六铝酸盐基发光材料的合成及其发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation of Hexaaluminate Phosphors and Their Luminescence Properties
  • 作者:李峰
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2007
  • 导师:王育华
  • 学科代码:080501
  • 学位授予单位:兰州大学
  • 论文提交日期:2007-04-01
摘要
六铝酸盐基发光材料由于其在等离子显示器(plasma display panels,PDPs)与无汞荧光灯等显示照明器件上的应用而引起了普遍关注,其中BaMgAl_(12)O_(19):Mn~(2+)与BaMgAl_(10)O_(17):Eu~(2+)(BAM)已作为商用材料而得到了广泛应用。然而这两种发光材料的性能仍未能满足PDP与无汞荧光灯的需要,主要表现为:BaMgAl_(12)O_(19):Mn~(2+)的发光效率与余辉时间有待改进,而BaMgAl_(10)O_(17):Eu~(2+)的稳定性较差。针对PDP与无汞荧光灯等显示照明器件的发展需要,本论文对两种商用真空紫外发光材料BaMgAl_(12)O_(19):Mn~(2+)与BaMgAl_(10)O_(17):Eu~(2+)展开了一系列的研究;同时还初步考察了Dy~(3+)激活的BaMgAl_(11)O_(19)的真空紫外—紫外发光性能,探讨Dy~(3+)激活发光材料在无汞荧光灯、LED等照明器件上的潜在应用。通过上述研究得到的一系列研究成果对于了解六铝酸盐基发光材料的发光机理、推动其在PDP与无汞灯上的应用具有重要的理论意义及应用价值。
     第一,在真空紫外激发下,基质BaMgAl_(12)O_(19)可有效地将能量传递给发光中心Mn~(2+)。本论文通过研究Ba_(0.75)Al_(11)O_(17.25)-x BaMgAl_(10)O_(17):0.1 Eu~(2+)的真空紫外激发光谱,对尖晶石层中AlO_4~(5-)、AlO_6~(9-)与MgO_4~(6-)等各基团的光谱吸收位置进行了归属,这为研究六铝酸盐基发光材料在真空紫外激发下的发光机理、改善BaMgAl_(12)O_(19):Mn~(2+)与其他商用六铝酸盐基发光材料的真空紫外发光性能打下了基础。
     第二,对于PDP等显示器件而言,BaMgAl_(12)O_(19):Mn~(2+)的余辉时间仍然偏长,这是由于Mn~(2+)的~4T_1→~6A_1跃迁发射是宇称与自旋双重禁戒的跃迁。本论文通过研究Mn~(2+)掺杂浓度对Ba_(0.75)Al_(11-x)O_(17.25):x Mn~(2+)的色度、发光强度、余辉时间等发光特性的影响后,发现适当增加Mn~(2+)的掺杂浓度可以在保证良好的色纯度和亮度的基础上减小余辉时间;通过使用EPR、穆斯堡尔谱等测试手段,首次证明了在BaMgAl_(12)O_(19):Mn~(2+)中存在Mn~(2+)-Mn~(2+)对中心,正是该中心含量的变化导致了余辉时间、发射峰位等发光特性的变化,并且该中心的形成方式是通过Mn~(2+)占据Ba_(0.75)Al_(11)O_(17.25)中的Al(2)格位实现的。
     第三,本论文考察了ns~2离子与Zn~(2+)掺杂对BaMgAl_(12)O_(19):Mn~(2+)发光特性的影响。研究结果表明:ns~2离子中的Bi~(3+)与Sb~(3+),以及Zn~(2+)均可有效的提高BaMgAl_(12)O_(19):Mn~(2+)的发光强度,其中以Sb~(3+)的效果最佳;而这三种离子的掺杂对于余辉特性均无明显影响。
     第四,本论文采用反相微乳法与沉淀法相结合制备了Mn~(2+)激活的六铝酸钡纳米发光材料,并研究了样品的真空紫外发光特性。研究结果表明:不同的反相微乳体系与溶液/油相比对样品的形貌有决定性影响,颗粒形貌主要有球状、棒状等;球状Ba_(0.999)Al_(11.9)O_(19):0.1 Mn~(2+),0.001 Eu~(2+)的发光强度、亮度、色度等性能均优于块体材料BaAl_(11.9)O_(19):0.1 Mn~(2+);真空紫外激发下,球状纳米Ba_(0.75)Al_(11-x)O_(17.25):xMn~(2+)的猝灭浓度高于块体材料;颗粒形貌对样品发光性能有重要影响。
     第五,采用溶胶—凝胶法对BAM颗粒进行了MgF_2与CaF_2的包覆以提高其热稳定性。结果表明包覆后的BAM的抗热劣化能力均得到了明显的改善,其中以MgF_2包覆的效果最好。
     第六,对Dy~(3+)激活的六铝酸盐材料LaMgAl_(11)O_(19)的发光特性以及Bi~(3+)、Sb~(3+)与Zn~(2+)掺杂对Dy~(3+)发光的影响进行了初步的探索。结果表明:在真空紫外—紫外区间内多个应用波长(147nm、254nm、365nm)的激励下,Dy~(3+)在LaMgAl_(11)O_(19)中的发射的色坐标均位于CIE 1931色品图中的白光区;在上述三个应用波长的激发下,Bi~(3+)与Zn~(2+)均可敏化Dy~(3+)的~4F_(9/2)-~6H_(15/2)与~4F_(9/2)-~6H_(13/2)跃迁发射,其中以Bi~(3+)的敏化效果最为显著,并且随着共掺杂离子Bi~(3+)或Zn~(2+)含量的增加,样品的色坐标向黄光区移动,色温也随之增加。
Phosphors based on hexaaluminates have attracted a great deal of attention because of their application in plasma display panels (PDPs) and Hg-free lamps, among which BaAl_(12)O_(19):Mn~(2+) and BaMgAl_(10)O_(17):Eu~(2+) (BAM) have been widely used as commercial phosphors. However, the former's luminescence efficiency, decay time and the latter's stability still need to be improved to fulfill the demands of the development of PDPs and Hg-free lamps. Accordingly, these two phosphors were studied systematically in this thesis. Furthermore, the luminescence properties of Dy~(3+) activated LaMgAl_(11)O_(19) under vacuum ultraviolet (VUV) and UV excitation were also preliminarily investigated for the potential application in Hg-free lamps and LEDs of Dy~(3+) activated phosphors. The results derived from the above research would contribute greatly to the understanding of the luminescence mechanism of hexaaluminate phosphors and advance their application in PDPs and Hg-free lamps.
     1. The host of BaAl_(12)O_(19) can efficiently transfer the energy to the luminescent center of Mn~(2+) under VUV excitation. By analyzing the VUV excitation spectra of Bao.75AlnO17.25-x BaMgAl_(10)O_(17):0.1 Mn~(2+) solid solution, the optical absorption positions of the groups of AlO_4~(5-), AlO_6~(9-) and MgO_4~(6-) in the spinel blocks were assigned, which would lay a solid foundation for the study of the luminescence mechanism of BaAl_(12)O_(19):Mn~(2+) and other commercial hexaaluminate phosphors and the improvement of their VUV luminescence properties.
     2. Because of the doubly spin and parity-forbidden ~4T_1→~6A_1 transition of Mn~(2+), the decay time of BaAl_(12)O_(19):Mn~(2+) is still somewhat too long for its application in PDPs. In this thesis, the influences of the concentration of Mn~(2+) on the luminescence properties of Ba_(0.75)Al_(11-x)O_(17.25):x Mn~(2+) were studied. The results indicates that increasing the concentration of Mn~(2+) properly can decrease the decay time to some extent avoiding the deterioration of color purity and brightness. According to the results of EPR and Mossbauer Spectroscopy, it is considered that Mn~(2+) paired centers are formed by Mn~(2+) occupying Al(2) sites in Ba_(0.75)Al_(11)O_(17.25) and thus induce the variation of luminescence characteristics.
     3. The influences of the co-doping of ns~2 ions and Zn~(2+) on the luminescence characteristics of BaAl_(12)O_(19):Mn~(2+)were evaluated in this thesis. The results indicates that the co-doping of Bi~(3+), Sb~(3+) and Zn~(2+) can effectively enhance the luminescence intensity of BaAl_(12)O_(19):Mn~(2+), among which the co-doping of Sb~(3+) is the most effective. The co-doping of these three kinds of ions didn't show obvious effects on the decay behavior of BaAl_(12)O_(19):Mn~(2+).
     4. Mn~(2+) activated barium hexaaluminate nanophosphors with spherical and rod-like morphologies were successfully synthesized by a reverse microemulsion method combined with a precipitation process, and their luminescence properties under VUV excitation were investigated for the first time. The luminescence intensity, brightness and color purity of Ba_(0.999)Al_(11.9)O_(19):0.1 Mn~(2+), 0.001 Eu~(2+) spherical nanophosphor are better than those of bulk BaAl_(11.9)O_(19):0.1 Mn~(2+); the critical Mn~(2+) concentration ofBa_(0.75)Al_(11-x)O_(17.25): Mn~(2+) spherical nanophosphor is higher than bulk counterpart; the particle morphology has great impact on the luminescence properties of Mn~(2+) activated barium hexaaluminate nanophosphors.
     5. BAM particles were successfully coated with MgF_2 and CaF_2-coatings by a sol-gel process. The results indicate that the thermal stability of coated BAM is obviously improved and the effect of MgF_2-coating is better than that of CaF_2.
     6. The luminescence properties of LaMgAl_(11)O_(19):Dy~(3+) co-doped with Bi~(3+), Sb~(3+)and Zn~(2+) in UV-VUV region were preliminarily studied for the first time. The results exhibit that Dy~(3+) activated LaMgAl_(11)O_(19) shows white-light emission under a variety of wavelength excitation (147 nm, 254 nm and 365 nm). The co-doping of Bi~(3+) and Zn~(2+) can both sensitize the emission of Dy~(3+) under the above three excitation sources with the movement of chromaticity coordination towards the yellow region, and the sensitizing effect of Bi~(3+) is better than that of Zn~(2+).
引文
[1] 徐占林,赵丽娜,王良,新型功能材料六铝酸盐复合氧化物研究进展.功能材料,2006,37:178-181.
    [2] J. M. Newsam, B. C. Tofield, A powder neutron diffraction study of stoichiometric silver beta alumina at 4.2 K. J. Phys. C, 1981, 14: 1545-1554.
    [3] R. Collongues, D. Gourier, A. Kahn, et al, β alumina, a typical solid electrolyte: latest development in fundamental approach and in battery utilization. J. Phys. Chem. Solids, 1984, 45: 981-1013.
    [4] A. R. West, Local electroneutrality in the β-alumina structures. Mater. Res. Bull., 1979, 14: 441-446.
    [5] J. P. Boilot, P. Colomban, G. Collin, et al, Etude comparative des structures des alumines β stoechiometrique et non stoechiometrique: etude par diffraction des rayons X(I). J. Phys. Chem. Solids, 1980, 41: 47-54.
    [6] R. C. Barklie, J. R. Niklas, J. M. Spaeth, et al, ENDOR and EPR of defects in relatively stoichiometric β-alumina. J. Phys. C, 1983, 16: 579-590.
    [7] A. L. N. Steveles, Effect of non-stoichiometry of the luminescence of Eu~(2+)-doped aluminates with the β-aluminate type structure. J. Lumin., 1978, 17: 121-123.
    [8] A. L. N. Steveles, Red Mn~(2+) luminescence in hexagonal aluminates. J. Lumin., 1979, 20: 99-109.
    [9] T. Gbehi, J. Thery, D. Vivien, Synthesis characterization and spectroscopic investigation of mixed barium Lanthanides (La, Nd) hexaaluminates, with a structure related to magnetoplumbite and β alumina. Mater. Res. Bull., 1987, 22: 121-129.
    [10] S. R. Jansen, H. T. Hintzen, R. Metselaar, Phase relations in the BaO-Al_2O_3-AIN system: materials with the β-alumina structure. J. Solid State Chem., 1997, 129: 66-73.
    [11] H. W. Zandbergen, F. C. Mijlhoff, D. J. W. Ijdo, et al, A model for the structure of 1.31 BaO.6 M_2O_3; M=Al, Ga; An electron microscopic study. Mater. Res. Bull., 1984, 19: 1443-1450.
    [12] S. Kimura, E. Bannai, I. Shindo, Phase relations relevant to hexagonal barium aluminates. Mater. Res. Bull., 1982, 17:209-215.
    [13] T. Gbehi, D. Gourier, J. Thery, et al, F~+ center as a paramagnetic probe in the EPR investigation of barium hexaaluminate phases Ⅰ and Ⅱ and barium-lanthanum hexaaluminate ceramics. J. Solid State Chem., 1989, 83:340-349.
    [14] V. Deiacarte, A. Kahn-Harari, J. Thery, Barium hexaaluminoferrites with new structural features. Mater. Res. Bull., 1993, 28: 435-443.
    [15] N. Iyi, S. Takekawa, S. Kimura, Crystal chemistry of hexaaluminates:β-alumina and magnetoplumbite structures. J. Solid State Chem., 1989, 83:8-19.
    [16] J. G. Park, A. N. Cormack, Crystal/defect structures and phase stability in Ba hexaaluminates. J. Solid. State Chem., 1996, 121: 278-290.
    [17] N. Iyi, Z. Inoue, S. Takekawa, et al, The crystal structure of barium hexaaluminate phase Ⅰ (barium β-alumina). J. Solid State Chem., 1984, 52:66-72.
    [18] B. M. J. Smets, J. G. Verlijsdonk, The luminescence properties of Eu~(2+)- and Mn~(2+)-doped barium hexaaluminates. Mater. Res. Bull., 1986, 21:1305-1310.
    [19] S. Dunn, R. V. Kumar, D. J. Fray, Preparation and impedance spectroscopic studies of Ba β-Al_2O_3. Solid State Ion., 1999, 124: 133-142.
    [20] K. Kato, H. Saalfeld, Verfeinerung der Kristallstruktur von CaO·6 Al_2O_3. N. Jb. Miner. Abh., 1968, 109: 192-200.
    [21] N. Iyi, Z. Inoue, S. Takekawa, et al, The crystal structure of lanthanum hexaaluminate. J. Solid State Chem., 1984, 54:70-77.
    [22] A. Kahn, J. Lecomte, J. Thery, et al, Structural and spectroscopic study of a single crystal of lanthanum aluminogallate, doped with neodymium. J. Solid State Chem., 1988, 76: 192-203.
    [23]张俊英,张中太,唐子龙,六铝酸盐基荧光粉的发光性能.材料科学与工艺,2002,10:213-218.
    [24] S. C. Abrahams, P. Marsh, C. D. Brandle, Laser and phosphor host La_(1-x)MgAl_(11+x)O_(19) (x=0.050):Crystal structure at 295 K. J. Chem. Phys., 1987, 86:4221-4227.
    [25] B. Wessler, A.Steinecker, W. Mader, Interfaces between lanthanum hexaaluminate and sapphire studied by high-resolution electron microscopy. Phil. Mag. B, 2001, 81:1745-1765.
    [26] S. Ekambararn, K. C. Patil, Synthesis and properties of Eu~(2+) activated blue phosphors. J. Alloys Comp., 1997, 248:7-12.
    [27] S. B. Park, S. H. Kang, Combustion synthesis of Eu~(2+)-activated BaMgAl_(10)O_(17) phosphor. J. Mater. Sci., 2003, 14:223-228.
    [28] C. F. Bacalski, M. A. Cherry, G. A. Hirata, The effects of fuel-to-oxidizer ratio on luminescence properties and particle morphology of combustion-synthesized europium-activated barium magnesium aluminate. J. SID, 2000, suppl.:93-98.
    [29] 刘胜利,陈征,郭舜之,燃烧法合成SrAl_(12)O_(19):Eu~(2+).发光学报,2002,23:604-606.
    [30] 陈哲,严有为,PDP用纳米BaMgAl_(10)O_(17):Eu 荧光粉的燃烧合成及发光性能.物理化学学报,2006,22:1030-1033.
    [31] M. Machida, K. Eguchi, H. Arai, Preparation and characterization of large surface area BHA. Bull. Chem. Soc. Jpn., 1988, 61:3659-3665.
    [32] T. R. N. Kutty, M. Nayak, Metastable phase relations and europium (Ⅱ) luminescence of barium hexa-aluminates prepared by gel to crystallite conversion. Mater. Res. Bull., 1995, 30: 325-333.
    [33] 张俊英,张中太,唐子龙,et al,溶胶—凝胶法合成BaMgAl_(10)O_(17)粉末.硅酸盐学报,2002,30:121-124.
    [34] 肖林久,张宝砚,邱关明,et al,溶胶—凝胶法制备的BaMgAl_(10)O_(17):Eu~(2+)荧光性能研究.稀土,2005,26:15-19.
    [35] L. Xiao, B. Zhang, G. Qiu, Crystallization process for precursor of BaMgAl_(10)O_(17):Eu prepared by sol-gel method. J. Chin. Cera. Soc., 2005, 33:272-275.
    [36] 肖林久,张宝砚,王双红,et al,柠檬酸络合溶胶—凝胶法制备稀土掺杂蓝色荧光粉.东北大学学报(自然科学版),2005,26:886-889.
    [37] L. Yan, L. T. Thompson, Synthesis and characterization of aerogel-derived cation-substituted barium hexaaluminates. Appl. Catal. A, 1998, 171:219-228.
    [38] D. K. Kim, S. H. Hwang, I. G. Kim, et al, Low-temperature synthesis of fine BaMgAl_(10)O_(17):Eu~(2+)phosphor based on the solubility isotherms. J. Solid State Chem., 2005, 178:1414-1421.
    [39] C. H. Lu, W. T. Hsu, C. H. Huang, et al, Luminescence characteristics of europium-ion doped BaMgAl_(10)O_(17) phosphors prepared via a sol-gel route employing polymerizing agents. Mater. Chem. Phys., 2005, 90: 62-68.
    [40] C. Panatarani, I. W. Lenggoro, N. Itoh, et al, Polymer-supported solution synthesis of blue luminescent BaMgAl_(10)O_(17):Eu~(2+) particles. Mater. Sci. Eng. B, 2005, 122:188-195.
    [41] J. Zhang, Z. Zhang, Z. Tang, et al, Synthesis and characterization of BaMgAl_(10)O_(17):Eu phosphors derived by sol-gel processing. Powder Tech., 2002, 126:161-165.
    [42] T. J. Davies, H. G. Emblem, M. Biedermann, et al, Preparation and properties of barium mono-and hexaaluminate. J. Mater. Sci. Lett., 1998, 17:1845-1847.
    [43] 安丽娟,张密林,刘文彬,et al,溶胶-凝胶法制备铝酸钡发光材料.化学与粘合,2004(5):270-272.
    [44] 武祥,邵义,康煜平,溶胶凝胶法制备PDP用荧光粉BaAl_(12)O_(19):Mn.沈阳工业大学学报,2005,27:502-505.
    [45] 陈笃慧,杨乐夫,BaAl_(12)O_(19)高温热稳定材料制备方法.厦门大学学报(自然科学版),1997,36:240-245.
    [46] 成青华,余倩,余林,et al,六铝酸盐催化剂制备的研究进展.工业催化,2005,13:62-65.
    [47] G. Groppi, F. Assandri, M. Bellotto, et al, The crystal structure of Ba-β-alumina materials for high-temperature catalytic combustion. J. Solid State Chem., 1995, 114:326-336.
    [48] G. Groppi, M. Bellotto, C. Cristiam, et al, Preparation and characterization of hexaaluminate-based materials for catalytic combustion. Appl. Catal. A, 1993, 104:101-108.
    [49] 郑永生,沈湘黔,景茂祥,控制反应沉淀法合成BaMgAl_(10)O_(17)球形粉体材料.矿冶工程,2005,25:82-86.
    [50] 景晓燕,郑传伟,王君,化学共沉淀制备PDP荧光粉BaAl_(12)O_(19):Mn研究.哈尔滨工程大学学报,2003,24:229-232.
    [51] 董岩,蒋建清,吴直森,et al,化学共沉淀法合成小粒径BaAl_(12)O_(19):Mn~(2+)绿色荧光粉.功能材料,2005,36:1931-1933.
    [52] 吕宏缨,胡瑞生,高官俊,et al,Ba_(1-x)La_xMnAl_(11)O_(19-δ)及其甲烷燃烧催化活性的研究.稀土,2003,24:24-26.
    [53] D. Y. Lee, Y. C. Kang, H. D. Park, VUV characteristics of BaAl_(12)O_(19):Mn~(2+) phosphor particles prepared from aluminum polycation solutions by spray pyrolysis. J. Alloys Comp., 2003, 353: 252-256.
    [54] Y. C. Kang, Y. S. Chung, S. B. Park, Submicron-size BaAl_(12)O_(19):Mn phosphor particles with spherical morphology. J. Mater. Sci. Lett., 1999, 18: 779-781.
    [55] M. Uzawa, M. Kagawa, Y. Syono, Synthesis of barium hexaaluminate by the spray-ICP technique. Mater. Lett., 1993, 17:187-189.
    [56] K. Y. Jung, H. W. Lee, Y. C. Kang, et al, Luminescent properties of (Ba, Sr)MgAl_(10)O_(17):Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation. Chem. Mater., in press.
    [57] H. Chang, Ⅰ. W. Lenggoro, T. Ogi, et al, Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route. Mater. Lett., 2005, 59: 1183-1187.
    [58] K. Y. Jung, D. Y. Lee, Y. C. Kang, et al, Improved photoluminescence of BaMgAl_(10)O_(17) blue phosphor prepared spray pyrolysis. J. Lumin., 2003, 105: 127-133.
    [59] K. Y. Jung, D. Y. Lee, Y. C. Kang, Improved thermal resistance of spherical BaMgAl_(10)O_(17):Eu blue phosphorprepared by spray pyrolysis. J. Lumin., 2005, 115: 91-96.
    [60] Y. C. Kang, H. S. Roh, H. D. Park, Optimization of VUV characteristics and morphology of BaMgAl_(10)O_(17):Eu~(2+) phosphor particles in spray pyrolysis. Cera. Int., 2003, 29: 41-47.
    [61] K. Y. Jung, Y. C. Kang, Preparation of BaMgAl_(10)O_(17):Eu blue phosphor by flame-assisted spray pyrolysis: photoluminescence properties of powder and film under VUV excitation. Mater. Lett., 2004, 58:2161-2165.
    [62] Y. C. Kang, L. W. Lenggoro, S. B. Park, et al, One-step synthesis of the green phosphor Ce-Tb-Mg-Al-O system with spherical particle shape and fine size. Appl. Phys.A,2001,72:103-105.
    [63] 戴德昌,李沅英,蔡少华,et al,(Ce_(0.67)Tb_(0.33))MgAl_(11)O_(19)和BaMgAl_(10)O_(17):Eu~(2+)荧光体的微波辐射合成及其发光性能.中国稀土学报,1998,16:284-287.
    [64] 徐叙瑢,苏勉曾,发光学与发光材料.化学工业出版社,2004.
    [65] D. Mishra, S. Anand, R. K. Panda, et al, Synthesis of high-surface area Mn-doped barium hexa-aluminates by a combination of hydrothermal precipitation-calcination route. Mater. Chem. Phys., 2003, 82: 892-896.
    [66] 徐金光,田志坚,王军威,et al,尿素加入量对水热合成法制备Mn取代六铝酸盐催化剂的影响.高等学校化学学报,2004,25:90-94.
    [68] 张晓红,胡瑞生,李玉芬,et al,反相微乳法合成稀土六铝酸盐催化剂及其表征.应用化学,2005,22:1178-1181.
    [69] 徐金光,田志坚,索掌怀,et al,反相微乳液法制备LaMnAl_(11)O_(19-α)甲烷燃烧催化剂.催化学报,2005,26:665-668.
    [70] S. Eriksson, U. Nylen, S. Rojas, et al, Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A: Gen, 2004, 265:207-219.
    [71] 于君英,任晓光,宋永吉,et al,掺杂六铝酸盐LaMnM_xAl_(11-x)O_(19-δ)的制备及高温催化性能.石油化工高等学校学报,2006,19:11-18.
    [72] 崔梅生,张顺利,李明来,et al,掺杂六铝酸盐LaM_xAl_(12-x)O_(19+δ)上甲烷催化燃烧研究.中国稀土学报,2003,21:87-90.
    [73] 翟彦青,李永丹,孟明,高温燃烧催化剂—六铝酸盐的结构、性质及制备.稀土,2004,25:58-63.
    [74] 张晓红,胡瑞生,李玉芬,et al,两种不同液相方法制备的稀土LaMnAl_(11)O_(19)催化剂及甲烷燃烧催化性能的研究.稀土,2005,26:1-4.
    [75] 徐金光,腾飞,田志坚,et al,新型反相微乳液制备纳米结构甲烷催化燃烧催化剂La_(0.95)Ba_(0.05)MnAl_(11)O_(19-α)的研究.化学学报,2005,63:2205-2210.
    [76] P. Artizzu, N. Guilhaume, E. Garbowski, et al, Catalytic combustion of methane on copper-substituted barium hexaaluminates. Catal. Lett., 1998, 51: 69-75.
    [77] P. Artizzu-Duart, J. M. Millet, N. Guilhaume, et al, Catalytic combustion of methane on substituted barium hexaaluminates. Catal. Today, 2000, 59:163-177.
    [78] P. Artizzu-Duart, Y. Brulle, F. Gaillard, et al, Catalytic combustion of methane over copper- and manganese-substituted barium hexaaluminates. Catal. Today, 1999,54: 181-190.
    [79] T. F. Yeh, H. G. Lee, K. S. Chu, et al, Characterization and catalytic combustion of methane over hexaaluminates. Mater. Sci. Eng. A, 2004, 384: 324-330.
    [80] S. I. Woo, S. K. Kang, J. M. Sohn, Effect of water content in the precursor solution on the catalytic property and stability of Sr_(0.8)La_(0.2)MnAl_(11)O_(19) high-temperature combustion catalyst. Appl. Catal. B: Envir., 1998, 18:317-324.
    [81] M. Berg, S. Jaras, High temperature stable magnesium oxide catalyst for catalytic combustion of methane: A comparison with manganese-substituted barium hexaaluminate. Catal. Today, 1995, 26: 223-229.
    [82] V. Pitchon, D. Y. Murzin, Kinetics of methane catalytic combustion on Mn-Substitued barium hexaaluminate catalysts. Chem. Eng.Tech., 2001, 24:1301-1307.
    [83] 翟彦青,孟明,陈久岭,et al,La、Ba离子对高温燃烧催化剂六铝酸盐结构和性质的影响.应用化学,2005,22:320-325.
    [84] 蒋政,侯红霞,郝郑平,et al,La促进型六铝酸盐Ba_(1-x)La_xFeAl_(11)O_(19-δ)催化甲烷燃烧性能.物理化学学报,2004,20:1313-1319.
    [85] 王军威,徐金光,田志坚,et al,Ba、Mn对Al_2O_3热稳定性和甲烷催化燃烧活性的影响.物理化学学报,2002,18:1018-1022.
    [86] 徐金光,田志坚,王军威,et al,CeO_2/BaMnAl_(11)O_(19-α)催化剂制备及甲烷催化燃烧研究.化学学报,2004,62:373-376.
    [87] 徐金光,田志坚,张培青,et al,La取代Ba对Ba_(1-x)La_xMn_3Al_9O_(19-α)催化剂结构及甲烷催化燃烧性能的影响.高等学校化学学报,2005,26:2103-2107.
    [88] 徐金光,田志坚,王军威,et al,超临界干燥方法对甲烷燃烧催化剂LaMnAl_(11)O_(19)结构及活性的影响.催化学报,2002,23:477-480.
    [89] 严河清,张甜,王鄂凤,et al,甲烷催化燃烧催化剂的研究进展.武汉大学学报(理学版),2005,51:161-166.
    [90] 刘延,周广栋,王君霞,et al,CO_2/CH_4重整六铝酸盐催化剂制备与反应性能 研究.燃料化学学报,2001,29(suppl):102-104.
    [91] 徐占林,毕颖丽,甄开吉,CO_2重整甲烷制合成气催化剂六铝酸盐LaNi_yAl_(12-y)O_(19-δ)的研究.催化学报,2000,21:179-182.
    [92] Z. Xu, Y. Bi, K. Zhen, Preparation and catalytic properties of M-modified hexaaluminates MNiAl_(11)O_(19-δ) for methane reforming with CO_2 to syngas. J. Nat. Gas Chem., 2000, 9: 132-138.
    [93] Z. Xu, Y. Liu, W. Li, et al, CO_2 reforming of methane to syngas over Ni-modified hexaaluminate oxides BaNi_yAl_(12-y)O_(19-δ). J. Nat. Gas Chem., 2000, 9: 273-282.
    [94] 徐占林,毕颖丽,甄开吉,β-氧化铝型复合氧化物BaMAl_(11)O_(19-δ)催化CO_2重整甲烷制合成气.应用化学,1999,16:13-16.
    [95] S. V. Bogdanov, I. I. Zubrinov, E. V. Pestryakov, et al, Elastic properties of beryllium-lantanum hexaaluminate crystal, BeLaAl_(11)O_(19). Crys. Rep., 2001, 46: 500-505.
    [96] C. H. Kim, H. E. Kwon, C. H. Par, et al, Phosphors for plasma display panels. J. Alloys Comp., 2000, 311: 33-39.
    [97] 洪广言,曾小青,等离子平板显示用发光材料.功能材料,1999,30:225-227.
    [98] J. R Boeuf, Plasma display panels: physics, recent developments and key issues. J. Phys. D: Appl. Phys., 2003, 36: R53-R79.
    [99] 洪广言,曾小青,尤洪鹏,基质晶体的真空紫外光谱研究.硅酸盐学报,2004,32:233-238.
    [100] 刘行仁,王晓君,全色等离子体平板显示器用发光材料.发光快报,1995,3:9-13.
    [101] T. Justel, H. Nikol, Optimization of luminescent materials for plasma display panels. Adv. Mater., 2000, 12: 527-530.
    [102] S. M. Loureiro, A. Setlur, W. Heward, First observation of quantum splitting behavior in nanocrystalline SrAl_(12)O_(19): Pr, Mg phosphor. Chem. Mater., in press.
    [103] T. J. Lee, L. Y. Luo, E. W. G. Diau, et al, Visible quantum cutting through downconversion in green-emitting K_2GdF_5: Tb~(3+) phosphors. Appl. Phys. Lett., 2006, 89: 131121.
    [104] A. M. Srivastava, W. W. Beers, Luminescence of Pr~(3+) in SrAl_(12)O_(19): Observation of two photo luminescence in oxide lattice. J. Lumin., 1997, 71: 285-290.
    [105] B. Zandi, L. D. Merkle, J. B. Gruber, et al, Optical spectra and analysis for Pr~(3+) in SrAl_(12)O_(19). J. Appl. Phys., 1997, 81: 1047-1054.
    [106] P. A. Rodnyi, A. N. Mishin, S. B. Mikhrin, et al, Temperature-induced variation of the emission band intensities of an SrAl_(12)O_(19): Pr phosphor. Tech. Phys. Lett., 2002, 28: 991-993.
    [107] B. Liu, Y. Chen, C. Shi, et al, Visible quantum cutting in BaF_2: Gd, Eu via downconversion. J. Lumin., 2003, 101: 155-159.
    [108] R. T. Wegh, H. Donker, K. D. Oskam, et al, Visible quantum cutting in LiGdF_4: Eu~(3+) through downconversion. Science, 1999, 283: 663-666.
    [109] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, et al, Quantum cutting by cooperative energy transfer in Yb_xY_(1-x)PO_4: Tb~(3+). Phys. Rev. B, 2005, 71: 014119.
    [110] K. S. Sohn, E. S. Park, C. H. Kim, et al, Photoluminescence behavior of BaAl_(12)O_(19): Mn~(2+) phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc., 2000, 147: 4368-4373.
    [111] 董岩,张超,蒋建清,et al,掺杂元素对BaAl_(12)O_(19):Mn~(2+)荧光粉发光性能的影响.东南大学学报,2005,35:911-914.
    [112] 庄卫东,崔向中,鱼志坚,et al,掺杂对BaAl_(12)O_(19):Mn荧光粉晶体结构和发光性能的影响.中国稀土学报,2001,19:586-589.
    [113] 沈雷军,张忠义,韩莉,et al,(Ba,Mg,Sr)O·nAl_2O_3:Mn~(2+)的合成及发光性质研究.发光学报,2003,24:189-193.
    [114] 庄卫东,盛照昆,武杰,一种真空紫外线激发的铝酸盐绿色荧光粉及其制造方法.中国专利,2002,CN 1381547A.
    [115] K. Y. Jung, H. W. Lee, Y. C. Kang, et al, Luminescence properties of (Ba, Sr)MgAl_(10)O_(17): Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation. Chem. Mater., 2005, 17: 2729-2734.
    [116] T. Hisamune, M. Nabu, Aluminate phospohr, process for preparing the same, and vacuum ultraviolet-excited light emitting device. JP patent, 1999, 5989455.
    [117] T. Hisamune, M. Nabu, A. Ohto, et al, Development of Mn~(2+) activated Ba-Sr-Mg-aluminate green phosphors for PDPs. J. Light Vis. Env., 2001, 25: 19-27.
    [118] 王佳,BaAl_(12)O_(19):Mn系列发光材料的制备及性能研究.兰州大学硕士学位论文.2005.
    [119] K. Yokota, S. X. Zhang, K. Kimura, et al, Eu~(2+)-activated barium magnesium aluminate phosphor for plasma displays—Phase relation and mechanism of thermal degradation. J. Lumin., 2001, 92: 223-227.
    [120] V. Pike, S. Patraw, A. L. Diaz, et al, Defect chemistry and VUV optical properties of the BaMgAl_(10)O_(17): Eu~(2+)-Ba_(0.75)Al_(11)O_(17.25):Eu~(2+) solid solution. J. Solid State Chem., 2003, 173: 359-366.
    [121] 彭国贤,PDP用荧光粉的亮度衰减.电子器件,2001,24:245-251.
    [122] D. S. Xing, K. W. Cheah, R Y. Cheng, et al, A novel blue magnesium strontium aluminate-based phosphor for PDP application. Solid State Comm., 2005, 134: 809-813.
    [123] S. Tanaka, I. Ozaki, T. Kunimoto, et al, Blue emitting CaAl_2O_4: Eu~(2+) phosphors for PDP application. J. Lumin., 2000, 87-89: 1250-1253.
    [124] Y. Komatsu, A. Komeno, K. Toda, VUV phosphor in the SrO-B_2O_3-P_O_5 ternary system. J. Alloys Comp., in press.
    [125] S. Oshio, T. Matsuoka, S. Tanaka, et al, Mechanism of luminance decrease in BaMgAl_(10)O_(17): Eu~(2+) phosphor by oxidation. J. Electrochem. Soc., 1998, 145: 3903-3907.
    [126] K. C. Mishra, M. Raukas, A. Ellens, et al, A scattered wave model of electronic structure of Eu~(2+) in BaMgAl_(10)O_(17) and associated excitation process. J. Lumin., 2002, 96: 95-105.
    [127] K. B. Kim, Y. I. Kim, H. G. Chun, et al, Structural and optical properties of BaMgAl_(10)O_(17): Eu~(2+) phosphor. Chem. Mater., 2002, 14: 5045-5052.
    [128] R Boolchand, K. C. Mishra, M. Raukas, et al, Occupancy and site distribution of europium in barium magnesium aluminate by ~(151)Eu Mossbauer spectroscopy. Phys. Rev. B, 2002, 66: 134429.
    [129] K. S. Sohn, S. S. Kim, H. D. Park, Luminescence quenching in the thermally-treated barium magnesium aluminate phosphor. Appl. Phys. Lett., 2002, 81: 1759-1761.
    [130] Z. Wu, A. N. Cormack, Defects in BaMgAl_(10)O_(17):Eu~(2+) blue phosphor. J. Electro., 2003, 10: 179-191.
    [131] S. Zhang, T. Kono, A. Ito, et al, Degradation mechanisms of the blue-emitting phosphor BaMgAl_(10)O_(17):Eu~(2+) under baking and VUV-irradiating treatments. J. Lumin., 2004, 106: 39-46.
    [132] K. B. Kim, K. W. Koo, T. Y. Cho, et al, Effect of heat treatment on photoluminescence behavior of BaMgAl_(10)O_(17): Eu phosphors. Mater. Chem. Phys., 2003, 80: 682-689.
    [133] M. Stephan, P. C. Schmidt, K. C. Mishra, et al, Investigations of nuclear quadrupole interaction in BaMgAl_(10)O_(17):Eu~(2+). Zeit. Phys. Chem., 2001, 215: 1397-1411.
    [134] C. Deng, W. Zhuang, D. He, et al, Luminescence of Ba_(x-0.05)MgAl_(10)O_(16+x):Eu_(0.05)~(2+) with different Ba~(2+) content. Phys. B, 2004, 344: 470-476.
    [135] Y. L. Liu, C. S. Shi, Luminescent centers of Eu~(2+) in BaMgAl_(10)O_(17) phosphor. Mater. Res. Bull., 2001, 36: 109-115.
    [136] G. Bizarri, B. Moine, On BaMgAl_(10)O_(17): Eu~(2+) phosphor degradation mechanism: thermal treatment effects. J. Lumin., 2005, 113: 199-213.
    [137] G. Bizarri, B. Moine, On the role of traps in the BaMgAl_(10)O_(17): Eu~(2+) fluorescence mechanisms. J. Lumin., 2005, 115: 53-61.
    [138] K. B. Kim, H. G. Chun, T. Y. Cho, et al, Oxidation of Eu in BaMgAl_(10)O_(17): Eu~(2+) blue phosphor for plasma display panel (PDP). KORUS'2002: 324-327.
    [139] A. Ellens, F. Zwaschka, F. Kummer, et al, Sm~(2+) in BAM: fluorescent probe for the number of luminescing sites of Eu~(2+) in BAM. J. Lumin., 2001, 93: 147-153.
    [140] E. Zych, W. Goetz, N. Harrit, et al, Spectroscopic properties of sintered BaMgAl_(10)O_(17): Eu~(2+) (BAM) translucent pellets. J. Alloys Comp., 2004, 380: 113-117.
    [141] S. S. Lee, H. J. Kim, S. H. Byeon, et al, Thermal-shock-assisted solid-state process for the production of BaMgAl_(10)O_(17): Eu phosphor. Ind. Eng. Chem. Res., 2005, 44: 4300-4303.
    [142] 都云昆,BAM的硝酸盐热分解法合成及其热稳定性研究.兰州大学硕士学 位论文.2005.
    [143] Y. H. Wang, Z. H. Zhang, Luminescence thermal degradation mechanism in BaMgAl_(10)O_(17):Eu~(2+) phosphor. Electrochem. Solid-State Lett., 2005, 8: H97-H99.
    [144] Y. R. Do, D. H. Park, Y. S, Kim, Al_2O_3 nanoencapsulation of BaMgAl_(10)O_(17): Eu~(2+) phosphors for improved aging properties in plasma display panels. J. Electrochem. Soc., 2004, 151: H210-H212.
    [145] I. Y. Jung, Y. Cho, S. G. Lee, et al, Optical properties of the BaMgAl_(10)O_(17): Eu~(2+) phosphor coated with SiO_2 for aplasma display panel. Appl. Phys. Lett., 2005, 87: 191908.
    [146] T. Justel, C. Ronda, V. Weiler, Plasma picture screen with coated phosphor. US patent, 2003, 6602617.
    [147] H. Bechtel, W. Czarnojan, W. Mayr, et al, Aluminate phosphor with a polyphosphate coating. US patent, 1999, 5998047.
    [148] K. Hiroyuki, A. Masaki, Phosphor for plasma display panel and phosphor ink. JP patent, 2000, 2000087030.
    [149] 徐进章,张志华,王育华,LaMgAl_(11)O_(19):Tb~(3+)的助熔剂法制备及其发光特性研究.稀有金属材料与工程,2006,35:1-4.
    [150] 徐进章,张志华,王育华,助熔剂法制备的LaMgAl_(11)O_(19):Eu~(n+)(R=2,3)的发光特性.无机化学学报,2006,22:913-916.
    [151] 张志华,稀土掺杂的LaMgAl_(11)O_(19)的合成及其发光特性研究.兰州大学硕士学位论文.2006.
    [152] 尤洪鹏,吴雪艳,洪广言,et al,LaMgAl_(11)O_(19):R(R=Tb,Mn)的真空紫外光谱特性.中国稀土学报,2002,20:572-574.
    [153] J. M. P. J. Verstegen, J. L. Sommerdijk, J. G. Verriet, Cerium and terbium luminescence in LaMgAl_(11)O_(19). J. Lumin., 1973, 6: 425-431.
    [154] S. R. Rotman, J. F. Prins, E. Luria, Concentration effects and energy transfer in the cathodoluminescence of europium-manganese-doped lanthanum magnesium hexaaluminate. Phys. Stat. Sol. (a), 1997, 164: 845-850.
    [1] H. Moriyama, T. Moriyama, Oxidation-resistant phosphor and production method therefore. 2001, JP patent, 2001200249.
    [2] 徐叙瑢,苏勉曾,发光学与发光原理.化学工业出版社,2004:735-736.
    [3] T. Justel, J. C. Krupa, D. U. Wiechert, VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps. J. Lurnin., 2001, 93: 179-189.
    [1] K. Junro, K. Takehiro, P. Ryuya, New tricolor phosphors for gas discharge display. J. Electrochem. Soc., 1979, 126: 1008-1010.
    [2] 洪广言,曾小青,尤洪鹏,助熔剂法对发光体BaAl_(12)O_(19):Mn~(2+)结构及发光性能的影响.发光学报,1999,20:311-315.
    [3] V. Pike, S. Patraw, A. L. Diaz, et al, Defect chemistry and VUV optical properties of the BaMgAl_(10)O_(17)-Ba_(0.75)Al_(11)O_(17.25):Eu~(2+) solid solution. J. Solid State Chem., 2003, 173: 359-366.
    [4] J. G. Park, A. N. Cormack, Crystal/Defect structures and phase stability in Ba hexaaluminates. J. Solid State Chem., 1996, 121: 278-290.
    [5] T. Justel, H. Bechtel, W. Mayr, et al, Blue emitting BaMgAl_(10)O_(17):Eu with a blue body color. J. Lumin., 2003, 104: 137-143.
    [6] K. Y. Jung, H. W. Lee, Y. C. Kang, et al, Luminescence properties of (Ba, Sr)MgAl_(10)O_(17):Mn,Eu green phosphor prepared by spray pyrolysis under VUV excitation. Chem. Mater., 2005, 17: 2729-2734.
    [7] M. Tamatani, Fluorescence in β-Al_2O_3-like materials of K, Ba and La activated with Eu~(2+) and Mn~(2+). Jpn. J. Appl. Phys., 1974, 13: 950-956.
    [8] D. T. Palumbo, J. J. Brown, Electronic states of Mn~(2+)-activated phosphors. J. Electrochem. Soc., 1970, 117:1184-1188.
    [9] E. V. Kolk, P. Dorenbos, C. W. Eijk, et al, Optimised co-activated willemite phosphors for application in plasma display panels. J. Lumin., 2000,87-89:12 46-1249.
    [10] C. H. Kim, I. E. Kwon, C. H. Park, et al, Phosphors for plasma display panels. J. Alloys. Comp., 2000, 311:33-39.
    [11] C. Okazaki, M. Shiiki, T. Suzuki, et al. Luminance saturation properties of PDP phosphors. J. Lumin., 2000, 87-89: 1280-1282.
    [12] C. Barthou, J. Benoit, P. Benalloul, Mn~(2+) concentration effect on the optical properties of Zn_2SiO_4:Mn phosphors. J. Electrochem. Soc., 1994, 141: 524-528.
    [13] D. J. Robbins, E. E. Mendez, E. A. Giess, et al, Paring effects in the luminescence spectrum of Zn_2SiO4_:Mn. J. Electrochem. Soc., 1984, 131: 141-146.
    [14] K. S. Sohn, E. S. Park, C. H. Kim, et al, Photoluminescence behavior of BaAl_(12)O_(19):Mn~(2+) phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc., 2000, 147: 4368-4373.
    [1] Y. C. Kang, H. D. Park, Brightness and decay time of Zn_2SiO_4: Mn phosphor particles with spherical shape and fine size. Appl. Phys. A, 2003, 77: 529-532.
    [2] T. H. Cho, H. J. Chang, Preparation and characterizations of Zn_2SiO_4: Mn green Phosphors. Ceram. Int., 2003, 29: 611-618.
    [3] O. Goede, W, Heimbrodt, D. D. Thong, Non-exponential ZnS: Mn luminescence decay due to energy transfer. Phys. Stat. Sol., 1984, 126: K159-K163.
    [4] I. Matsuyama, N. Yamashita, K. Nakamura, Photoluminescence of the SrS:Mn~(2+) phosphor and Pb~(2+)-sensitized luminescence of the SrS:Pb~(2+), Mn~(2+) phosphor. J. Phys. Soc. Jpn., 1989, 58: 741-751.
    [5] N. Yamashita, S. Maekawa, K. Nakamura, Influence of paired Mn~(2+) centers on the luminescence spectra of CaS: Mn~(2+). Jpn. J. Appl. Phys., 1990, 29: 1729-1732.
    [6] S. J. Weston, M. O'Neill, J. E. Nicholls, et al, T. Stirner, Mn ion clustering in Ⅱ-Ⅵ semimagnetic semiconductor heterostructures. Phys. Rev. B, 1998, 58: 7040-7045.
    [7] C. R. Ronda, T. Amrein, Evidence for exchange-induced luminescence in Zn_2SiO_4: Mn. J. Lumin., 1996, 69: 245-248.
    [8] D. J. Robbins, E. E. Mendez, E. A. Giess, I. E Chang, Paring effects in the luminescence spectrum of Zn_2SiO_4: Mn. J. Electrochem. Sot., 1984, 131: 141-146.
    [9] M. M. Kreitman, D. L. Barnett, Probability tables for clusters of foreign atoms in simple lattices assuming next-nearest-neighbor interactions. J. Chem. Phys., 1965, 43: 364-370.
    [10] Correlation between the crystalline environment and optical property of Mn~(2+) ions in ZnGa_2O_4: Mn~(2+) phosphor. Appl. Phys. Lett., 2005, 86: 091912.
    [11] 刘俊业,刘春旭,李丹,含ZnS:Mn~(2+)纳米晶玻璃中Mn~(2+)三种格位态的EPR 研究.发光学报,1999,20:235-238.
    [12] K. Klaska, J. C. Eck, D. Pohl, New investigation of willemite. Acta Cryst., 1978, B34: 3324-3325.
    [13] 谢平波,张慰萍,夏上达,Zn_2SiO_4:Mn纳米微晶薄膜的溶胶-凝胶法制备及其光致发光性质研究.中国科学技术大学学报,1997,27:389-394.
    [14] Y. C. Kang, Y. S. Chung, S. B. Park, Submicron-size BaAl_(12)O_(19): Mn phosphor particles with spherical morphology. J. Mater. Sci. Lett., 1999, 18: 779-781.
    [15] B. M. J. Smets, J. G. Verlijsdonk, The luminescence properties of Eu~(2+)- and Mn~(2+)-doped barium hexaaluminates. Mater. Res. Bull., 1986, 21: 1305-1310.
    [16] M. P. Thi, A. L. Fur, Green luminophor material and method of manufacture. US patent, 1999, 5868963.
    [17] M. Machida, K. Eguchi, H. Arai, Catalytic properties of BaMnAl_(11)O_(19-α)(M=Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion. J. Catal., 1989, 120: 377-386.
    [18] M. Yokota, O. Tanimoto, Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Jpn., 1967, 22: 779-784.
    [19] A. R. West, Local electroneutrality in the beta-alumina structures. Mater. Res. Bull., 1979, 14: 441-446.
    [20] R. Collongues, D. Gourier, A. Kahn, et al, β alumina, a typical solid electrolyte. J. Phys. Chem. Solids, 1984, 45: 981-1013.
    [21] 马如璋,徐英庭,穆斯堡尔谱学,科学出版社,1998.
    [22] N. Iyi, Z. Inoue, S. Takekawa, et al, The crystal structure of barium hexaaluminate phase Ⅰ(barium β-alumina). J. Solid State Chem., 1984, 52: 66-72.
    [23] M. Bellotto, G. Artioli, C. Cristiani, et al, On the crystal structure and cation valence of Mn in Mn-substituted Ba-β-Al_2O_3. J. Catal., 1998, 179: 597-605.
    [24] C. Barthou, J. Benoit, P. Benalloul, Mn~(2+) concentration effect on the optical properties of Zn_2SiO_4: Mn phosphors. J. Electrochem. Soc., 1994, 141: 524-528.
    [25] K. S. Sohn, Y. Y. Choi, K. H. Kim, et al, Effect of inter-ionic interaction on photoluminescence property of yttrium aluminate garnet phosphors. J. Mater. Sci., 2001, 12: 179-186.
    [26] K. S. Sohn, E. S. Park, C. H. Kim, et al, Photoluminescence behavior of BaAl_(12)O_(19):Mn~(2+) phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc., 2000, 147: 4368-4373.
    [27] H. E. Gumlich, Electro- and photoluminescence properties of Mn~(2+) in ZnS and ZnCdS. J. Lumin., 1981, 23: 73-99.
    [28] V. J. Folen, Exchange interactions in insulators. J. Appl. Phys., 1969, 40: 1137-1139.
    [29] S. Larach, J. Turkevich, Interaction of manganese activator ions in zinc-orthosilicate phosphors. Phys. Rev., 1953, 89: 1060-1065.
    [30] N. Kuroda, Y. Matsuda, Pressure dependence of hole-Mn and Mn-Mn exchange interactions in Cd_(0.95)Mn_(0.05)Se. Phys. Rev. Lett., 1996, 77: 1111-1114.
    [31] J. L. Patel, B. C. Cavenett, J. J. Davies, et al, Spin-dependent energy transfer in CaF_2: Ce, Mn. Phys. Rev. Lett., 1974, 33: 1300-1303.
    [32] J. H. V. Vleck, The dipolar broadening of Magnetic Resonance Lines in Crystals. Phys. Rev., 74: 1168-1183.
    [33] 郑莹光,刘俊业,董凤霞,et al,玻璃基质中ZnS纳米晶Mn2+的EPR谱.波谱学杂志,1999,16:201-206.
    [34] J. Kreissl, W, Gehlhoff, EPR investigations of ZnS:Mn and ZnSe: Mn. Phys. Stat. Sol., 1984, 81: 701-707.
    [35] H. K. Perkins, M. J. Sienko, ESR study of manganese-doped α-zinc silicate crystals. J. Chem. Phys., 1967, 46: 2398-2401.
    [1] S. A. Studenikin, M. Cocivera, Luminecent properties of Eu~(2+) ion in BaMg_((1+x))Si_xAl_(10)O_y films prepared by spray pyrolysis. Thin Solid Films, 2001, 394: 264-271.
    [2] 尤洪鹏,吴雪艳,洪广言,et al,BaMgAl_(10)O_(17):R~(2+)(R=Eu,Mn)的真空紫外光谱特性.发光学报,2003,124:87-90.
    [3] Y. Wang, J. Zhang, Y. Song, et al, Preparation and after-treatment of BaMgAl_(10)O_(17): Mn~(2+). J. Chin. Univ. Geo., 17: 272-275.
    [4] M. Stephan, P. C. Schmidt, K. C. Mishra, et al, Investigations of nuclear quadrupole interaction in BaMgAl_(10)O_(17): Eu~(2+). Z. Phys. Chem., 2001, 215: 1397-1411.
    [5] V. Pike, S. Patraw, A. L. Diaz, et al, Defect chemistry and VUV optical properties of the BaMgAl_(10)O_(17):Eu~(2+)-Ba_(0.75)Al_(11)O_(17.25):Eu~(2+) solid solution. J. Solid State Chem., 2003, 173: 359-366.
    [6] M. Gobbels, S. Kimura, E. Woermann, The aluminum-rich part of the system BaO-Al_2O_3-MgO I: phase relationships. J. Solid State Chem., 1998, 136: 253-257.
    [7] A. L. Diaz, B. G. DeBoer, C. F. Chenot, Effects of stoichiometry on the luminescence and thermal stability of BaMgAl_(10)O_(17): Eu~(2+). 19th International Display Research Conference Proceedings, 1999: 65-68.
    [8] K. Yokota, S. X. Zhang, K. Kimura, et al, Eu~(2+)-activated barium magnesium aluminate phosphor for plasma displays-phase relation and mechanism of thermal degradation. J. Lumin., 2001, 92: 223-227.
    [9] S. X. Zhang, M. Kokubu, H. Fujii, et al, A study on the chromaticity shifts of blue phosphor for color plasma pisplays. Info. Disp., 2002, 10: 25-29.
    [10] 王佳,BaAl_(12)O_(19):Mn系列发光材料的制备及性能研究.兰州大学硕士学位论文.2005.
    [11] T. Hisamune, M. Nabu, A. Ohto, et al, Development of Mn~(2+) activated Ba-Sr-Mg-aluminate green phosphors for PDPs. J. Light Vis. Env., 2001, 25: 19-27.
    [12] Y. I. Kim, K. B. Kim, M. J. Jung, et al, Combined rietveld refinement of BaMgAl_(10)O_(17): Eu~(2+) using X-ray and neutron powder diffraction data. J. Lumin., 2002, 99: 91-100.
    [13] Y. I. Kim, S. O. Kang, J. S. Lee, et al, Structural refinement of BaMgAl_(10)O_(17): Eu~(2+) using X-ray and neutron powder diffration. J. Mater. Sci. Lett., 2002, 21: 219-222.
    [14] Y. I. Kim, S. C. Moon, S. O. Kang, et al, Structural study of annealed BaMgAl_(10)O_(17):Eu~(2+) using X-ray powder diffraction data. J. Mater. Sci. Lett., 2003, 22: 669-673.
    [15] J. A. Tossell, The electronic structures of silicon, aluminum, and magnesium in tetrahedral coordination with oxygen from SCF-Xα MO calculations. J. Am. Chem. Soc., 1974, 97: 4840-4844.
    [16] J. A. Tossell, The electronic structures of Mg, Al and Si in octahedral coordination with oxygen from SCF Xα MO calculations. J. Phys. Chem. Solids, 1975, 36: 1273-1280.
    [17] G. E. Harlow, T. J. Shankland, Electronic structure of spinel. Geochim. Cosmochim. Acta, 1974, 38: 589-599.
    [18] R. Dekkers, C. F. Woensdregt, Crystal structral control on surface topology and crystal morphology of normal spinel (MgAl_2O_4). J. Crys. Growth, 2002, 236: 441-454.
    [19] H. Mullejans, R. H. French, Insights into the electronic structures of ceramics through quantitative analysis of valence electron energy-loss spectroscopy. Microsc. Microanal., 2000, 6: 297-306.
    [20] M. C. Warren, M. T. Dove, S. A. T. Redfem, Disordering of MgAl_2O_4 spinel from first principles. Mine. Mag., 2000, 64:311-317.
    [21] S. D. Mo, W. Y. Ching, Electronic structure of normal, inverse, and partially inverse spinels in the MgAl_2O_4 system. Phys. Rev. B, 1996, 54:16555-16561.
    [22] N. Iyi, Z. Inoue, S. Takekawa, et al, The crystal structure of barium hexaaluminate phase I (barium beta-alumina). J. Solid State Chem., 1984, 52: 66-72.
    [23] T. Justel, H. Lade, W. Mayr, et al, Thermoluminescence spectroscopy of Eu~(2+) and Mn~(2+) doped BaMgAl_(10)O_(17). J. Lumin., 2003, 101: 195-210.
    [24] B. Howe, A. L. Diaz, Characterization of host-lattice emission and energy transfer in BaMgAl_(10)O_(17):Eu~(2+). J. Lumin., 2004, 109: 51-59.
    [1] P. D. Johnson, Luminescence of inorganic solids, ed. P. Goldberg (Academic press), 1996.
    [2] 邵义,武祥,康煜平,稀土掺杂对绿色荧光粉BaAl_(12)O_(19):Mn性能的影响.中国陶瓷工业,2005,12:5-7.
    [3] S. H. M. Poort, A. Meijerink, G. Blasse, On the luminescence of GdF_3:Ce~(3+), Mn~(2+). Solid State Comm., 1997, 537-540.
    [4] 姚光庆,张亮,Eu~(2+)和Mn~(2+)在Sr_3MgSi_2O_8中的光致发光研究.高等学校化学学报,1997,18:1-5.
    [5] 姚光庆,张亮,Eu~(2+)和Mn~(2+)在SrMgP_2O_7中的光致发光及其能量传递.高等学校化学学报,1995,16:1159-1163.
    [6] M. Tamatani, Fluorescence in β-Al_2O_3-like materials of K, Ba and La activated with Eu~(2+) and Mn~(2+). Jpn. J. Appl. Phys., 1974, 13: 950-956.
    [7] W. J. Yang, L. Luo, T. M. Chen, N. S. Wang, Luminescence and energy transfer of Eu- and Mn-coactivated CaAl_2Si_2O_8 as a potential phospohr for white-light UVLED. Chem. Mater., 2005, 17: 3883-3888.
    [8] K. S. Sohn, E. S. Park, C. H. Kim, et al, Photoluminesecence behavior of BaAl_(12)O1_9:Mn phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc., 2000, 147: 4368-4373,
    [9] E Yang, G. Q. Yao, J. H. Lin, Energy transfer and photoluminescence of BaMgAl_(10)O_(17) co-doped with Eu~(2+) and Mn~(2+). Opt. Mater., 2004, 26: 327-331.
    [10] 董岩,张超,蒋建清,et al,掺杂元素对BaAl_(12)O_(19):Mn~(2+)荧光粉发光性能的影响.东南大学学报,2005,35:911-914.
    [11] K. S. Sohn, B. Cho, H. Chang, et al, Effect of co-doping on the photoluminescence behavior of Zn_2SiO_4:Mn phosphors. J. Electrochem. Soc., 1999, 146: 2353-2356.
    [12] Y. C. Kang, M. A. Lim, H. D. Park, et al, Ba~(2+) co-doped ZnzSiO_4: Mn phosphor particles prepared by spray pyrolysis process. J. Eleetrochem. Soc., 2003, 150: H7-H11.
    [13] E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, et al, Optimised co-activated willemite phosphors for application in plasma display panels. J. Lumin., 2000, 87-89: 1246-1249.
    [14] 庄卫东,崔向中,鱼志坚,et al,掺杂对BaAl_(12)O_(19):Mn荧光粉晶体结构和发光性能的影响.中国稀土学报,2001,19:586-589.
    [15] 沈雷军,张忠义,韩莉,et al,(Ba,Mg,Sr)O·nAl_2O_3:Mn~(2+)的合成及发光性质研究.发光学报,2003,24:189-193.
    [16] 庄卫东,盛照昆,武杰,一种真空紫外线激发的铝酸盐绿色荧光粉及其制造方法.中国专利,2002,CN 1381547A.
    [17] D. J. Robbins, N. S. Caswell, P. Avouris, et al, A diffusion model for electron-hole recombination in Zn_2SiO_4:(Mn, As) phosphors. J. Electrochem. Soc., 1985, 132: 2784-2793.
    [18] P. Avouris, I. F. Chang, D. Dove, et al, Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors-a tunneling model. J. Electr. Mater., 1981, 10: 887-899.
    [19] P. Avouris, T. N. Morgan, A tunneling model for the decay of luminescence inorganic phosphors: The case of Zn_2SiO_4: Mn. J. Chem. Phys., 1981, 74: 4347-4355.
    [20] A. Bergstein, W. B. White, Manganese-activated luminescence in SrAl_(12)O_(19) and CaAl_(12)O_(19). J. Electrochem. Soc., 1971, 118: 1166-1171.
    [21] S. Tanimizu, M. Yasuda, VUV and UV spectroscopy of ns~2 ions co-doped with Tb~(3+) ion in Ln(BO_2)_3 (Ln=La, Gd). J. Lumin., 2007, 122-123: 117-120.
    [22] E. W. J. L. Oomen, W. M. A. Smit, G. Blasse, Jahn-Teller effect in the emission and excitation spectra of the Sb~(3+) ion in LPO_4(L=Sc, Lu, Y). Phys. Rev. B, 1988, 37: 18-26.
    [23] T. Justel, P. Huppertz, W. Mayr, et al, Temperature-dependent spectra of YPO_4: Me (Me=Ce, Pr, Nd, Bi). J. Lumin., 2004, 106: 225-233.
    [24] R. Moncorge, G. Boulon, J. P. Denis, Fluorescence properties of bismuth-doped LaPO_4. J. Phys. C, 1979, 12, 1165-1171.
    [25] I. Fujita, Optical-absorption studies on noncubic s~2 centers in single crystals of KH_2PO_4 and RbH_2PO_4. Phys. Rev. B, 1994, 49: 6462-6469.
    [26] 孙家跃,杜海燕,胡文祥,固体发光材料.化学工业出版社,2003.
    [27] L. Wang, Y. Wang, Enhanced photoluminescenc of YBO_3:Eu~(3+) with the incorporation of Sc~(3+), Bi~(3+) and La~(3+) for plasma display panel application. J. Lumin., 2007, 122-123: 921-923.
    [28] Y. Wang, C. Wu, J. Wei, Hydrothermal synthesis and luminescent properties of LnPO_4:Tb, Bi (Ln=La, Gd) phosphors under UV/VUV excitation. J. Lumin., in press.
    [29] X. Zeng, S. J. Im, S. H. Jang, Luminescent properties of (Y, Gd)BO_3:Bi~(3+), RE~(3+) (RE=Eu, Tb) phosphor under VUV/UV excitation. J. Lumin., 2006, 121: 1-6.
    [30] M. Leskela, M. Saakes, G. Blasse, Energy transfer phenomena in GdMgB_5O_(10). Mater. Res. Bul., 1984, 19: 151-159.
    [31] G. Blasse, Luminescence of calciuhalophosphate-Sb~(3+), Mn~(2+) at low temperatures. Chem. Phys. Lett., 1984, 104: 160-162.
    [32] R. F. Reade, Some aspects of sensitized fluorescence in Ca(PO_3)_2: Sn: Mn glass phosphors. J. Electrochem. Soc., 1966, 113: 445-449.
    [33] R. G. Pappalardo, T. E. Peters, Efficient sensitization of Mn~(2+) emission by Sn~(2+) in fluoroapatites. J. Lumin., 1984, 31-32: 284-286.
    [34] R. Aceves, U. Caldino G., J. Rubio O., E. Camarillo, Nonradiative energy transfer Sn~(2+)→Mn~(2+) in monocrystalline KBr. J. Lumin., 1995, 65:113-119.
    [35] Y. Wang, L. Wang, Photoluminescence properties of Y_(0.95-x)M_xBO_3:Eu~(3+) (M=Ca, Sr, Ba, Zn, Al, 0≤x≤0.1) in 100-450 nm regions. Mater. Lett., 2006, in press.
    [36] T. Gbehi, D. Gourier, J. Thery, et al, F~+ center as a paramagnetic probe in the EPR investigation of barium hexaaluminate phase Ⅰ and Ⅱ and barium-lanthanum hexaaluminate ceramics. J. Solid state Chem., 1989, 84: 340-349.
    [37] K. P. Oboth, F. J. Lohmeier, F. Fischer, VUV and UV Spectroscopy of Pb~(2+) and Bi~(3+) Centres in Alkaline-Earth Fluorides. Phys. Status Solidi. (b), 1989, 154: 789-803.
    [38] K. Chong, T. Hirai, T. Kawai, Optical properties of Bi~(3+) ions doped in NaYF_4. J. Lumin., 2007, 122-123: 149-151.
    [39] J.G. Kang, H.M. Yoon, G.M, Chun, et al, Spectroscopic studies of Bi~(3+) colour centres in KC1 single crystals. J. Phys.: C 1994, 6: 2101-2116.
    [40] A. C. van der Steen, Luminescence of Cs_2NaYCl_6-Bi~(3+) (6s~2). Phys. Status Solidi. (b), 1980, 100: 603-611.
    [41] 郭凤瑜,刘念红,宋增福,LaBO_3、GdBO_3中Eu~(3+)和Bi~(3+)的发光特性及其相互作用.中国稀土学报,1991,9:319-323.
    [42] T. Tsuboi, P. Ahmet, J. G. Kang, Optical absorption bands due to the s~2→sp transition in KCl:Sb~(3+) crystals. J. Phys. C, 1992, 4: 531-534.
    [43] E. W. J. L. Oomen, W. M. A. Smit, G. Blasse, On the luminescence of Sb~(3+) in Cs_2NaMCl_6 (with M=Sc, Y, La): a model system for the study of trivalent s~2 ions. J. Phys. C, 1986, 19: 3263-3272.
    [44] L. P. Benderskaya, A. S. Voloshinovskii, I. P. Pashuk, et al, Luminescence of calcium halophosphate during excitation in the range of 4-11 eV. J. Appl. Spec., 1993, 58: 293-295.
    [45] F. Wen, W. Li, Z. Liu, et al, Hydrothermal synthesis of Sb~(3+) doped and (Sb~(3+), Eu~(3+)) co-doped YBO_3 with nearly white light luminescence. Solid State Comm., 2005, 133: 417-420.
    [46] Z. R. Hao, G. Blasse, Energy transfer phenomena in luminescent materials based on GdB_3O_6. Mater. Chem. Phys., 1985, 12: 257-274.
    [47] K. C. Mishra, K. H. Johnson, B. G. DeBoer, et al, First principles investigation of electronic structure and associate properties of zinc orthosilicate phosphors. J. Lumin., 1991, 47: 197-206.
    [1] A. J. Zarur, J. Y. Ying, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature, 2000, 403: 65-67.
    [2] A. J. Zarur, H. H. Hwu, J. Y. Ying, Reverse microemulsion-mediated synthesis and structural evolution of barium hexaaluminate nanoparticles. Langmuir, 2000, 16: 3042-3049.
    [3] P. K. Sahu, B. D. Kulkarni, R. B. Khomane, et al, Barium hexaaluminate nanowhiskers synthesized by novel sol-gel process in reverse micellar media. Chem. Comm., 2003: 1876-1877.
    [4] A. J. Zarur, N. Z. Mehenti, A. T. Heibel, Phase behavior, structure, and application of reverse microemulsions stabilized by nonionic surfactants. Langmuir, 2000, 16: 9168-9176.
    [5] W. Chu, W. Yang, L. Lin, Selective oxidation of methane to syngas overNiO/barium hexaaluminate. Catal. Lett., 2001, 74: 139-144.
    [6] D. Naoufal, J. M. Miller, E. Garbowski, et al, Synthesis, structure and catalytic properties of Fe-substituted barium hexaaluminates. Catal. Lett., 1998, 54: 141-148.
    [7] L. Yu, H. Song, Z. Liu, L. Yang, et al, Electronic Transition and Energy Transfer Processes in LaPO_4-Ce~(3+)/Tb~(3+) Nanowires. J. Phys. Chem. B, 2005, 109:11450-11455.
    [8] 李新国,叶早发,汪成滨,无焰式甲烷高温催化燃烧动力学研究.中正岭学报,2004,32:1-15.
    [9] 景晓燕,郑传伟,王君,化学共沉淀制备PDP荧光粉BaAl_(12)O_(19):Mn研究.哈尔滨工程大学学报,2003,24:229-232.
    [10] V. Pillai, P. Kumar, M. S. Multani, et al, Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Coll. Surf. A, 1993, 80: 69-75.
    [11] V. Pillai, P. Kumar, M. J. Hou, et al, Preparation of nanoparticles of silver halides, superconducotrs and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv. Coll. Inter. Sci., 1995, 55: 241-269.
    [12] V. Pillai, P. Kumar, D. O. Shah, Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. J. Mag. Mag. Mater., 1992, 116: L299-L304.
    [13] Z. Wei, L. Sun, C. Liao, et al, Size-dependent chromaticity in YBO_3:Eu nanocrystals: Correlation with Microstructure and site symmetry. J. Phys. Chem. B, 2002, 106: 10610-10617.
    [14] P. Firman, D. Hasse, M. Kahlweit, et al, On the effect of electrolytes on the mutual solubility between water and nonionic amphiphiles. Langmuir, 1985, 1: 718-724.
    [15] J. Fang, Processing of functional ceramics via microemulsion routes. Chapter 3, Microemulsion Systems for Producing Ultrafine Ceramic Materials, Ph.D. Thesis, National Univ. of Singapore, 1998.
    [16] L. Yan, J. Zhuang, X. Sun, et al, Formation of rod-like Mg(OH)_2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys., 2002, 76:119-122.
    [17] M. J. Schwuger, K. Stickdom, Microemulsions in technical process. Chem. Rev., 1995, 95: 849-864.
    [18] M. P. Pileni, Nanosized particles made in colloidal assemblies. Langmuir, 1997, 13: 3266-3276.
    [19] K. S. Sohn, E. S. Park, C. H. Kim, et al, Photoluminesecence behavior of BaAl12019:Mn phosphor prepared by pseudocombinatorial chemistry method. J. Electrochem. Soc., 2000, 147: 4368-4373.
    [20] A. Mendez, F. Ramos L., H. Riveros, et al, Energy transfer mechanisms in the KBr:Eu~(2+):Mn~(2+) phosphor. J. Mater. Sci. Lett., 1999, 18: 399-402.
    [21] W. J. Yang, L. Luo, T. M. Chen, et al, Luminescence and energy transfer of Euand Mn-coactivated CaAl_2Si_2O_8 as a potential phosphor for white-light UVLED. Chem. Mater., 2005, 17: 3883-3888.
    [22] 林海,刘行仁,王敬伯,Ca_8Zn(SiO_4)_4Cl_2:Eu~(2+),Mn~(2+)荧光体中Mn~(2+)的晶体学格位及Eu~(2+)-Mn~(2+)间能量传递.吉林大学自然科学学报,1996(4):91-94.
    [23] 乔彬,张中太,唐子龙,et al,Eu~(2+),Mn~(2+)共激活碱土镁硅酸盐基红色荧光粉的发光性能.中国稀土学报,2003,21:192-195.
    [24] G.Tzvetkov, N. Minkova, Mechanochemical stimulation of the synthesis of lanthanum oxyapatite. Mater. Lett., 1999, 39: 354-358.
    [1] 徐志元,孙大明,李爱侠,et al,MgF_2氧化现象的X射线衍射研究.硅酸盐学报,2002,30:505-508.
    [2] Y. Kunio, H. Yuichi, U. Heiju, et al, Improvement of the performance and aging characteristics of color plasma displays by using a co-evaporated protecting layer. J. Inst. Image Inf. Telev. Eng., 1998, 52: 1707-1712.
    [3] C. C. Lin, K. L. Tsai, L. Ozawa, Phosphor particle with antireflection coating. US patent, 1998, 5792509.
    [4] 崔洪涛,张耀文,洪广言,et al,荧光粉的表面包覆.功能材料,2001,32:564-567.
    [5] M. Hirofumi, M. Tomofumi, K. Tsutomu, Oxidation-resistant phosphor and production method therefore. JP patent, 2001, 2001200249.
    [6] K. Hiroyuki, A. Masaki, Phosphor for plasma display panel and phosphor ink. JP Patent, 2000, 2000087030.
    [7] Y. R. Do, D. H. Park, Y. S. Kim, Phosphor for a plasma display device coated with a continuous thin protective layer and method of manufacture. US patent, 2002, 20020039665.
    [8] C. N. Chau, Phosphor with modified surface composition and method for preparation. US patent, 1997, 5695685.
    [9] S. Fujihara, M. Tada, T. Kimura, Controlling factors for the conversion of trifluoroacetate sols into thin metal fluoride coatings. J. Sol-gel Sci. Technol., 2000, 19: 311-314.
    [10] S. Fujihara, M. Tada, T. Kimura, Preparation and characterization of MgF_2 thin film by a trifluoroacetic acid method. Thin Solid Films, 1997, 304: 252-255.
    [11] M. Tada, S. Fujihara, T. Kimura. Sol-gel processing and characterization of alkaline earth and rare-earth fluoride thin films. J. Mater. Res., 1999, 14: 1610-1616.
    [12] 彭国贤,PDP用荧光粉的亮度衰减.电子器件,2001,24:245-251.
    [13] T. Justel, H. Nikol. Optimization of luminescent materials for plasma display panels. Adv. Mater., 2000, 12: 527-530.
    [14] K. Yokota, S. X. Zhang, K. Kimura, et al, Eu~(2+)-activated barium magnesium aluminate phosphor for plasma displays—Phase relation and mechanism of thermal degradation. J. Lumin., 2001, 92: 223-227.
    [1] 武鹏,胡瑞生,沈岳年,稀土六铝酸盐的结构及在高温催化材料中的应用.稀土,2003,24:74-77.
    [2] S. C. Abrahams, P. Marsh, C. D. Brandle, Laser and phosphor host La_(1-x)MgAl_(11-x)O_(19) (x=0.050): Crystal structure at 295 K. J. Chem. Phys., 1987, 86: 4221-4227.
    [3] 尤洪鹏,吴雪艳,洪广言,et al,LaMgAl_(11)O_(19):R(R=Tb,Mn)的真空紫外光谱特性.中国稀土学报,2002,20:572-574.
    [4] J. M. P. J. Verstegen, J. L. Sommerdijk, J. G. Verriet, Cerium and terbium luminescence in LaMgAl_(11)O_(19). J. Lumin., 1973, 6:425-431.
    [5] S. R. Rotman, J. F. Prins, E. Luria, Concentration effects and energy transfer in the cathodoluminescence of europium-manganese-doped lanthanum magnesium hexaaluminate. Phys. Stat. Sol. (a), 1997, 164: 845-850.
    [6] B. Liu, C. Shi, Z. Qi, et al, Potential white-light long-lasting phosphor: Dy~(3+)-doped aluminate. Appl. Phys. Lett., 2005, 86:191111.
    [7] M. Kamada, J. Murakami, N. Ohno, Excitation spectra of a long-persistent phosphor SrAl_2O_4:Eu, Dy in vacuum ultra violet region. J. Lumin., 2000, 87-89: 1042-1044.
    [8] B. Liu, J. Kong, C. Shi, White-light long-lasting phosphor Sr_2MgSi_2O_7:Dy~(3+). J. Lumin., 2007, 122-123: 121-124.
    [9] D. K. Sardar, W. M. Bradley, R. M. Yow, et al, Optical transitions and absorption intensities of Dy~(3+) (4f~9) in YSGG laser host. J. Lumin., 2004, 106: 195-203.
    [10] H. Wang, J. Li, G. Jia, et al, Optical properties of Dy~(3+) ions in sodium gadolinium tungstates crystal. J. Lumin., in press.
    [11] G. Dominiak-Dzik, W. Ryba-Romanowski, L. Kovacs, et al, Effect of temperature on luminescence and VUV to visible conversion in the YAl_3(BO_3)_4:Dy~(3+) (YAB:Dy) crystal. Rad. Meas., 2004, 38: 557-561.
    [12] S. C. Gedam, S. J. Dhoble, S. V. Moharil, Dy~(3+) and Mn~(2+) emission in KMgSO_4Cl. J. Lumin., 2007, 124: 120-126.
    [13] J. H. Barkyoumb, V. K. Mathur, A. C. Lewandowski, et al, Low-temperature luminescence properties of CaSOa:Dy. J. Lumin., 1997, 72-74: 629-632.
    [14] H. W. Kui, D. Lo, Y. C. Tsang, et al, Thermoluminescence properties of double potassium yttrium fluorides singly doped with Ce~(3+), Tb~(3+), Dy~(3+) and Tm~(3+) in response to α and β-irradiation. J. Lumin., 2006, 117: 29-38.
    [15] W. D. Fragoso, C. de M. Donega, R. L. Longo, Luminescence and energy transfer in La_2O_3-Nb_2O_5-B_2O_3:M~(3+) (M=Bi, Eu, Dy) glasses. J. Lumin., 2003, 105: 97-103.
    [16] Q. Su, H. Liang, C. Li, et al, Luminescent materials and spectroscopic properties of Dy~(3+) ion. J. Lumin., 2007, 122-123: 927-930.
    [17] G. Blasse, B. C. Grabmaier, Luminescent materials. Berlin Heidelberg, Springer-Verlag, 1994.
    [18] L. van Pieterson, M. F. Reid, R. T. Wegh, et al, 4f~n-4f~(n-1)5d transition of the trivalent lanthanides: experiment and theory. J. Lumin., 2001, 94-95: 79-83.
    [19] P. S. Peijzel, A. Meijerink, R. T. Wegh, et al, A complete 4fn energy level diagram for all trivalent lanthanide ions. J. Solid State Chem., 2005, 178: 448-453.
    [20] J. Holsa, M. Lastusaari, M. Marysko, et al, A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions. J. Solid State Chem., 2005, 178: 435-440.
    [21] E. Nakazawa, The lowest 4f-to-5d and charge-transfer transitions of rare earth ions in YPO_4 hosts. J. Lumin., 2002, 100: 89-96.
    [22] 苏锵,梁宏斌,陶冶,et al,稀土离子的高能光谱.中国稀土学报,2001,19:481-486.
    [23] C. Liu, J. Liu, S. Lu, et al, Energy migration and transfer of Tm~(3+)-Gd~(3+)-Dy~(3+) system in NaGdF_4 under VUV and UV excitations. J. Lumin., 2007, 122-123: 970-972.
    [24] A. N. Belsky, N. M. Khaidukov, J. C, Krupa, et al, Luminescence of CsGd_2F_7:Er~(3+), Dy~(3+) under VUV excitation. J. Lumin., 2001, 94-95: 45-49.
    [25] F. S. Liu, Q. L. Liu, J. K. Liang, et al, Optical spectra of Ln~(3+) (Nd~(3+), Sm~(3+), Dy~(3+), Ho~(3+), Er~(3+))-doped Y_3GaO_6. J. Lumin., 2005, 111: 61-68.
    [26] M. Malinowski, I. Pracka, P. Myziak, et al, Spectroscopy of Dy~(3+)-doped SrLaGa_3O_7 crystals: J. Lumin., 1997, 72-74: 224-225.
    [27] X. Lu, Z. You, J. Li, et al, The optical properties of Dy~(3+)-doped NaY(MoO_4)_2 crystal. J. Lumin., in press.
    [28] S. C. Gedam, S. J. Dhoble, S. V. Moharil, Synthesis and effect of Ce~(3+) co-doping on photoluminescence characteristics of KZnSO_4Cl:M (M=Dy~(3+) or Mn~(2+)). J. Lumin., 2006, 121: 450-455.
    [29] H. Liang, Q. Zeng, Y. Tao, et al, VUV-UV excited luminescent properties of calcium borophosphate doped with rare earth ions. Mater. Sci. Eng. B, 2003, 98: 213-219.
    [30] H. C. Yang, C. Y. Li, H. He, et al, VUV-UV excited luminescent properties of LnCa_4O(BO_3)_3:RE~(3+) (Ln=Y, La, Gd; Re=Eu, Tb, Dy, Ce). J. Lumin., 2006, 118: 61-69.
    [31] H. You, X. Wu, Xiaoqing Zeng, et al, Infrared spectra and VUV excitation properties of BaLnB_9O_(16):Re (Ln=La, Gd; Re=Eu, Tb). Mater. Sci. Eng. B, 2001, 86: 11-14.
    [32] X. Wu, H. You, H. Cui, Vacuum ultraviolet optical properties of (La, Gd)PO_4:RE~(3+) (RE=Eu, Tb). Mater. Res. Bull., 2002, 37:1531-1538.
    [33] A. M. Srivastava, On the luminescence of Bi~(3+) in the pyrochlore Y_2Sn_2O_7. Mater. Res. Bull., 2002, 37: 745-751.
    [34] A. M. Srivastava, Luminescence of Bi~(3+) in LaGaO_3. Mater. Res. Bull., 1999, 34: 1391-1396.
    [35] L. I. van Steensel, S. G. Bokhove, A. M. van de Craats, et al, The Luminescence of Bi~(3+) in LaInO_3 and some other perovskites. Mater. Res. Bull., 1995, 30: 1359-1362.
    [36] Z. Hao, G. Blasse, Energy phenomena in luminescent materials based on GdB_3O_6. Mater. Chem. Phys., 1985, 12: 257-274.
    [37] K. C. Mishra, K. H. Johnson, B. G. DeBoer, et al, First principles investigation of electronic structure and associate properties of zinc orthosilicate phosphors. J. Lumin., 1991, 47: 197-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700