
     It was demonstrated that: When the biological denitrifying phosphors and nitrogen removal system performed perfectly, it would possess strong ability to resist the impacts of changing carbon sources in a short time; after three days, phosphate release in anaerobic conditions and fluctuation of phosphorus concentration were appeared; and two weeks later, the stability stabilization were restored in the systems, with acetic acid or propionic acid as carbon source, while with glucose as carbon source, the system lost the ability of denitrifying phosphorus uptake increasingly. Enhanced biological phosphorus removal, acetic acid was used as effective carbon source to enrich denitrifying phosphorus accumulating bacteria (DPB), while propionic acid had no significance on denitrifying phosphorus removal. Because of a great deal of glucose, the dominant bacteria PAOs and DPB were replaced by other bacteria which were unable to accumulate polyphosphate. The sludge yield coefficient of acetic acid was lower than that of propionic acid and glucose, and glucose produced higher sludge yield.
     Analysis on the microbial community structure of activated sludge in the reactors during the research. The results indicated that microbial community structure in the domestic system and A2N-SBR system distributed a high level of diversity, and the two reactors could stable and effectively removing the nitrogen and phosphorous from wastewater. Because of the stable and complex microbial community, the single carbon reactors could resist the impacts of changing carbon sources in the first three days. As the operating of single carbon reactors, different dominant bacteria were enriched and bacteria which were survival in system were extinct because of the competition of carbon. It proved that carbon source included DO, pH value, were the important factors for controlling ecological niche of bacteria.
     DPB (denitrifying phosphorus accumulating bacteria) is an important kind of bacteria in the process of biological nitrogen and phosphorus removal. Members of several different bacterial divisions of microorganisms had been proposed as DPB. These include the Enterobacteriaceae colonies, Aerimonas colonies, Pseudomonas colonies and Moraxella colonies. In this study, two different kinds of bacteria were isolated which had the characteristic of anaerobic phosphorus release, aerobic phosphorus absorb and denitrifying. They were named as P1 and P2. P1 has best quality of phosphorous removal, and P-uptake was three times amount of P-release, and P2’s P-uptake was twice amount of P-release. And nitrite concentration had no effect on them. Sequence analysis of 16SrDNA identified P1 and P2, P1 belonged to Chryseobacterium sp, and P2 belonged to Microbacterium sp. The bacteria of these genus hadn’t been reported as DPB. Data presented here add further supports to the view that may be mediated by different microbial populations under different conditions. The perfect of Biological Denitrifying Phosphors and Nitrogen removal system provide different kinds of DPB ecological environment to survive which exert function of removing phosphorous and nitrogen from wastewater efficiently.
     This research was sponsored by the National Natural Science Foundation of China (50278101) and Grand science and technology special project in National Water Pollution Control and Management of China(2008ZX07315).
引文
[1]沈耀良编著.废水生物处理新技术:理论与应用[M].北京:中国环境科学出版社, 1999. 6.
    [2] Mino T, et al. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Res, 1997, 32: 3193~3201.
    [3] Kong Y H, Beer M, Rees G N, et al. Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios [J]. Microbiol, 2002, 148: 2299~2307.
    [4] Akira Hiraishi, Yoko Ueda, Junko Ishihara. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal [J]. Appl Environ Microbiol, 1998, 64(3): 992~998.
    [5]郑兴灿,李亚新.污水除磷脱氮技术[M].北京.中国建筑工业出版社. 1998. 11.
    [6]沈耀良.废水生物处理新技术:理论与应用[M].北京.中国环境科学出版社. 1999. 6.
    [7]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学. 1999. 18(1). 16~18.
    [8]耿安朝,张洪林编著.废水生物处理发展与实践[M].沈阳:东北大学出版社, 1997. 10.
    [9]周毅,杨开,杨德勇.污水生物处理过程中的同步硝化反硝化研究概况[J].环境科学与技术. 2001. 98(6). 6~8.
    [10]赵宗升,刘鸿亮,李炳伟.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水. 2001. 17(5). 24~28.
    [11]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水, 2000, 26(12): 1~4.
    [12]申蓁.关于青岛团岛城市生活污水A/A/O工艺的脱氮不除磷现象分析[J].给水排水技术动态. 1994.总第85期(1). 24~28.
    [13]冯生华、姚念民.生物除磷脱氮工艺的探讨[J].给水排水. 1994. 20(2). 18~21.
    [14] Rensink J H, Donker H J G W and Simons S J. Phosphorus Removal at Low Sludge Loading [J]. Wat. Sci. Tech. 1985. 17(11/12). 177~186.
    [15] E. G. Srinath, C. A. Sastry, S. C. Pilla. Rapid removal of phosphorus from sewage by activated sludge [J]. Experientia. 1959. 15. 339~340.
    [16] M. S. Finstein. Nitrogen and phosphorus removal from combined sewage components by microbial activity [J]. Appl. Microbiological. 1966. 14. 679~684.
    [17] Brdjanovic D, van Loosdrecht M C M, Hooijmans C M et al. Minimal aerobic sludgeretention time in biological phosphorus removal systems [J]. Biotechnol Bioeng, 1998, 60: 326~332.
    [18] Gerber A, Mostert E S, Winter C T, et al. Interactions between phosphate, nitrate, and organic substrate in biological nutrient removal process[J]. Wat Sci Tech, 1987, 19: 183~194.
    [19]张杰,臧景红等A2/O工艺的固有缺欠和对策研究[J].给水排水2003. Vol29. No3: 22~26.
    [20]张波等.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水. 1997. 13(3).
    [21] Jens P K J, Mogens H. Biological phosphorus uptake under anoxic and aerobic conditions [J]. Wat. Res, 1993, 27(4): 617~624.
    [22] W. J. Ng, S. Long, J. Y. Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor [J]. Wat. Sci. Tech, 2001, 43(3): 139~146.
    [23] Ahn J, Daiduo T, Tsuneda S, et al. Metabolic behave denitrifying phosphate-accumulating organism sunder mitrate and nitrite electron acceptor conditions [J]. Bio Sci Bioeng, 2001, 442~446.
    [24] Tsuneda S, Ohno T, Soejima K, et al. Simulate nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor [J]. Bioch Emeng J. 2006, 27: 191~196.
    [25]崔玉波,尹军.缺氧吸磷与反硝化问题的探讨[J].中国给水排水, 2003, 19(8): 33~35.
    [26] Carlos D. M. Filipe, Glen T. Daigger. Evaluation of the capacity of phosphorus-accumulation organisms to use nitrate and oxygen as final electron acceptors: a theoretical study on population dynamics [J]. Water Environment Research, 1999, 71(6): 1140~1150.
    [27]徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社, 1996.
    [28]王亚宜,彭永臻等.反硝化除磷理论、工艺及影响[J].中国给水排水, 2003, 1(19): 33~36.
    [29]卢峰,杨殿海等.反硝化除磷工艺的研究开发进展[J].中国给水排水, 2003, 19(9): 32~34.
    [30]王亚宜,彭永臻等. A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水, 2003, 19: 8~11.
    [31]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D].重庆大学. 2003.
    [32]马放,王春丽,王立立.高效反硝化聚磷菌株的筛选及其生物学特性[J].哈尔滨工程大学学报, 2007, 28(6): 631~635.
    [33]王春丽,马放,刘慧,米海蓉.反硝化聚磷菌株分离筛选方法的研究[J].吉林建筑工程学院学报, 2006, 23(3): 5~8.
    [34]王春丽,马放,王强.一株耐低温反硝化聚磷菌的筛选及其特性研究[J].环境工程学报,2007, 1(4): 21~24.
    [35]苏俊峰,黄廷林等.一株反硝化聚磷菌的筛选鉴定及特性研究[J].西安建筑科技大学学报, 2009, 41(4): 580~584.
    [36]杨志愿,邱业先等.几株反硝化聚磷菌的筛选及其生理生化特性的鉴定[J].苏州科技学院学报, 2009, 26(3): 42~48.
    [37]吕志堂,纪翠平等. 3株反硝化聚磷菌的分离与鉴定[J].环境工程学报, 2009, 3(8): 1405~1408.
    [38]叶姜瑜. SUFR系统中微生物多样性及稳定性的试验研究[D].重庆大学. 2007.
    [39] Oehmen A, Teresa V M , Lu H , et a1. The efect of pH on the competition between polyphosphate accumulating organisms and glycogen accumulating organisms [J]. Water Res, 2005, 39(15): 3727—3737.
    [40] Oehmen A, Saunders A M , Vives M T, et a1. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources[J] Biotechnol, 2006, 123(1): 22—32.
    [41] Adrian Oehmen, Aaron M Saunders, Teresa Vives M, Yuan Zhiguo, Jurg Keller. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources [J]. Journal of Biotechnology, 2006, 123(1): 22-32.
    [42] Canizares P, De Lucas A, Rodriguez L, et al. Anaerobic uptake of different organic substrates by enhanced biological phosphorus removal sludge [J]. Environ Technol, 2000, 21(4): 397-405.
    [43] Sudiana I M, Mino T, Satoh H, et a1. Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source [J]. Water Sci Technol, 1999, 39(6): 29-35.
    [44]郝晓地,戴吉,胡沅胜,等.控制BNR工艺厌氧释磷效果因素的实验研究[J].环境科学学报, 2008, 28(9): 1771~1776.
    [45]郝晓地,戴吉,兰荔,等.控制BNR工艺好氧、反硝化除磷效果因素的实验研究[J].环境科学学报, 2008, 28(11): 2186~2191.
    [46]侯红勋,王淑莹等.不同碳源类型对生物除磷过程释放磷的影响[J].化工学报, 2007, 58(8): 2081~2086.
    [47]徐亚同.不同碳源类型对生物反硝化的影响[J].环境科学, 1993, 15(2): 29~32.
    [48]马勇.不同碳源对污泥反硝化特性的影响[J].北京工业大学学报, 2009, 35(6): 820~824.
    [49] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimalCOD requirement by integration of denitrifying dephosphatation and nitrification in a two—sludge system [J]. Water Res, 1996, 30(7): l7O2-1710.
    [50] Ahn J, Daidou T, Tsuneda S, et a1. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay[J]. Water Res, 2002, 36(2): 403~4l2.
    [51]胡学斌,杨柳,吉方英.低碳源城市污水的低氧同步脱氮除磷研究[J].中国给水排水. 2009, 25(13): 16~23.
    [52]张红,张朝升,荣宏伟.有机碳源浓度对反硝化除磷的影响研究[J].广州大学学报(自然科学版). 2006, 5(6): 73~76.
    [53] Wentzel M. C. , et al. Evaluation of biochemical modes for biological excess phosphorus removal[J]. Wat. Sci. Tech, 1991, 23(4~6): 567~576.
    [54] Filipe C. D. M., et al. Development of a revised metabolic model for the growth of phosphorus-accumulating organisms [J]. Wat. Environ. Res, 1998, 70(1): 67~79.
    [55] Gerard J., et al. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal [J]. Micro. Rev, 1994, 15: 137~153.
    [56] Smolders G J F, Vander Meij J, Van Loosdrecht M C M, et al. Model of anaerobic metabolism of the biological phosphorus removal process stoichiometry and pH influence [J]. Biotech Bioeng, 1994, 43(6): 461~470.
    [57] Smolders G J F, Vander Mcij J, Van Loosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process [J]. Biotech Bioeng, 1994, 44(7): 837~848.
    [58] Smolders G J F, Vander Mcij J, Van Loosdrecht M C M, et al. A structured metabolic model for the anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process [J]. Biotech Bioeng, 1995, 47(3): 277~287.
    [59] Smolders G J F, Klop J M, van loosdrecht M C M, et al. A metabolic model of the biological phosphorus removal process effect of the sludge retention time [J]. Biotech Bioeng, 1995, 48(3): 222~233.
    [60] Smolders G J F, Van Loosdrecht M C M, Heijnen J J. Steady state analysis to evaluate the phosphate removal capacity and acetate requirement of biological phosphate removing mainstream and side–stream process configuration [J]. Water Res, 1996, 30(11)2748~2760.
    [61] Smolders G J F, van Loosdrecht M C M, Heijnen J J. A metabolic model for the biological phosphorus removal process [J]. Water Sci Technol, 1995, 31(2): 79~93.
    [62] Smolder G J F, van Loosdrecht M C M, Heijnen J J. pH: Key factor in the biological phosphorus removal process [J]. Water Sci Technol, 1994, 29(7): 71~74.
    [63] Niandong Wang, J. P. Gordon Hill. Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition [J]. Wat. Res, 2002, 36: 49~58.
    [64] Jeon C O, P. J. M. , Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as sole carbon source [J]. Wat. Res, 2000, 34(7): 2160~2170.
    [65] Satoh H. , T. and Matsuo T. Anaerobic uptake of glutamate and aspartate by enhanced biological phosphorus removal activated sludge [J]. Wat. Sci. Tech, 1998, 37: 579~582.
    [66] Oehmen Adrian, Zeng Raymond J, Yuan Zhiguo. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal system. [J]. Biotechnology and Bioengineering, 2005, 91(1)43~53.
    [67] Cech J. S. , H. P. Glucose induced breakdown of enhanced biological phosphorus removal [J]. Environ. Tech, 1990, 11: 651~656.
    [68] Cech J. S. , H. P. Competition between polyphosphate and polysaccharide accumulating bacterial in biological phosphorus removal systems [J]. Wat. Res, 1993, 27: 1219~1225.
    [69] Mino T. , et al. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Wat. Res, 1998, 32, (11): 3193~3207.
    [70] Filipe C. C. M, et al. A metabolic model for acetate uptake under anaerobic condition by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH [J]. Biotech. Bioeng, 2001, 76(1): 17~31.
    [71] Zeng R. Metabolic bodel for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems [J]. Biotech. Bioeng, 2003, 81(1): 92~105.
    [72] G, G. Baterial metabolism, [M]. 2nd ed. New York; Spring. 1986.
    [73] Zeng R, et al. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions [J]. Biotech. Bioeng, 2002, 80(3): 277~279.
    [74]鲁文敏,王亚宜,高乃云,杨建.不同基质的聚磷菌和聚糖菌竞争的代谢模型[J].中国资源综合利用. 2009, 27(1): 37~40.
    [75]李夕耀,彭永臻,王淑莹,由阳,郭春艳.聚磷菌厌氧时吸收乙酸和丙酸的代谢模型[J].环境科学与管理. 2008, 33(8).
    [76]马民,陈银广,顾国维.聚磷菌与聚糖菌竞争影响因素的研究进展[J].环境科学与技术. 2006, 29(1): 102~104.
    [77] Uersalovic J, Koeuth T, Lupski J R. Distribution of repetitive DNA sequence in eubacteria and application to fingerprinting of bacterial genomes [J]. Nucleic Acids Res, 1991, 19: 6823~6831.
    [78] Gillings M, Holley M, Amplification of anonymous DNA fragments using pairs of long primers generates reproducible DNA fingerprints that are sensitive to genetic variation [J].Electrophoresis, 1997, 18: 1512~1518.
    [79] Gillings M, Holley M. Repetitive element PCR fingerprinting using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements [J]. Lett Appl Microbiol, 1997, 25: 17~21.
    [80] Giovanni G D D, Watrud L S, Seidler R J, et al. Fingerprinting of mixed bacterial strains and BIOLOG gram-negative(GN) substrate communities by enterobacterial repetitive intergenic consensus sequence-PCR(ERIC-PCR) [J], Curr Micobiol, 1999, 38: 217~223.
    [81]高平平,王建,席玉英,等.代表活性污泥中苯酚降解菌群的ERIC-PCR产物片段的多态性[J].生态学报, 2003, 23(6): 1098~1100.
    [82]潘莉,杜惠敏,黄海东,等.腹泻儿童肠道菌群结构特征的ERIC-PCR指纹图谱分析[J].中国微生态学杂志, 2003, 15(3): 141~143.
    [83]高平平,赵立平,等.微生物群落结构探针杂交评价不同培养基从火星污泥分离优势菌群的能力[J].微生物学报, 2003, 43(2): 264~270.
    [84]于学珍,李秀艳,等.生物栅系统净化效果及微生物ERIC-PCR指纹图谱分析[J].污染防治技术, 2008, 21(5): 13~17.
    [85]王图锦. SUFR反应器中菌群结构分析及聚磷菌的分离[D].西南大学. 2007.
    [86]叶姜瑜,王图锦,罗固源,季铁军. ERIC-PCR指纹图谱技术对低温下SUFR反应器中菌群结构分析[J].环境科学学报, 2008, 28(1): 101~107.
    [87]叶姜瑜,王图锦,吉方英,罗固源,季铁军.指纹图谱技术跟踪SUFR反应器恢复运行期间菌群变化[J].西南大学学报(自然科学版), 2007, 29(10): 147~151.
    [88] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16SrRNA [J]. Appl Environ Microbiol, 1993, 59: 695~700.
    [89]佘跃辉,张凡,向廷生,等. PCR-DGGE方法分析原有储层微生物群落结构及种群多样性[J].生态学报, 2005, 25(2): 237~242.
    [90]邢德峰,任南琪,宋业颖,等. DG-DGGE分析产氢发酵系统微生物群落动态及种群多样性[J].生态学报, 2005, 25(7): 1818~1823.
    [91] Hernan-Gomez S, Espinosa J C, Ubeda J F. Characterization of wine yeast by temperature gradient gel electrophoresis (TGGE) [J]. FEMS Microbiol Lett, 2000, (19): 45~50.
    [92]高平平,晃群芳,张雪礼,等. TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性[J].生态学报, 2003, 23(10): 1963~1969.
    [93] Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis [J], Biotechnol Lett, 2001, 23: 1205~1208.
    [94]丁彩娟.反硝化除磷系统基质转化和生物特性初探. [D].重庆大学, 2005.
    [95]高小平.反硝化除磷系统稳定运行性能研究. [D].重庆大学, 2005.
    [96]高茜.复合生物菌群反硝化同时吸磷机理试验续研究. [D].重庆大学, 2006.
    [97]杨肃博. DNP-MSBR工艺反硝化除磷脱氮系统试验研究. [D].重庆大学, 2006.
    [98]丁彩娟,吉方英,高小平,等. A/ASBR中PHB转化与反硝化吸磷的关系研究[J].重庆建筑大学学报, 2005, 27(3): 80~84.
    [99]高小平,吉方英,丁彩娟,等.好氧段对反硝化除磷系统的影响[J].重庆大学学报自然科学版, 2005, 28(3): 106~109.
    [100]吉方英,高茜,袁春华,等.温度和COD对SBR反硝化同时除磷系统除磷能力的影响[J].安全与环境学报, 2005, 5(6): 30~33.
    [101]吉方英,杨肃博,高茜,等. DNP-MSBR工艺中生物膜硝化能力对缺氧除磷的影响[J].重庆大学学报自然科学版, 2006, 29(8): 1~5.
    [102]吉方英,罗固源.排除厌氧富磷污水生物化学除磷脱氮ERP-SBR系统研究[J].水处理技术, 2005, 31(1): 57~61.
    [103] Wachtmeister A, Kuba T, van M CMLoosdrech, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge [J]. Water Res, 1997, 31, (3): 471~478.
    [104] Nevin Yagci, Nazik Artan, Emine Ubay Cokgor et al. Metabolic model for acetate uptake by a mixed culture of phosphate-and glycogen-accumulating organisms under anaerobic conditions[J]. Biotechnology and Bioengineering, 2003, 84(3): 360-372.
    [105]徐伟峰,顾国维.生物除磷系统中聚磷菌与聚糖菌代谢模型比较[J].中国给水排水, 2006, 22(14): 5-9.
    [106] Comeau Y, Hall KJ, Hancock REW, Oldham WK. Biochemical model for enhanced biological phosphorus removal [J]. Water Research, 1986, 20: 1511-1521.
    [107] Wang N, Peng J, Hill G. Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition [J]. Water Research, 2002, 36(1): 49-58.
    [108] Lie E, Christensson M, Jonsson K, et a1. Carbon and phosphorus transformations in a full-scale enhanced biological phosphorus removal process [J]. Water Res, 1997, 31(11): 2693-2698.
    [109]张红,张朝升,荣宏伟.有机碳源浓度对反硝化除磷的影响研究[J].广州大学学报(自然科学版). 2006, 5(6): 73~76).
    [110]吉芳英、杨琴、罗固源.实验室自配HACH-COD替代试剂[J].给水排水. 2003. 29(1). 23~26.
    [111]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版[M].北京.中国环境科学出版社. 1987年.
    [112]国家环境保护总局《水和废水监测分析方法》编委会.水和废水标准分析方法.第四版[M].北京.中国环境科学出版社. 2002年.
    [113]王镜岩,朱圣庚.生物化学(第三版)下册[M].北京:高等教育出版社, 2002.
    [114]秦裕珩,译.废水工程处理及回用(第四版)[M].北京:化学工业出版社, 2004.
    [115] Versalovic J, Koeuth T, Lupski JR, Distribution of repetitive DNA sequence in eubacteria and application to fingerprinting of bacterial genomes [J]. Nucleic Acids Res, 1991, 19: 6823~6831.
    [116] Mino T. Microbial selection of polyphosphate-accumulating bacteria in activated sludge wastewater treatment processes for enhanced biological phosphate removal [J]. Biochemistry (Moscow), 2000, 65: 341~348.
    [117]张素琴主编.微生物分子生态学[M].北京:科学出版社, 2005.
    [118]马民.丙酸/乙酸比例及pH对聚糖菌富集系统的影响[D] .同济大学. 2006.
    [119] Whang L. M, et al. Competition between polyphosphate and glycogen-accumulating organisms in biological phosphorus removal systems effect of temperature [J]. Wat. Sci. Tech, 2002, 46, (1~2): 191~194.
    [120] Robert J, Seviour, Takashi Mino et al. The microbiology of biological phosphorus removal in activated sludge systems [J]. Microbiology Reviews, 2003, 27(1): 99~127.
    [121] Che Ok Jeon, Dae Sung Lee, Jong Moon Park. Microbial communities in activated sludge performing enhanced biological phosphorus removal in sequencing batch reactor [J]. Water Research, 2003, 37: 2195~2205.
    [122] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Mcrobiol, 1995, 59: 143-169.
    [123]郑金伟,冉伟,钟增涛,等.增强型生物除磷过程中聚磷酸盐积累微生物的研究进展[J].应用生态学报. 2004, 15(8): 1487-1490.
    [124] Mino T, Van Loosdrecht M C M, Heijnen j j. Microbiology and biochemistry of the enhanced biological phosphate removal process [J]. Water Res, 1998, 32: 3193-3207.
    [125] Blackall L L, Crocetti G R, Saunders A M, et al. A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants [J]. Antonie van Leeuwenhoek, 2002, 81: 681-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700