La_3MgNi_(14)电子结构及(110)面吸氢的第一性的理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型La-Mg-Ni系储氢合金具有优异的储氢特性,较高的放电容量使其成为改善负极充放电容量材料的希望,本课题对La-Mg-Ni系储氢合金的一个主要相La_3MgNi_(14)进行了系统的研究,为更好的改善La-Mg-Ni系储氢合金的储氢特性、对其储氢进行微观机理的研究提供了帮助。
     本课题利用基于第一性原理平面波赝势的计算法的CASTEP软件模块,从电子结构的研究入手,首先根据La占据4f位置的不同,建立了不同的结构模型,对各个结构模型进行结构的优化,并对优化后的模型计算了能量以及生产热,从而得到了体系的最稳定结构。后对稳定结构的性质如能带结构、态密度和布居分析等加以研究,探讨Ce_2Ni7型La_3MgNi_(14)储氢合金的微观电子结构,结果表明:Ce_2Ni7型La_3MgNi_(14)的结构更趋向于形成La分散的S1结构;对体系的能带结构和态密度研究表明,体系具有典型的金属性,在结合中以金属键为主;体系在费米能级附近的能态主要由Ni的_3d轨道贡献。La原子的贡献主要在-16eV的5p轨道及-_3_2eV的6s轨道。体系的最低能态位于费米面以下-4_2eV,由Mg原子的_2p轨道提供;布居分析为原子间的成键提供了一个客观判据。由键布居及原子布居分析表明,La_3MgNi_(14)中Ni-La键为离子键,Mg-Ni以共价键为主兼有离子键,Ni-Ni键为共价键。四种结构中Ni-Ni键均为共价键,Ni-La键均为离子键。当结构为中心对称结构(S_2、C_2结构)时Mg-Ni键既有共价键也有离子键,由于离子键的存在使结构的稳定性降低。当结构为轴对称结构(S1、C1结构)时Mg-Ni键只有共价键存在,从而使结构的稳定性高于中心对称结构,且S1结构的共价键平均键长_2.6767小于C1结构的_2.69_34,从而使S1结构更加的稳定。
     研究氢在金属表面的吸附过程能够为研究氢在金属表面吸附机理提供帮助。本课题利用基于第一性原理平面波赝势的计算法的CASTEP软件模块,对氢原子在La_3MgNi_(14)晶体的(110)面吸附进行了研究。研究发现: La_3MgNi_(14)晶体的(110)面态密度与体相态密度的在大体上较为相似,但(110)面的态密度带隙宽度均有所减小,导带在费米能级以上部分有向低能级漂移的倾向;表面处的活性也要高于体相的活性;氢原子在各吸附位置上的稳定距离在_3~_3.5之间;当氢原子在La_3MgNi_((14))晶体的(110)面吸附时,氢原子吸附在La-Ni长桥位时的结构最为稳定,Mg-Ni长桥位次之,Mg-La短桥位的稳定性最低。
The new La-Mg-Ni system hydrogen storage alloy has excellent hydrogenstorage properties, It is hopeful to improve the cathode charge and dischargecapacity with its higher capacity. In this paper, a major phase La_3MgNi_(14)of theLa-Mg-Ni hydrogen storage alloy have been investigated, that provide help toimprove hydrogen storage properties of La-Mg-Ni hydrogen storage alloy andresearch hydrogen storage microscopic mechanism.
     In this paper, the CASTEP module which first-principles plane wavepseudo-potential method based on density functional theory was used, it wasstudied from electronic structure, Firstly, build different structures according toLa occupy the4f position, optimize the structures and calculate energy andformation heat, so as to get the most stable structure of the system. After that,investigate band structure, density of states and population of the stable structureas well as the microscopic electronic structure of Ce_2Ni7-type La_3MgNi_(14)hydrogen storage alloy. The results show that: Ce_2Ni7-type La_3MgNi_(14)tends tobe S1structure, in which lanthanums are scattered to each other; Band structureand density of states shows that the system have typical metallic, in combinationwith metallic bonds. The energy state of the system near Fermi level was mainlycontributed by Ni_3d orbital. The contribution of the La atoms provided by-16eV5p orbital and-_3_2eV6s orbital. The lowest energy state of the system wasobserved at the-4_2ev below the Fermi level, which contributed by Mg_2p orbital.Population analysis provides an objective criterion for the bonding between atoms. The bond population and atomic population analysis showed that: InLa_3MgNi_(14)system, The bond of Ni-La is ionic bond, Mg-Ni dominated both theionic bond, covalent bond. Ni-Ni is covalent bond. In all of the four structuresNi-Ni is covalent bond, Ni-La is ionic bond. When the structure is centrosymmetric structure (S_2, C_2), Mg-Ni bond is both covalent key and ionic bond,the stability of the structure was reduced because of the presence of ionic bonds.When the structure is an axisymmetrical structure (S1, C1), Mg-Ni bond is onlycovalent bond exists, so the stability of the structure higher than thecentrosymmetric structure, S1structure with the average bond length of covalentbond average_2.6767is less than the C1structure of_2.69_34, so that the S1structure is more stable.
     Research on metal surfaces of the hydrogen adsorption process is to be ableto study the hydrogen adsorption on metal surfaces. In this paper, the CASTEPmodule which first-principles plane wave pseudo-potential method based ondensity functional theory was used, the hydrogen atom in La_3MgNi_(14) Crystal(110) surface adsorption was studied. The results show that: The DOS(density ofstates) of La_3MgNi_(14)(110) surface is similar with bulk DOS, however, theband gap width of (110) surface DOS has reduced, the conduction band aboveFermi level have a tendency to drift to the low energy level; Surface activity isalso higher than the activity of the bulk; The stability of distance of hydrogenatom adsorbs at various position between_3to_3.5; when the hydrogen atomsadsorbed in the crystal La_3MgNi_(14)(110) surface, the most stable structure is hydrogen atoms adsorbed on the La-Ni Longbridge, with the Mg-Ni long bridgesite next and Mg-La short bridge site minimum.
引文
[1]胡子龙.贮氢材料.北京:化学工业出版社,2002,9-10.
    [2]肖建民.论氢能源和氢能源系统.世界科技研究与发展,1997,19(1):82-86.
    [3]大角泰章.金属氢化物的性质与应用.吴永宽,苗艳秋译.北京:化学工业出版,1990.13.
    [4] Ye Y, Ahn C C, Witham C, et al. Appl. Phys. Lett.,1999,74(16):2307-2309.
    [5]朱敏.功能材料[M].北京:机械工业出版社,2002.
    [6]马如璋,蒋民华,徐祖雄.功能材料学概论[M].北京:冶金工业出版社,1999.
    [7]胡子龙.贮氢材料[M]北京:化学工业出版社,2002.
    [8]马建新,王新华,葛红卫,等.FeTi系贮氢合金的研究进展,材料科学与工程,1999;17(l):65-69.
    [9] Pebler A, Gulbransen E A. Electrochem Technol,1966;4:211~215.
    [10] Pebler A, Gulbransen E A. Trans Metall Soc AIME,1967;239:1593.
    [11] Gamo T, Moriwaki Y et al. Int J Hydrogen Energy[J],1985;10:39.
    [12] Gamo T, Moriwaki Y et al. Int J Hydrogen Energy[J],1985;10:39.
    [13]钱久信,陈健,叶于浦.金属学报,1987,23(6):A543.
    [14] Kohno T,Yoshida H,Kawashima F,et al.Hydrogen storage properties of newternary system alloys: La2MgNi9, La5Mg2Ni23. La3MgNi14[J]. J AlloysCompounds,2000,311: L5
    [15] J.C.Benjami. Metallurgical Transactions,1970,10:2943.
    [16] Hiroki Sakaguchi,et al. Chemistry Letter,1995,7:561.
    [17]曹茂盛等.功能材料学概论[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [18]郑定山.LaNi5储氢合金电子结构及其表面吸氢机理的研究[D].广西:广西大学,2007.
    [19]张健.镁及其合金氢化物吸放氢性能及电子机制研究[D].湖南:湖南大学,2009.
    [20]黄丹. Mg基贮氢合金电子结构及贮氢性能的研究[D].广西:广西大学,2006.
    [21]吴广新.H在Mg(0001)表面吸附、解离和扩散的第一性原理研究[J].物理化学学报,2008,24(1):55~60.
    [22]黄存可.Mg2Ni基储氢合金的掺杂和复合的实验及电子结构理论研究[D].广西:广西大学,2006.
    [23]林玉芳,董小平,赵海花,郭佩佩,郭世海,赵栋梁. La2Ni7和LaMgNi7储氢合金电子结构的研究[J].功能材料.2011,2(42):366~368.
    [24]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002,57-68.
    [25]周世勋.量子力学教程.北京:高等教育出版社,1992,21-32.
    [26] Born M,Oppenheimer J R.Zur Quantentheorie der Molekeln. AnnPhys,1927,84:457.
    [27] Born M,Huang K.Dynamical Theory of Crystal Lattices Oxford: OxfordUniversity Press,1954,201-210.
    [28] Hatree D R.The wave mechanics of an atom with a non-Coulomb centralfield.Proc Comb Pit Soc,1928,24(5):111-113.
    [29] Fock V. Noherungs methode zur Losung des quantenme chanischen mehrkorper-problems. Z Phys,1930,61:126-148.
    [30] Fock V. Noherungsmethode zur Losung des quantenmechanischen mehrkorper-problems. Z Phys,1930,62(6):795-805.
    [31] Fock V,Petrashen M J.On the numerical solution of generalised equations of theself-consistent fields.Phys Z,Sowjetunion,1934,6(3):368-414.
    [32] Hohenberg P. Kohn W Inhomogeneous electron gas.Phys Rev B,1964,136:864~871.
    [33] W. Kohn,L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects. Phys. Rev.140, A1133–A1138(1965).
    [34] CEPERLEY D M;ALDER B J Ground state of the electron gas by a stochasticmethod,Phys. Rev. Lett.,1980,45:566-569.
    [35] Perdew, J.P.&Zunger, A. Self-interaction correction to density-functionalapproximations for many-electron systems. Phys. Rev. B23,5048–5079(1981).
    [36] Perdew, J.P.; Burke, K.; Ernzerhof, M."Generalized Gradient ApproximationMade Simple", Phys. Rev. Lett.,1996,77,3865-3868.
    [37] Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics withindensity-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys.Rev. B,1999,59:7413-7421.
    [38] Perdew,Chevary J P.Atoms,molecules,solids,and surfaces:Applications of thegeneralized gradient approximation for exchange and correlation[J]. Phys. Rev.,1992,B46:6671.
    [39] D.R.Hamann,M.Schluter,C.Chiang.Norm-Conserving Pseudopetentials. Phys.Rev. Lett.,1979,43(12):1494-1497.
    [40] D.Vanderbilt.Soft Self-Consistent Pseudopetentials in a Generalized EigenvalueFormolism.Phys.Rev.B,1990,43(11):7892-7895.
    [41]徐光宪.量子化学[M].北京:科学出版社,2009.
    [42] R.S.Mulliken, Mulliken,J.Chem.Phys.,23,1833(1955).
    [43]王丽平.内包金属富勒烯结构与性能的密度泛函研究[D].太原:太原理工大学材料科学与工程学院,2006,18-25.
    [44]于海林.单键立方相氮的第一性原理研究[D].湖南:湘潭大学,2006.
    [45] Lindan P L D,Segall M D,Probert M J,et al.First-principles simulation: ideas,illustrations and the CASTEP code. J Phys: Condens Matter,2002,14(11):2717-2744.
    [46] Sakai T, Uehara I, Ishikawa H.[J].Alloys and Comp.,1999,293-295:762-769.
    [47] Li Jinghong. Advanced Battery Materials [M]. Beijing: Chemical Industry Press,2004:120.
    [48] Osterreicher H,Bittner H.[J]. J Less-Common Met.1980,73:339.
    [49] Kohno T,Yoshida H,Kawashima F,et al.Hydrogen storage properties of newternary system alloys:La2MgNi9,La5Mg2Ni23.La3Mg2Ni14[J].J Alloys Compounds,2000,311:L5.
    [50] Akiba E,Hayakawa H, Kohno T..[J].Journal of Alloys and Compounds,2006,408-412:280-283.
    [51] Zhang F L,Luo Y C,Chen J P,et al. La-Mg-Ni ternary hydrogen storage alloyswith Ce2Ni7-type and Gd2Co7-type structure as negative electrodes for Ni/MHbatteries[J]. J Alloys and Comp,2007,430(1-2):302-307.
    [52]杨丽颖,董小平,李小亭,等.退火温度对La3MgNi14电极合金电化学行为的影响[J].材料热处理学报,2011,32(4):7-12.
    [53]张怡.LaNi5系贮氢合金的储氢性能及电子结构研究[D].广西:广西大学,2009
    [54] Mahdi Sanati, R. C. Albers, F. J. Pinski. Electronic and crystal structure of NiTimartensite.[J].Physical review B volume58,number20,15November1998-II.
    [55] Changwei Gong, Yan Li, Yinong Wang, Dazhi Yang. Ab initio study forelectronic and crystal structure of NiTi R-phase.[J].Modelling Simul. Mater. Sci. Eng.14(2006)33–39.
    [56] Herper H C, Hoffmann E, Entel P.[J].Phys Rev,1999,B60:3839.
    [57] Denys, R.V, Riabov, B, Yartys, V.A, Delaplane, R.G, Sato, M. Hydrogenstorage properties and structure of La1-xMgx(Ni1-yMny)3intermetallics and theirhydrides.[J]. Journal of Alloys Compd.(2007),446,166-172.
    [58] IMAI Y,MUKAIDA M,TSUNODA T.Comparison of density of states oftransition metal disilicides and their related compounds systematically calculated by afirst-principle pseudo potential method using plane-wave basis[J]. Intermetallies,2000,8(4):381-390.
    [59] Wang J, Wang G, Zhao J. Density-functional study of Aun(n=2-20) clusters:Lowest-energy structures and electronic properties.[J]. Phys Rev B,2002,66:035418-035423.
    [60]张跃,谷景华,尚家香,马岳等。计算材料学基础[M].北京:北京航空航天大学出版社.
    [61]胡子龙.贮氢材料.北京:化学工业出版社,2002,49-50.
    [62] Janot, R.; Aymard, L.; Rougier, A.; Nazri, G. A. J. Phys. Chem.Solids,2004,65:529
    [63] Janot, R.; Darok, X.; Rougier, A.; Aymard, L.; Nazri, G. A.J. Alloy. Compd.,2005,404:293.
    [64]郑定山.LaNi5储氢合金电子结构及其表面吸氢机理的研究[D].广西:广西大学,2007.
    [65]黎光旭,陈晓伟,白加栋,蓝志强,郭进.氢在Mg2Ni(110)面的吸附及扩散[J].物理化学学报,2010,26(5):1448-1456.
    [66]胡子龙.贮氢材料.北京:化学工业出版社,2002,172-173.
    [67]陈文斌,陶向明,赵新新,等.氢原子在Ti(0001)表面吸附的密度泛函理论研究[J].物理化学学报,2006,22(4):445―450.
    [68]郑定山.LaNi5储氢合金电子结构及其表面吸氢机理的研究[D].广西:广西大学,2007.
    [69] IMAI Y,MUKAIDA M,TSUNODA T.Comparison of density of states oftransition metal disilicides and their related compounds systematically calculated by afirst-principle pseudo potential method using plane-wave basis [J]. Intermetallies,2000,8(4):381-390.
    [70] Wang J, Wang G, Zhao J. Density-functional study of Aun(n=2-20) clusters:Lowest-energy structures and electronic properties.[J]. Phys Rev B,2002,66:035418-035423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700