并网型光伏电站发电功率预测方法与系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电功率出力具有明显的间歇波动特性,大规模光伏发电接入给电网调度管理带来巨大挑战。如何在满足安全稳定约束的前提下,最大限度地消纳这些可再生能源,成为新能源电力系统的研究热点。光伏发电功率预测是解决此问题的关键技术之一,开展光伏电站发电功率预测方法与系统研究具有重要的学术与应用价值。
     光伏发电功率预测模型需要拟合的映射关系在不同的天气状态下存在明显差异,采用单一模型实现多种不同天气状态下发电功率的准确预测非常困难。此外,光伏电站不同天气状态对应历史数据的分布并不均衡,由不均衡数据训练得到的单一预测模型对多变天气状态的适应性无法保证,预测精度难以满足要求。为此,本文在研究不同天气状态下地表与地外辐照度关系变化规律基础上,从辐照度数据中提取了反映天气状态的特征参数,利用支持向量机建立了天气状态模式识别模型,实现了缺失天气类型信息历史数据的辨识恢复,确保了历史数据的完整性和可用性,对比了功率预测不同的实现方式,提出了光伏发电功率分类分步预测方法,并给出了实现的总体框图和具体的技术路线图。
     作为光伏发电功率预测的前提基础,辐照度预测对于功率预测至关重要。目前采用神经网络进行辐照度预测取得了较好效果,但现有预测模型存在输入空间维数较高、模型结构复杂等不足,且其输出的预测值也未经修正。为此,本文从充分利用已有数据、尽量减小信息冗余、控制输入变量维数三个方面对辐照度神经网络预测模型进行了改进;并根据不同天气状态的特点,按照设定的可变尺度参数,从时间周期性和临近相似性两个维度,利用历史运行数据和类型内相似性度量参数生成修正参考值和权重系数,提出了基于时间周期性和临近相似性的辐照度预测值修正方法。仿真结果表明上述改进措施和修正方法对辐照度预测精度的提高具有明显作用。
     作为光伏发电功率预测的关键环节,光伏电站发电功率出力特性模型对于预测精度有着重要影响。现有发电功率出力特性模型存在实施步骤繁杂、参数优化困难、适应能力不强等问题。为此,本文利用通径分析对比了各气象影响因子对发电功率的直接影响及通过其它因子的间接影响,利用选取的主要气象影响因子构建了光伏电站的运行状态空间,利用实际运行数据建立了发电功率出力特性的关联数据模型,并根据影响因子与发电功率的相关程度定义了运行状态加权距离,提出了基于关联数据模型的发电功率映射预测方法。
     最后,以本文上述研究为基础,针对电网调度管理和电站优化运行的要求,参照光伏发电功率预测的有关标准和技术规范,开发了光伏电站发电功率预测系统并投入应用,实际运行取得了良好效果,验证了本文提出有关方法和模型的有效性。
Due to the intermittent fluctuations characteristic of photovoltaic (PV) power generation, the grid-connection of large scale PV plants will bring great challenges and difficulties to power system dispatching and management. How to consume these renewable energies by the greatest degree under the security and stability constraints become one of the research focuses in the area of new energy power system. Power forecasting is one of the key technologies to solve this problem, the research on power forecasting approach and system of grid-connected PV plant has very important academic and applied value.
     There are significant differences between the map relations fitted through PV power forecast model under different weather statuses, and it is very difficult to forecast the PV power accurately in variational weather conditions only use one single model. Moreover, the corresponding historical data distributions of different weather statuses are imbalance, so the applicability of the single forecast model trained by these imbalance data could not be guaranteed. That means the prediction accuracy could not meet the requirements. For this reason, based on the study of the variation relation between surface and extraterrestrial solar irradiance, the feature parameters reflecting weather status characteristic are extracted from solar irradiance data sequence, pattern recognition model for weather statuses based on support vector machine is constructed, the type label of those historical data missing weather type information could be identified, the integrity and availability of historical data are guaranteed. Classification step-wise forecast approach is put forward after the comparison of different power forecast realization modes. The overall block diagram and specific technology roadmap guiding the realization work of the proposed classification PV power forecast approach are also illustrated in this paper.
     As the basis of PV power forecasting, the accuracy of solar irradiance forecasting is most important for power forecasting. Although artificial neural network (ANN) based solar irradiance forecast models have good performance, there are still some deficiencies exist in the current ANN forecast models, such as high input dimensions, complex model structures, and its output values also hasn't been modified reasonably. For this reason, the ANN based solar irradiance forecast models are improved from three aspects including take full use of available data, minimize information redundancy and control the input dimensions. According to the setup parameters of variable scale modification, weight coefficient and reference value generated from historical data and similarity metrics within weather type, time periodicity and neighboring similarity based two dimensions variable scale modification method for solar irradiance forecast values is presented. Simulation results show that the precision of solar irradiance prediction has been improved visibly by the above measures.
     As the key step of PV power forecasting, output characteristic model of PV power generation has great influence to the accuracy of power forecasting. The implement processes of current characteristic model of PV power generation are very complicated, the parameter optimization is quite difficult, and its applicability is also not very satisfactory. For this reason, the direct effect and indirect effect through other factors to PV power of each meteorological influence factor are analyzed, the running state space is constructed by the selected main meteorological influence factors. The relevant data model reflecting the output characteristic of PV power generation is established using actual operating data. Finally, the power mapping forecast method based on running state weighted distance defined according to the relevance between PV power and influence factors is presented to obtain the forecast value from the relevant data model.
     At last, considering the requirements of power grid dispatching and power plant optimal operation, referring to the relevant standards and technical specifications of PV power forecasting, a PV power forecast system based on the results of this study is developed and put into application. The actual operation achieved good results and verifies the validity of the approaches and models presented in the paper.
引文
[1]中国的能源政策(2012)[R].北京:中华人民共和国国务院新闻办公室,2012
    [2]中国电力行业年度发展报告2012[R].北京:中国电力企业联合会,2012
    [3]中华人民共和国中央人民政府.中华人民共和国国民经济和社会发展第十二 个 五 年 规 划 纲 要[EB/OL]. (2011-03-16). [2012-12-19]. http://www.gov.cn/20111h/content_1 825838.htm
    [4]国家能源局. 太阳能发电发展 “十二五” 规划[EB/OL]. (2012-09-13). [2012-12-19]. http://www.gov.cn/zwgk/2012-09/13 /content 2223540.htm
    [5]科技部. 太阳能发电科技发展“十二五”专项规划[EB/OL]. (2012-04-24). [2012-12-19]. http://www.most.gov.cn/fggw/zfwj/z fwj2012/201204/t20120424_93887.htm
    [6]IEA PVPS Task1. TRENDS IN PHOTOVOLTAIC APPLICATIONS, Survey report of selected IEA countries between 1992 and 2011 [EB/OL]. (2012-09-24). [2012-12-19]. http://www.iea-pvps.org
    [7]IEA Renewable Energy Division. Technology Roadmap:Solar photovoltaic energy2010[EB/OL]. (2010-05-11). [2012-12-19]. http://www.iea.org/publi cations/freepublications/publication/name,3902,en.html
    [8]中国气象局.中国1978-2007年平均直接辐射年总量空间分布[EB/OL]. (2011-08-10). [2012-12-28]. http://cwera.cma.gov.cn/Website/ind ex.php?ChannelID=121&NewsID=1988
    [9]Xu Honghua, Charlie dou, Wang Sicheng, et al. National Survey Report of PV Power Applications in China 2011[EB/OL]. (2012-08-17). [2012-12-19]. http://www.iea-pvps.org/index. php?id=93&no_cache=1&tx_damfrontend_pil%5BshowUid%5D=822&tx_da mfrontend_pi 1%5BbackPid%5D=93
    [10]IEA Photovoltaic Power Systems Programme. IEA PVPS Annual Report 2011 [EB/OL]. (2012-04-19). [2012-12-19]. http://www.iea-pvps.org
    [11]李柯,何凡能.中国陆地太阳能资源开发潜力区域分析[J].地理科学进展,2010,29(9):1049-1054
    [12]M.A. Eltawil, Z. Zhao. Grid-connected photovoltaic power systems:Technical and potential problems--A review[J]. Renewable and Sustainable Energy Reviews,2009,14(1):112-129
    [13]Lorenz E, Hurka J, Heinemann D, et al. Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing,2009,2(1):2-10
    [14]Lorenz E, Heinemann D, Kurz C. Local and regional photovoltaic power prediction for large scale grid integration:Assessment of a new algorithm for snow detection[J]. Progress in Photovoltaics:Research and Applications,2012, 20(6),760-769
    [15]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158
    [16]陈昌松.光伏微网的发电预测与能量管理技术研究[D].武汉:华中科技大学,2011
    [17]Ercan Izgi, Ahmet Oztopal, Bihter Yerlib, et al. Short-mid-term solar power prediction by using artificial neural networks[J]. Solar Energy,2012,86(2): 725-733
    [18]Fei Wang, Zengqiang Mi, Shi Su, et al. A practical model for single-step power prediction of grid-connected PV plant using artificial neural network [C]. Proc of 2011 IEEE PES Innovative Smart Grid Technologies Asia,2011:1-4
    [19]C Chen, S Duan, T Cai, et al. Online 24-h solar power forecasting based on weather type classification using artificial neural network[J]. Solar Energy, 2011,85(11):2856-2870
    [20]Chow S.K.H, E.W.M. Lee, D.H.W. Li. Short-term prediction of photovoltaic energy generation by intelligent approach[J]. Energy and Buildings,2012, 55(0):660-667
    [21]Shi Jie, Lee Wei-Jen, Liu Yongqian, et al. Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines[J]. IEEE Transactions on Industry Applications,2012,48(3): 1064-1069
    [22]L. Alfredo Fernandez-Jimenez, Andres Munoz-Jimenez, Alberto Falces, et al. Short-term power forecasting system for photovoltaic plants[J]. Renewable Energy,2012,44(0):311-317
    [23]Meral M.E, F Dincer. A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems[J]. Renewable and Sustainable Energy Reviews,2011,15(5):2176-2184
    [24]Ayompe L. M, Duffy A, McCormack S. J, et al. Validated real-time energy models for small-scale grid-connected PV-systems[J]. Energy,2010,35(10): 4086-4091
    [25]Mellit A, A.M. Pavan. A 24-h forecast of solar irradiance using artificial neural network:Application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar Energy,2010,84(5):807-821
    [26]Hassanzadeh M, M. Etezadi-Amoli, M.S. Fadali. Practical approach for sub-hourly and hourly prediction of PV power output[C]. Proc of North American Power Symposium (NAPS),2010,1-5
    [27]Cao J, X Lin. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks [J]. Energy Conversion and Management,2008,49(6):1396-1406
    [28]Mellit A, Benghanem M, Kalogirou S A. An adaptive wavelet-network model for forecasting daily total solar-radiation[J]. Applied Energy,2006,83(7): 705-722
    [29]曹双华,曹家枞.太阳逐时总辐射混沌优化神经网络预测模型研究[J].太阳能学报,2006,27(2):164-169
    [30]Chaabene M, M. Ben Ammar. Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems[J]. Renewable Energy,2008,33(7):1435-1443
    [31]Moghaddamnia A, Remesan R, Kashani M. Hassanpour, et al. Comparison of LLR, MLP, Elman, NNARX and ANFIS Models-with a case study in solar radiation estimation[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009,71(8-9):975-982
    [32]王飞,米增强,杨奇逊,等.基于神经网络与关联数据的光伏电站发电功率预测方法[J].太阳能学报,2012,33(7):1171-1177
    [33]Riley D.M, Venayagamoorthy G.K. Characterization and Modeling of a Grid-connected Photovoltaic System using a Recurrent Neural Network[C]. Proc of the 2011 International Joint Conference on Neural Networks, San Jose, California, USA, July 31-August 5 2011,1761-1766
    [34]K Ishaque, Z Salam, H Taheri, et al. Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model[J]. Simulation Modelling Practice and Theory,2011.19(7):1613-1626
    [35]Gordon R. Predicting solar radiation at high resolutions:a comparison of time series forecasts[J]. Solar Energy,2009,83(3):342-349
    [36]P. Bacher, H. Madsen, H. A. Nielsen. Online short-term solar power forecasting[J]. Solar Energy,2009,83(10):1772-1783
    [37]Dazhi Yang, Panid Jirutitijaroen, Wilfred M.Walsh. Hourly solar irradiance time series forecasting using cloud cover index[J]. Solar Energy,2012,86(12): 3531-3543
    [38]L Martin, L.F Zarzalejoa, Jesus Polo, et al. Prediction of global solar irradiance based on time series analysis:Application to solar thermal power plants energy production planning[J]. Solar Energy,2010,84(10):1772-1781
    [39]Mellit A, Kalogirou S. A, Shaari S, et al. Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system[J]. Renewable Energy,2008, 33(7):1570-1590
    [40]Cao J, X Lin. Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique[J]. Engineering Applications of Artificial Intelligence,2008,21(8):1255-1263
    [41]Cao S, Cao J. Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis[J]. Applied Thermal Engineering,2005, 25(2-3):161-172
    [42]Cao J, Cao S.H. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis [J]. Energy,2006,31(15): 3435-3445
    [43]Mellit A. Artificial intelligence technique for modelling and forecasting of solar radiation data:a review[J]. International Journal of Artificial Intelligence and Soft Computing,2008,1(1):52-76
    [44]Mellit A, S.A. Kalogirou. Artificial intelligence techniques for photovoltaic applications:A review[J]. Progress in Energy and Combustion Science,2008, 34(5):574-632
    [45]Fei Wang, Zengqiang Mi, Shi Su, et al. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters[J]. Energies,2012,5(5):1355-1370
    [46]Hammer A, Heinemann D, Lorenz E, et al. Short-term forecasting of solar radiation:a statistical approach using satellite data[J]. Solar Energy,1999, 67(1-3):139-150
    [47]Lorenz E, Hammer A, Heinemann D. Short-term forecasting of solar radiation based on satellite data[C]. Eurosun (ISES Europe Solar Congress) 2004, Freiburg, Germany,2004
    [48]Lu Ning, Qin Jun, Yang Kun, et al. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data[J]. Energy,2011, 36(5):3179-3188
    [49]Nova J.C, Cunha J.B, de Moura Oliveira P.B. Solar irradiation forecast model using time series analysis and sky images [C]. Proc of the 5th Conference of the European Federation for Information Technology in Agriculture, Food and Environment, Vila Real, Portugal,25-28 July,2005
    [50]C. W Chow, B Urquhart, M Lave, et al. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed[J]. Solar Energy,2011, 85(11):2881-2893
    [51]Marquez R, C.F.M. Coimbra. Intra-hour DNI forecasting based on cloud tracking image analysis [J]. Solar Energy,2013,91:327-336
    [52]Marquez R, Coimbra C.F.M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database[J]. Solar Energy,2011,85(5):746-756
    [53]Ruiz-Arias Jose A, Pozo-Vazquez David, Lara-Fanego Vicente, et al. A High-Resolution Topographic Correction Method for Clear-Sky Solar Irradiance Derived with a Numerical Weather Prediction Model[J]. Journal of Applied Meteorology and Climatology,2011,50(12):2460-2472
    [54]R.Zamora, E.Dutton, M.Trainer, et al. The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction[J]. Monthly Weather Review,2005,133(4):783-792
    [55]Breitkreuz. H, Schroedter-Homscheidt. M, Holzer-Popp. T, et al. Short-range direct and diffuse irradiance forecasts for solar energy applications based on aerosol chemical transport and numerical weather modeling[J]. Journal of Applied Meteorology and Climatology,2009,48(9):1766-1779
    [56]栗然,李广敏.基于支持向量机回归的光伏发电出力预测[J].中国电力,2008,41(2): 74-78
    [57]丁明,王磊,毕锐.基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J].电力系统保护与控制,2012,40(11):93-99,148
    [58]傅美平,马红伟,毛建容.基于相似日和最小二乘支持向量机的光伏发电 短期预测[J].电力系统保护与控制,2012,40(16):65-69
    [59]葛鹏江.大规模集中接入的光伏电站功率预测[D].兰州:兰州理工大学,2012
    [60]王晓兰,葛鹏江.基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J].电力自动化设备,2013,33(1):100-103,109
    [61]周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报,2007,47(7):1109-1112,1117
    [62]田琦,赵争鸣,邓夷,等.光伏电池反向模型仿真分析及实验研究[J].中国电机工程学报,2011,31(23):121-128
    [63]King D.L, Boyson W.E, Kratochvil J.A. Photovoltaic array performance model, SAND2004-3535[R]. US Department of Commerce,2004
    [64]De Soto W, Klein S.A, Beckman W.A. Improvement and validation of a model for photovoltaic array performance [J]. Solar Energy,2006,80(1):78-88
    [65]翟载腾.任意条件下光伏输出阵列的输出性能预测[D].合肥:中国科技大学,2008
    [66]King D, Gonzalez S, Galbraith G, et al. Performance Model for Grid-Connected Photovoltaic Inverters, SAND2007-5036[R]. Sandia National Laboratories,2007
    [67]吴理博,赵争鸣,刘建政.单级式光伏并网逆变系统中的最大功率跟踪算法稳定性研究[J].中国电机工程学报,2006,26(6):73-77
    [68]王飞,余世杰,苏建徽.太阳能光伏并网发电系统研究[J].电工技术学报,2005,20(5):72-74,91
    [69]李乃永,梁军,赵义术.并网光伏电站的动态建模与稳定性研究[J].中国电机工程学报,2011,31(10):12-18
    [70]李晶,许洪华,赵海翔,等.并网光伏电站动态建模及仿真分析[J].电力系统自动化,2008,32(24):83-87
    [71]S.-K. Kim, J.H. Jeon, C.H. Cho, et al. Modeling and simulation of a grid-connected PV generation system for electromagnetic transient analysis[J]. Solar Energy,2009,83(5):664-678
    [72]Riley D.M, Venayagamoorthy G.K. Comparison of a recurrent neural network PV system model with a traditional component-based PV system model[C]. Proc of 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, June 2011
    [73]米增强,王飞,刘兴杰,等.并网型光伏电站发电功率预测方法[P].中国 专利:201010033376.4,2010-01-18
    [74]T.Mitche著,曾华军,张银奎,等译.机器学习[M].北京:机械工业出版社,2003
    [75]王钰,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006
    [76]Simon Haykin著,申富饶,徐烨,郑俊,等译.神经网络与机器学习[M].北京:机械工业出版社,2011
    [77]R.O. Duda, P.E.Hart, D.GStork著,李宏东,姚天翔,等译.模式分类(第二版)[M].北京:机械工业出版社,2003
    [78]Sergios Theodoridis, Konstantinos Koutroumbas著,李晶皎,王爱侠,王骄译.模式识别(第四版)[M].北京:电子工业出版社,2010
    [79]邓乃杨,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2005
    [80]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    [81]Vladimir N. Vapnik著,许建华,张学工译.统计学习理论[M].北京:电子工业出版社,2009
    [82]汪延华.支持向量机模型选择研究[D].北京:北京交通大学,2009
    [83]曹葵康.支持向量机加速方法及其应用研究[D].杭州:浙江大学,2010
    [84]Vapnik著,张学工译.统计学习的本质[M].北京:清华大学出版社,1995
    [85]Schlkopf B, Smola A.J, Williamson R.C, et al. New Support Vector Algorithms[J]. Neural Computation,2000,12(5):1207-1245
    [86]Chang C.C, Lin C.J. Training v-Support Vector Classifiers:Theory and Algorithms[J]. Neural Computation,2001,13(9):2119-2147
    [87]N. Cristianini, J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M]. Cambridge:Cambridge University Press,2000
    [88]王磊.支持向量机学习算法的若干问题研究[D].成都:电子科技大学,2007
    [89]梁锦锦.支持向量机和支持向量域描述的若干问题研究[D].西安:西安电子科技大学,2009
    [90]S. Abe. Support Vector Machines for Pattern Classification[M]. London: Springer-Verlag,2010
    [91]J. A. K Suykens, J Vandewalle. Multiclass least squares support vector machines[C]. Proc of International Joint Conference on Neural Networks (IJCNN 1999), Washington DC, USA,1999,2:900-903
    [92]J. A. K Suykens, T. Van Gestel, J. De Brabanter, et al. Least Squares Support Vector Machines[M]. Singapore:World Scientific Publishing,2002
    [93]Fritz Kasten, Gerhard Czeplak. Solar and terrestrial radiation dependent on the amount and type of cloud[J]. Solar Energy,1980,24(2):177-189
    [94]Stefan Nann, Carol Riordan. Solar spectral irradiance under clear and cloudy skies:measurements and a semiempirical model [J]. Journal of Applied Meteorology,1991,30(4):447-462
    [95]D.G Kaskaoutis, H.D Kambezidis, C.P Jacovides, et al. Modification of solar radiation components under different atmospheric conditions in the Greater Athens Area, Greece[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006,68(10):1043-1052
    [96]K.V.S Badarinath, Shailesh Kumar Kharol, D.G Kaskaoutis, et al. Influence of atmospheric aerosols on solar spectral irradiance in an urban area[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2007,69(4-5):589-599
    [97]Ishii Tetsuyuki, Otani Kenji, Takashima Takumi, et al. Solar spectral influence on the performance of photovoltaic (PV) modules under fine weather and cloudy weather conditions[J]. Progress in Photovoltaics:Research and Applications, article first published online:8 Nov 2011
    [98]Zanesco I, Krenzinger A. The effects of atmospheric parameters on the global solar irradiance and on the current of a silicon solar cell[J]. Progress in Photovoltaics:Research and Applications,1993,1(3):169-179
    [99]Duffie J.A, Beckman W.A. Solar engineering of thermal processes,2nd ed[M]. New York:JohnWiley & Sons Inc,1991:40-44
    [100]马金玉.中国地面太阳辐射长期变化特征及短期预报方法研究[D].南京:南京信息工程大学,2011
    [101]GB/T22164-2008,公共气象服务—天气图形符号[S].北京:中国标准出版社,2008
    [102]Fei Wang, Zengqiang Mi, Bo Yu, et al. Micro-scale weather condition recognition based ultra-short-term power forecast of solar photovoltaic power plant[C]. Proc of 11th International Conference on Sustainable Energy technologies, Vancouver Canada,2-5 September,2012
    [103]Kohavi Ron. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]. Proc of the Fourteenth International Joint Conference on Artificial Intelligence, San Mateo, CA,1995,2(12):1137-1143
    [104]Warren S. McCulloch, Walter Pitts. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943,5(4):115-133
    [105]Rosenblatt F. The perceptron:a perceiving and recognizing automaton[R]. Project Para Report No.85-460-1, Cornell Aeronautical Laboratory (CAL), Jan.1957
    [106]Widrow B, Hoff M E. Adaptive switching circuits[C]. IRE WESCON Convention Record, New York, August 1960,4:96-104
    [107]Grossberg S. Adaptive pattern classification and universal recoiling. I:Parallel development and coding of neural feature detectors[J]. Biology Cybernetics, 1976,23:121-134
    [108]Grossberg S. Adaptive pattern classification and universal recoiling. II: Feedback, expectation, olfaction, and illusion[J]. Biology Cybernetics,1976, 23:187-202.
    [109]Anderson J A. A simple neural netwvork generating an interactive memory[J]. Mathematical Biosciences,1972,14(3-4):197-200
    [110]Fukushima K. Cognitron:a self-organizing multi-layered neural network[J]. Biology Cybernetics,1975,20(3):121-136
    [111]Kohonen T. Self-organization and associative memory[M]. Berlin: Springer-Verlag,1984
    [112]Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America,1982,79(8):2445-2558
    [113]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81(10): 3088-3092
    [114]Mcclelland J, Rumelhart D. Explorations in parallel distributed processing[M]. Cambridge:MIT Press,1988:1-3
    [115]Hinton G H, Sejnowslii T J, Aclaey D H. Boltzmann machine:constraint satisfaction networks that learn[J]. Cognitive Science,1985,9(1):147-169
    [116]Powell M.J.D. Algorithms for approximation:Radial basis functions for multivariate interpolation--a review [M]. New York:Clarendon Press,1987: 143-167
    [117]Albus J.S. A new approach to manipulator control:The cerebellar modelarticulation controller (CMAC) [J]. Journal of Dynamic Systems, Measurement and Control,1975,97(3):220-227
    [118]何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44
    [119]韩力群.人工神经网络理论、设计及应用—人工神经细胞、人工神经网络和人工神经系统[M].北京:化学工业出版社,2002
    [120]焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996
    [121]米增强,刘兴杰,张艳青,等.基于混沌分析和神经网络的风速直接多步预测[J].太阳能学报,2011,32(6):901-906
    [122]电力行业标准.光伏发电功率预测系统功能规范(征求意见稿)[EB/OL].(2012-05-03).[2012-06-01].http://dls.cec.org.cn/yijianzhengqiu/2012-05-03/83885.html.
    [123]能源行业标准.光伏发电站功率预测技术要求(征求意见稿)[EB/OL].(2012-05-03).[2012-06-01].http://dls.cec.org.cn/yijianzhengqiu/2012-05-03/83 878.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700