近红外苊并吡嗪荧光染料的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大部分生物荧光探针的主要应用障碍是荧光发射波长较短,易受到生物质荧光背景的干扰。开发红外长波长生物荧光染料,对于提高检测灵敏性具有很高的应用价值。
     本论文以苊醌为原料通过硝化、缩合、取代合成了染料Ap-1c和AP-2c,其中染料AP-2c保持了1,8-萘酰亚胺的荧光性能;而以苊并吡嗪为母体的染料Ap-1c,则达到了610 nm的长波长荧光发射、127nm的大范围stokes位移的近红外荧光染料的要求。
     由于利用苊醌双硝化中间体,难以得到其它衍生的苊并吡嗪化合物,本文以苊为原料,通过溴代、硝化、氧化,及合成条件优化,合成一个新的荧光染料中间体4-溴-5-硝基苊醌(P1)。基于该染料中间体合成出苊并吡嗪Ap-1系列的6个新化合物Ap-1a,Ap-1b,Ap-1c,Ap-1d,Ap-1e和Ap-1f。通过系列的性能测试,发现这些苊并吡嗪类荧光染料Ap-1普遍具有荧光发射波长较长,stokes位移大的优点。具有4-(N-苯基乙二胺)基团的染料Ap-1d,在乙腈:水=80:20的体系中,荧光发射波长达632 nm,stokes位移达172 nm,加入Cu~(2+)离子能使荧光强度增大。通过模型化合物Ap-1d的性能可以预测,具有4,5-二(N-苯基乙二胺基团)染料Ap-1f可作为Cu~(2+)荧光增强型近红外荧光探针。染料Ap-1f的合成、分离纯化及其特性需进一步研究。
     本文第三节以萘酰亚胺为母体,设计合成了Co~(2+)离子荧光探针CoProbe,并对其性能进行了系统的测试,发现该探针在生物环境的pH=6-8范围内,对Co~(2+)具有荧光淬灭和吸收波长红移的双通道模式高度专一的识别。由于探针CoProbe结构不稳定,荧光发射波长较短,结合Co~(2+)离子后荧光淬灭严重等因素,限制了其实用性。但是,探针CoProbe中对Co~(2+)的高选择性受体,对设计功能优异的钴离子荧光探针提供了可能。
The main applicative problems with most biolocal fluorecent probe were short emission fluorescence wavelength that would be strongly disturbed by the background fluorecence from biomass in ordinary fluorecence zone. So the exploiture of near-infrared biological dyes withlong emission wavelength was of great value for the improvement on testing sensitivity.
     Novel fluorescent dye Ap-1c and dye Ap-2c were designed and synthesized through 3-step reaction including intration, condensation and substitution with acenaphthrenequinone as a raw material. Ap-2c retained the fluorescence performance of 1, 8-naphthaIimide, while Ap-1c had 610 nm near-infrared fluorecent emission wavelength and stokes shift as large as 127 nm which made Ap-1c a qualified near-infrared flurescence dye.
     As the method diintration of acenaphthrenequinone did not work out for the synthesis of other acenaphtho-pyrazine compounds, a new intermedia 4-bromo-5-nitro acenaphthrenequinone (P1) was designed, synthesised and optimized as well. Based on P1, a series of 6 new acenaphtho-pyrazine compounds named as Ap-1a to Ap-1f were designed and synthesized. Through series of test, common adventages like long emission wavelength and large stokes shift were found among acenaphtho-pyrazine dyes. Especially, the 2-phenylamino acenaphtho-pyrazine dye Ap-1d was found emission wavelength as long as 632 nm , stokes shift as large as 172 nm in acetonitrile-water (80:20, v/v) solution and fluorescence intensity enhanced by Cu~(2+) ion which concluded that Ap-1f would be proper as near-infrared fluorescent probe for Cu~(2+) ion. However, as was difficult to seperate, Ap-1f could not be tested right now.
     Fluorecence probe CoProbe was designed and synthsised based on naphthalimide, the testing result showed that CoProbe had altitudinal recognise property for Co~(2+) ion through 2 channel changes in UV-absorbance and fluorescence intensity. However, with objection like unstable structure and performance, short fluorecence wavelength, quenched fluorescent wavelength after coupling with Co~(2+) ion, CoProbe was not suitable for practical application. However, the highly selective acceptor of CoProbe made the design of better probe for Cobalt ion possible.
引文
[1] 夏之宁,光分析化学[M],重庆:重庆大学出版社.2004,112-128. ·
    [2] Chen C A, Yeh R H, Lawren D S, Design and synthesis of a fluorescent reporter of protein kinase activity[J]. J. Am. Chem. Soc, 2002, 124(15): 3840-3841.
    [3] 杨冰,李瑛,徐创霞等,有机荧光材料研究进展[J].化学研究与应用,2003,15(1):11-16.
    [4] 赵瑜,李隆弟,罗丹明和荧光素类染料的固体基质室温磷光研究[J].分析化学,1996,24(7):745-749.
    [5] Gao J X, Wang P,Giese R W,Xanthamide fluorescent dyes[J].Anal. Chem, 2002, 74:6397-6401.
    [6] Gordon G W, Berry G, Liang X H, et al. , Fluorescence resonance energy transfer as a relative measure of molecular interaction[J]. Biophys. J, 1998, 74:A36-A36.
    [7] 何立芳,林丹丽,李耀群,同步荧光分析法的应用及其新进展[J].化学进展,2004,16(68):79-885.
    [8] Sadamoto R, Nitkura K, Sears P S, et al., Cell-wall engineering of living bacteria[J].J. Am. Chem. Soc, 2002, 124:9018-9019.
    [9] Pearce D A, Jotterand N, Carrico I S, et al. , Derivatives of 8-Hydroxy-2-methyl quinoline are powerful prototypes for zinc sensors in biological systems[J]. J. Am.Chem. Soc, 2001, 123(21) : 5160-5161.
    [10] Weber G, Fluorescence in biophysics:accomplishments and cleficiencies[J]. Methods enzymol, 1997,278:1-15.
    [11] Sigmund H, Pfleiderer W, A new type of labeling of nucleosides and nucleotides[J].Helv Chim Acta, 2003,86(7):2299-2334.
    [12] Walkup G K, Burdette S C, Lippard S J, et al., A new cell-permeable fluorescent probe for Zn2+[J].J. Am. Chem.Soc,2000, 122(23) :5644-5645.
    [13] Adamczyk M, Chan C, Fino J, et al. , Synthesis of 5-and 6-hydroxymethyl fluoresce in phosphoramidites[J]. J. Org.Chem, 2000, 65(2) :596-601.
    [14] 彭采尔,分子发光分析法(祝大昌译)[M].上海:复旦大学出版社,1985,38-40
    [15] 刘欣,王红,张华山,生物分析中近红外荧光探针进展[J].分析科学学报,2001,17(4):346-351.
    [16] Sheakay D B, Lipowskav M, Spetrial chromatographic separation and characterization of near-infrared-labeled DNA oligomers for use in DNA sequencing[J]. Anal Chem, 1995, 67:247.
    [17] 杨祥宇,宋健,冯荣秀,荧光标记染料[J].化学通报,2003,9:615-622.
    [18] 张华山,王红,赵媛媛,分子探针与检测试剂[J].北京:科学出版社,2002,163.
    [19] 郭尧君,荧光实验技术[M],北京:科学出版社,1983,2-7.
    [20] 陈国珍,荧光分析法[M].北京:科学出版社,1975,16-28.
    [21] 黄晓峰,张远强,张英起,荧光探针技术[M].北京:人民军医出版社,2004:4-10.
    [22] Lehn J. -M. Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization[J]. Angew. Chem. ,Int. Ed. Engl. 1990, 29 (11): 1304-1309.
    [23] Lehn J.-M.著,沈兴海 等译,超分子化学-概念和展望[M].北京:北京大学出版社,2002.
    [24] 夏其吕.蛋白质化学研究技术与进展[M].北京:科学出版社,1997.
    [25] Blackburn G. M. , Gait M. J. Nucleic acids in chemistry and biology [M]. 2nd ed.Oxford : Oxford University Press, 1996.
    [26] Rurack K. , Genger U. R. Rigidization, preorientation and electronic decoupling-the 'magic triangle' for the design of highly efficient fluorescent sensors and switches [J]. Chem. Soc. Rev. 2002, 31: 116-127.
    [27] De Silva A. P., Gunaratne H. Q. N. , and Gunnlaugsson T. Signaling Recognition Events with Fluorescent Sensors and Swithes[J]. Chemical Reviews, 1997, 97: 1515-1566.
    [28] Martinho J. M. G. Heavy-atom quenching of monomer and excimer pyrene fluorescence [J]. Journal of Physical Chemistry, 1989, 93: 6687-6692.
    [29] Babendure J. R., Adams S. R. , Tsien R. Y. Aptamers switch on fluorescence of triphenylmethane dyes[J]. Journal of American Chemical Society, 2003, 125:14716-14717.
    [30] Knemeyer J. P. , Marm(?) N. , Sauer M. Probes for detection of specific DNA sequences at the single-molecule level [J]. Analysis Chemistry, 2000, 72: 3717-3724.
    [31] Trautwein A. X. Bioionorganic chemistry [M]. Wiley-VCH, Weinheim, 1997.
    [32] Yang J. S. , Lin C. S. , Hwang C. Y. Cu~(2+)-Induced Blue Shift of the Pyrene Excimer Emission: A New Signal Transduction Mode of Pyrene Probes [J]. Organic Letters,2001, 3: 889-892.
    [33] Liao J. H. , Chen C. T., Fang J. M. A novel phosphate chemosensor utilizing anion-induced fluorescence change [J]. Organic Letters, 2002, 4(4): 561-564.
    [34] Speiser S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies [J].Chemical Reviews, 1996, 96: 1953-1976.
    [35] Miyawaki A., Liopis J. , Heim R. , et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin[J]. Nature, 1997, 388: 882-887.
    [36] Li CY. , Zhang XB. , and Jin Z. , et al. A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium (Ⅱ) tris(bipyridine) complex [J].Analytica Chimica Acta. 2006, 580: 143-148.
    [37]Rurack K.Flipping the light switch‘ON’-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions.Spectrochim [J].Acta Crystallographica Section A,2001,57:161-2195.
    [38]Bissell R.A.,de Silva P.,Gunaratne H.Q.N.et al.Molecular fluorescent signalling with‘fluor-spacer-receptor’systems:approaches to sensing and switching devices via supramolecular photophysics [J].Chem.Soc.Rev.1992,21(3):187-195.
    [39]Valeur B.,Leray I.Design principles of fluorescent molecular sensors for cation recognition [J].Coord.Chem.Rev.2000,205(1):3-40.
    [40]Prodi L.,Bolletta F.,Montalti M.et al.Luminescent chemosensors for transition metal ions [J].Coord.Chem.Rev.2000,205(1):59-83.
    [41]Rurack K.Flipping the light switch‘ON’-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J].Spectrochim.Acta A.2001,57:2161-2195.
    [42]Fabbrizzi L.,Licchelli M.,Rabaioli G.et al.The design of luminescent sensors for anions and ionisable analytes [J].Coord.Chem.Rev.2000,205(1):85-108.
    [43]Perry M.J.The role of monoclonal antibodies in the advancement of immunoassay technology[J].In Monoclonal Antibodies:Principles and Applications.Wiley-Liss:New York.1995:pp 107-120.
    [44]Buryak A.,Severin K.An Organometallic Chemosensor for the Sequence-Selective Detection of Histidine-and Methionine-Containing Peptides in Water at Neutral pH[J].Angew.Chem.,Int.Ed.2004,43:4771-4774.
    [45]Buryak A.,Severin K.A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids[J].J.Am.Chem.Soc.2005,127:3700-3701.
    [46]Folmer-Andersen J.F.,Lynch V.M.,Anslyn E.V.Colorimetric Enantiodiscrimination of r-Amino Acids in Protic Media [J].J.Am.Chem.Soc.2005,127,7986-7987.
    [47]Tse W.C.,Boger D.L.A Fluorescent Intercalator Displacement Assay for Establishing DNA Binding Selectivity and Affinity [J].Acc.Chem.Res.2004,37:61-69.
    [48]Lavigne J.J.,Anslyn E.V.Teaching old indicators new tricks:a colorimetric chemosensingensemble for tratrate/malate in beverages [J].Angew.Chem.,Int.Ed.1999,38(24):3666-3669.
    [49]Piatek A.M.,Bomble Y.J.,Wiskur S.L.et al.Threshold Detection Using Indicator-Displacement Assays:An Application in the Analysis of Malate in Pinot Noir Grapes [J].J.Am.Chem.Soc.2004,126:6072-6077.
    [50]Zhong Z.,Anslyn E.V.A colorimetric sensing ensemble for Heparin [J].J.Am.Chem.Soc.2002,124:9014-9015.
    [51]Ait-Haddou H.,Wiskur S.L.,Lynch V.M.et al.Achieving Large Color Changes in Response to the Presence of Amino Acids:A Molecular Sensing Ensemble with Selectivity for Aspartate [J].J.Am.Chem.Soc.2001,123:11296-11297.
    [52]McCleskey S.C.,Metzger A.,Simmons C.S.et al.Competitive indicator methods for the analysis of citrate using colormetric assays [J].Tetrahedron.2002,58:621-628.
    [53]Zhong Z.,Anslyn E.V.Controlling the Oxygenation Level of Hemoglobin by Using a Synthetic Receptor for 2,3-Bisphosphoglycerate [J].Angew.Chem.,Int.Ed.2003,42:3005-3008.
    [54]Wiskur S.L.,Floriano P.N.,Anslyn E.V.et al.A Multicomponent Sensing Ensemble in Solution:Differentiation between Structurally Similar Analytes [J].Angew.Chem.,Int.Ed.2003,42:2070-2072.
    [55]Zhu L.,Zhong Z.,Anslyn E.V.Guidelines in Implementing Enantioselectivelndicator-Displacement Assays for r-Hydroxycarboxylates and Diols [J].J.Am.Chem.Soc.2005,127:4260-4269.
    [56]Han M.S.,Kim D.H.Naked-Eye Detection of Phosphate Ions in Water at Physiological pH:A Remarkably Selective and Easy-To-Assemble Colorimetric Phosphate-Sensing Probe [J].Angew.Chem.,Int.Ed.2002,41(20):3809-3811.
    [57]Wiskur S.L.,Anslyn E.V.Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:A Colorimetric Assay for the Aging of Scotch [J].J.Am.Chem.Soc.2001,123:10109-10110.
    [58]Metzger A.,Anslyn E.V.A Chemosensor for Citrate in Beverages [J].Angew.Chem.,Int.Ed.1998,37(5):649-652.
    [59]Fabbrizzi L.,Leone A.,Taglietti A.A Chemosensing Ensemble for Selective CarbonateDetection in Water Based on Metal-Ligand Interactions [J].Angew.Chem.,Int.Ed.2001,40(16):3066-3069.
    [60]Fabbrizzi L.,Marcotte N.,Stomeo F.et al.Pyrophosphate Detection in Water by Fluorescence Competition Assays:Inducing Selectivity through the Choice of the Indicator [J].Angew.Chem.,Int.Ed.2002,41(20):3811-3814.
    [61]Hortal(?)M.A.,Fabbrizzi L.,Marcotte N.et al.Designing the Selectivity of the Fluorescent Detection of Amino Acids:A Chemosensing Ensemble for Histidine [J].J.Am.Chem.Soc.2003,125:20-21.
    [62]Fabbrizzi L.,Foti F.,Taglietti A.Metal-Containing Trifurcate Receptor that Recognizes and Senses Citrate in Water [J].Org.Lett.2005,7(13):2603-2606.
    [63]Valeur B.Molecular Fluorescence:Principles and Applications [J].Wiley-Vch Verlag GmbH,2001,12:8014-8015.
    [64] L. Fabbrizzi, M.Licchelli, P. Pallavicini, D. Sacchi, A. Taglietti. Sensing of transition metals through fluorescence quenching or enhancement [J]. A review.Analyst, 1996, 121:1763-1768.
    [65] F. M. Winnik. Photophysics of preassociated pyrenes in aqueous polymer solution and in other organized media [J]. Chem. Rev. ,1993:587-614.
    [66] Arttamangkul S, Bhalgat MK, Haugland RP. 5-(pentafluorobenzoylamino)fluorescein:A selective substrate for the determination of glutathione concentration and glutathione S-transferase activity [J]. Anal. Biochem. 1999, 269:410-417.
    [67] 陈秀英,彭孝军.DNA分子荧光探针[J].化学通报.2004,67:1-9.
    [68] 高忠宇,刘燕刚,陈研.生物荧光标记菁染料研究进展[J].影像技术,2001,(2):10-16
    [69] Sheakay D B, Lipowskav M, Spetrial chromatographic separation and characterization of near-infrared-labeled DNA oligomers for use in DNA sequencing [J].Anal Chem, 1995,67:247.
    [70] 沈永嘉,酞菁的合成与应用[M].北京:化学工业出版社,2000,42-57.
    [71] David Bickar, Philp D Reid, A high—affinity protein strain for western blots, tissue prints, and electrophoretic Gels [J].Anal Biochem, 1992, 203:109-115.
    [72] A. Treibs, F.-H. Kreuzer. Difluorboyl-Komplexe von Diund Tripyrrylmethen [J].Liebigs Ann. Chem.,1968, 718:208-223.
    [73] Z. Tao, X. Qian. Naphthalimide hydroperoxides as photonucleases:substituent effects and structural basis [J]. Dyes Pigm . 1999,43(2):139-145.
    [74] 施锋,李宏洋,彭孝军.生物分析中近红外荧光探针进展[J].精细化工:,2003,20(5):268-272.
    [75] Santra S, Dutta D. Techol. Fluorescent nanoparticle probes for cancer imagin g[J]. Cancer Res. Treat. 2005, 4:593-602.
    [76] Voura EB, Jaiswal J K, Mattoussi H, Simon S M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J].Nat Med. 2004, 10(9):993-998.
    [77] Nide DL, Rahman Ms, Carlson K D, Richards-Kortum R,Follen M. Gynecol. Oncol.,Fluorescent nanocrystals for use in early cervical cancer detection [J]. 2005,99:S89-S94.
    [78] Stroh M, Zimmer J P, Duda D G et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo [J].Nat. Med. 2005, 11(6):678-682.
    [79] Waggoner D. J. , Bartnikas T. B. , Gitlin J. D. Chromosomal localization of CCS,the copper chaperone for Cu/Zn superoxide dismutase [J]. Neurobiol. Disease. 1999,6: 221-230.
    [80]Vulpe C.,Levinson B.,Whitney S.et al.Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase [J].Nat.Genet.1993,3:7-13.
    [81]Valentine J.S.,Hart P.J.Misfolded CuZnSOD and amyotrophic lateral sclerosis [J],Proc.Natl.Acad.Sci.U.S.A.2003,100:3617-3622.
    [82]Brown D.R.,Kozlowski H.Biolgical inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases [J].Dalton Trans.2004,1907-1917.
    [83]Solomon E.,Sundaram U.M.,Machonkin T.Multicopper oxidases and oxygenases [J].Chem.Rev.1996,96:2563-2605.
    [84]Zheng Y.,Orbulescu J.,Ji X.et al.Development of Fluorescent Film Sensors for the Detection of Divalent Copper [J].J.Am.Chem.Soc.2003,125:2680-2686.
    [85]Grandini P.,Mancin F.,Tecilla P.et al.Fluorescent chemosensors for Cu2+ ions:fast,selective,and highly sensitive [J].Angew.Chem.,Int.Ed.1999,38:3061-3064.
    [86]Zheng Y.,Cao X.,Orbulescu J.et al.Peptidyl Fluorescent Chemosensors for the Detection of Divalent Copper [J].Anal.Chem.2003,75:1706-1712.
    [87]Torrado A.,WalkupG.K.,Imperiali B.Exploiting polypeptide motifs for the design of selective Cu(Ⅱ)ion chemosensors [J].J.Am.Chem.Soc.1998,120:609-610.
    [88]Zheng Y.,Huo Q.,Kele P.et al.A new fluorescent chemosensor for copper ions based on tripeptide Glycyl-Histidyl-Lysine (GHK)[J].Org.Lett.20O1,21:3277-3280.
    [89]Boiocchi M.,Fabbrizzi L.,Licchelli M.et al.A two-channel molecular dosimeter for the optical detection of copper(Ⅱ)[J].Chem.Commun.2003,1812-1813.
    [90]Zheng Y.,Gatt(?)s-Asfura K.M.,Konka V.et al.A dansylated peptide for the selective detection of copper ions [J].Chem.Commun.2002,2350-2351.
    [91]Ghosh P.,Bharadwaj P.K.Ni(Ⅱ),Cu(Ⅱ),and Zn(Ⅱ)Cryptate-Enhanced Fluorescence of a Trianthrylcryptand:A Potential Molecular Photonic OR Operator [J].J.Am.Chem.Soc.1996,118:1553-1554.
    [92]Kaur S.,Kumar S.Photoactive chemosensors 3:a unique case of fluorescence enhancement with Cu(Ⅱ)[J].Chem.Commun.2002,2840-2841.
    [93]Banthia S.,Samanta A.Photophysical and Transition-Metal Ion Signaling Behavior of a Three-Component System Comprising a Cryptand Moiety as the Receptor [J].J.Phys.Chem.B.2002,106:5572-5577.
    [94] Ramachandram B., Samanta A. Modulation of metal - fluorophore communication to develop structurally simple fluorescent sensors for transition metal ions [J]. Chem.Commun. 1997, 1037-1038.
    [95] Li CY., Zhang XB., and Jin Z., et al. A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium(Ⅱ) tris(bipyridine) complex [J].Analytica Chimica Acta. 2006, 580: 143-148.
    [96] Zeng Z., and Jewsbury R. A. The synthesis and applications of a new chromogenic and fluorescence reagent for cobalt(Ⅱ) [J]. Analyst, 1998, 123: 2845-2850.
    [97] Peters A. T., Behesti Y. S. S. Benzo[k, 1] xanthene-3,4-dicarboximides and benzimidazoxanthenoisoquinolinones-yellow and orange dyes for synthetic-polymer fibres [J]. Journal of the Society for Dyers and Colourist, 1989, 105: 29-35.
    [98] Raffaella Bergonzi, Luigi Fabbrizzi. Molecular switches of fluorescence operating through metal centred redox couples [J]. Coordination Chemistry Reviews, 1998, 170:31-36.
    [99] 徐兆超.基于ICT萘酰亚胺阳离子比率荧光探针的研究[D]。大连:大连理工大学.2006.
    [100] 卢春亮。萘酰亚胺类镉离子比率荧光探针的设计与合成[D].大连:大连理工大学.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700