几种有机分子电氧化机理及蛋白质吸附过程的现场红外光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现场红外反射光谱电化学是红外光谱与电化学方法相结合而形成的一种学科交叉研究方法。其特点是同时获得电化学和红外光谱信息,为现场监测反应中间体、吸附物种及反应产物提供了非常有利的研究手段,因而在电化学反应、表面吸脱附过程等研究中得到广泛的应用。提供了大量关于固/液界面分子水平的信息,在推动电化学科学研究进入分子水平中发挥了重要作用。
     衰减全反射红外光谱技术是表层结构分析的有利手段。与传统透射制样法相比,具有非破坏性,适用于溶液样品测量,简单方便等优点。衰减全反射红外光谱可有效地排除溶剂吸收的影响,提供表面化学信息。适用于界面现象研究及现场监测溶液中化学或生物反应过程。本文在文献基础上,运用现场红外反射光谱电化学和衰减全反射红外光谱法对电化学反应机理及界面吸脱附过程进行了研究。主要内容如下:
     1.综述了现场红外反射光谱电化学和衰减全反射红外光谱技术的原理、方法及应用进展。
     2.运用循环伏安法和现场红外反射光谱电化学技术,研究了0.2mol L~(-1) KCI水溶液中对-甲氨基苯酚在铂电极上的电氧化还原过程。循环伏安扫描和现场红外反射吸收光谱结果表明:对-甲氨基苯酚的电氧化还原过程中有两个电子和两个质子发生转移,对-甲氨基苯酚首先氧化生成对-甲亚胺基苯醌,然后其氧化产物发生不可逆水解反应生成对苯醌和甲氨。
     3.现场红外反射光谱电化学和循环伏安法研究吡哆醇在碱性溶液中金电极上的电氧化过程。电化学循环伏安结果表明在0.1mol L~(-1) NaOH溶液中,Au电极对吡哆醇有很高的催化活性,吡哆醇的氧化是不可逆的,近似于一级
In situ infrared reflection spectroelectrochemisty, which is the combination of infrared spectroscopy and electrochemistry, can provide infrared spectral and electrochemical information at the same time. It has become a powerful tool for in situ determining the intermediate, adsorbed species and products of electrode reaction. And it has been widely used to study electrocatalytic oxidation mechanism and adsorption/desorption process. This information gives valuable data for a molecular picture of solid/liquid interface and contributes to the study of electrochemical process at a molecular level.Attenuated total reflection infrared spectroscopy (ATR) is a useful tool for surface analysis providing structural and chemical information about the sample. Compared with the traditional transmission IR techniques, the method has several advantages including non-destruction, aqueous sample analysis, and convenience. ATR spectroscopy can yield valuable surface-chemical data with reduced interferences from solvent, which allows exploring solid/liquid interfacial phenomena and monitoring chemical or biological reaction in situ. The studies in this thesis are summarized as follows:1. The principle, method and the recent progress of in situ infrared reflection spectroelectrochemisty and attenuated total reflection infrared spectroscopy technique is reviewed.2. The electrochemical redox reaction of p-methylaminophenol on platinum electrode in 0.2 mol L~(-1) KC1 solution was investigated by cyclic voltammetry and in situ reflection absorption Fourier transform infrared spectroscopy (FTIRS).
    The results show that two electrons and protons were transferred during the redox process of p-methylaminophenol. The electrochemical oxidation of p-methylaminophenol yields /?-N-methylobenzoquinoeimin intermediate at first. And the resulted p-N-methylobenzoquinoeimin further undergoes irreversible hydrolysis to yield /?-benzoquinone and methylamine.3. The electrochemical oxidation of pyridoxol (PN) on a poly crystal line gold electrode was investigated by cyclic voltammetry and in situ Fourier transform infrared spectroscopy (FTIRS). In 0.1 M aqueous NaOH, the gold electrode showed a high catalytic activity for the irreversible oxidation of PN via an approximate first-order kinetic process. The individual ionic species and the major tautomeric equilibria of PN molecules in aqueous solutions were evidenced well from the pH-dependent attenuated total internal reflection (ATR) spectra, and the results were in good agreement with the voltammetric observations. In situ single potential alteration reflectance spectroscopy (SPAIRS) demonstrated that a lactone form of PN, rather than pyridoxal aldehyde, was likely formed, which was subsequently diffused into thin layer solution and underwent hydrolysis slowly to pyridoxic acid (PA) as the final product. In addition, the adsorption of PN at Au electrode was characterized by in situ subtractively normalized interfacial Fourier transform spectroscopy (SNIFTIR) method, which revealed that the adsorption of deprotonated PN, via nitrogen atom in vertical configuration on electrode surface, occurred from -0.5 V vs Ag|AgCl|KCl(sat), which was much lower than the potential of PN electrooxidation observed from ca. 0 V.
引文
[1] A. Bewick, K. Kunimatsu, B. S. Pons, Infrared spectroscopy of the electrode electrolyte interphase. Electrochim. Acta., 1980, 25: 465-468.
    [2] R. Davidson, S. Pons, A. Bewick, P. P. Schmidt, Vibrational spectroscopy of the electrode/electrolyte interface. Use of fourier transform infrared spectroscopy. J. Electroanal. Chem. Interfacial Electrochem., 1981, 125:237-241.
    [3] 孙世刚,扬东方,田昭武,电化学过程的现场FTIR反射光谱研究.自然科学进展,1991,1:40-44.
    [4] D. Aurbach, O. Chusid, In situ FTIR spectroelectrochemical studies of surface films formed on Li and Nonactive electrodes at low potentials in salt solution containing CO_2. J. Electroanal. Chem., 1993, 140 (11): 155-1557.
    [5] K. Ataka, Y. Hara, M. Osawa, A new approach to electrode kinetics and dynamics by potential modulated Fourier transform infrerad spectroscopy. J. Electroanal. Chem., 1999, 473: 34-42.
    [6] P. Cai, C. R. Flach, R. Mendelsohn An Infrared reflection absorption spectroscopy study of the secondary structure in (KL_4)_4K, a therapeutic cagent for respiratory distress syndrome, in aqueous monolayers with phospholipids. Biochemistry., 2003, 42: 9446-9452.
    [7] A. Bewick, B. S. Pons, In advances in infrared and raman spectroscopy. (Eds. Clark,R. J. H. & Hester, R. E), published by John Wiley& Sons, 1986, vol. 12.
    [8] 张祖训,汪尔康,电化学原理和方法[M].北京:科学出版社,2000,631-633.
    [9] W. R. Heineman, J. N. Burnett, and Royce W. Murray, Optically transparent thin-layer electrodes: ninhydrin reduction in an infrared transtparent cell. Anal. Chem., 1968, 40(13): 1974-1978.
    [10] P. A. Flowers, G. Mamahtov, Infrared spectroscopic and spectroelectrochemical investigation of chloranil in molten sodium chloroaluminates. J. Electrochem. Soc., 1989, 136(10): 2944-2949.
    [11] A. Bewick, K. Kunimatsu, B. S. Pons, Electrochemically modulated infrared spectroscopy (EMIRS). J. Electroanal. Chem., 1984, 160: 47-61.
    [12] B. Aemand, H. Joseph, W. Shmuel, C. Zelig, Y. Raphael, O. Dan, Reflection FTIR spectroelectrochemistry using ionically conductive polymer films: electrochemical preparation and spectroscopic characterization of some metal hydrides. J. Electroanal. Chem., 1996, 405(1): 251-254.
    [13] W. F. Lin, S. G, Sun, In situ investigation of surface process of Rh on electrode-novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution. Electrochim. Acta., 1996, 41 (6): 803-809.
    [14] 蒋俊光,林祥钦,利用毛细管效应的反射式显微红外光谱电化学池的设计和表征.分析化学,1997,6:734-737.
    [15] H. Visser, A. Curtright, E. McCusker, J. K., K. Sauer, Attenuated total reflection design for in situ FTIR spectroelectrochemical studies. Anal. Chem., 2001, 73(17): 4374-4378.
    [16] J. T. Bradshaw, S. B. Mendes, S. S. Saavedra, A simplified broadband coupling approach Applied to chemically robust sol-Gel, planar integrated optical wave guides. Anal. Chem., 2002, 74: 1751-1759.
    [17] P. A. Brooksby, W. R. Fawcett, Determination of the electric field intensities in a mid-infrared spectroelectrochemical cell using attenuated total reflection spectroscopy with the otto optical configuration. Anal. Chem., 2001, 73:1155-1160.
    [18] K. Kunimatsu, Potential dependence of infrared reflection absorption spectrum of the adsorbed carbon monoxide produced by chemisorption of methanol on a smooth platinum: A new in situ IR spectroscopic method for the determination of the spectrum at a fixed potential. J. Electroanal. Chem., 1982, 140: 205-210.
    [19] S. Pons, The use of fourier transform infrared spectroscopy for in situ recording of species in the electrode-electrolyte solution-interphase. J. Electroanal. Chem., 1983, 150: 495-504.
    [20] J. K. Foley, S. Pons, Optimized field-flow fractionation system based on dual stream splitters. Anal. Chem., 1985, 57(4): 945-947.
    [21] 周志华,红外光谱电化学.化学通报,1990,7:6-12.
    [22] T. Iwasita, F. C. Nart, In situ infrared spectroscopy at electrochemical interfaces. Prog. Surf. Sci., 1997, 55(4): 271-340.
    [23] 肖晓银,孙世刚,电化学表面过程的原位振动光谱和扫描隧道显微镜研究-Pt、Au多晶和单晶电极上CO,CN~-,PNBA和氨基酸分子的吸附及Cu的电沉积过程.厦门大学博士论文,2000.4-27.
    [24] R. G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys., 1966, 44: 310-315.
    [25] F. Kitamura, M. Takahashi and M. Ito, Adsorption site interconversion induced by electrode potential of carbon monoxide on the platinum (100) single-crystal electrode. J. Phys. Chem; 1988, 92(12): 3320-3323.
    [26] S. C. Chang and M. Weaver, In situ infrared spectroscopy of CO adsorbed at ordered Pt(110)-aqueous interfaces. Surf. Sci., 1990, 230: 222-236.
    [27] G. Q. Lu, S. G. S. P. Chen, and L. R. Cai, Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy. J. Electroanal. Chem., 1997, 421: 19. 19-23
    [28] C. S. Kim, C. Korzeniewski, Cyanide adsorbed as a monolayer at the low-index surface planes of platinum metal electrodes: an in situ study by infrared spectroscopy. J. Phys. Chem., 1993, 97 (38): 9784-9787.
    [29] F. Huerta, E. Morallon, et al, Voltammetric and spectroscopic characterization of cyanide adlayers on Pt(h,k,l) in an acidic medium. Surf. Sci., 1998, 396 (400): 400-410
    [30] D. C. Ha, M. C. P. M.; D. Souza, J. P. I.; F. C. Nart, Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes. Langmuir, 2000, 16:771-777.
    [31] M.Weber, I.R. de Moraes, A.J.Motheo, F.C.Nart, In situ vibrational spectroscopy analysis of adsorbed phosphate species on gold single crystal electrode. Colloids. Surf., A 1998, 134:103-111.
    [32] K. Arihara, F. Kitamura, T. Ohsaka, K. Tokuda, Characterization of the adsorption state of carbonate ions at the Au(111) electrode surface using in situ IRAS. J. Electroanal.Chem.,2001, 510: 128-135.
    [33] B. A. lvarez, V. Climent, A. Rodes, J.M. Feliu, Anion adsorption on Pd-Pt(111) electrodes in sulphuric acid solution. J. Electroanal.Chem., 2001, 497: 125-138.
    [34] I.R. Moraes, F.C. Nart, Vibrational study of adsorbed phosphate ions on rhodium single crystal electrodes, J. Electroanal.Chem., 2004, 563, 41-47.
    [35] F. Montilla, E. Morallo'n , J.L. Va'zquez, Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochim. Acta., 2002, 47: 4399-4406.
    [36] Y. Ikezawa, T. Sawatari, T. K. H. Goto, K. Toriba, In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode. Electrochim. Acta., 1998, 43 (21-22): 3297-3301.
    [37] Y. Ikezawa , Y. Koda, M. Shibuya, H. Trashima, In situ FTIR study of pyrazine adsorbed on Au(111), Au(100) and Au(110) electrodes. Electrochim. Acta., 2000, 45: 2075-2082.
    [38] Y. Ikezawa , R. Sekiguchi, T. Kitazume, Adsorption of benzoic acid on Au(111) and Au(110) electrodes in acidic media by IRAS. Electrochim. Acta., 2000, 46: 731-736.
    [39] A. Chen, D. Yang, J. Lipkowski, Electrochemical and FTIR studies of 4-cyanopyridine adsorption at the gold (111)-solution interface. J. Electroanal. Chem., 1999, 475: 130-138.
    [40] Y. Ikezawa, T. Kosugi, In situ FTIR study of 2-chloropyridine adsorbed on Au (111) and Au (110) electrodes. Electrochim.Acta., 2002, 47: 2921-2925.
    [41] F. Vigier, C. Coutanceau, F. Hahn, E. M. Belgsir, C. Lamy, On the mechanism of ethanol electrooxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal.Chem., 2004, 563: 81-89.
    [42] M. Avramov-Ivic', S. S trbac, V. Mitrovic', The electrocatalytic properties of the oxides of noble metals in the electrooxidation of methanol and formic acid. Electrochim. Acta., 2001,46: 3175-3180.
    [43] A. Cherqaoui, D. Takky, K. B. Kokoh, F. Hahn, E. M. Belgsir, J-M. Le'ger, C. Lamy, Electrooxidation of meso-erythritol on platinum in acid medium: analysis of the reaction products. J. Electroanal. Chem., 1999, 464:101-109.
    [44] L. Proenc, M. I. S. Lopes, I. Fonseca, A. Rodes, R. GoA mez, A. A Idaz, On the oxidation of D-sorbitol on platinum single crystal electrodes: a voltammetric and in situ FTIRS study. Electrochim. Acta., 1998, 44: 735-743.
    [45] N. H. Lin, S. G. Sun, S. P. Chen, Studies on the role of oxidation states of the platinum surface in elelctrocatalytic oxidation of small primary alcohols. J. Electroanal. Chem., 1997, 430: 57-67.
    [46] G. Tremiliosi-Filho, E. R. Gonzalez, A. J. Motheo, E. M. Belgsir, J.-M. Le'ger, C. Lamy, Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism, J. Electroanal. Chem., 1998, 44:31-39.
    [47] E. Pastor, S. Gonzalez, A. J. Arvia, Electroreacrtivity of ispropanol on the platinum in acid studied by DEMS and FTIRS. J. Electroanal.Chem., 1995, 395: 233-242.
    [48] R. Parsons, T. N. Vauder. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem., 1988,257: 9-45.
    [49] 孙世刚,吸附原子电催化机理的研究——铂单晶(100)晶面上Pb、Cd吸附原子在甲醇电氧化中的助催化特性.物理化学学报,1990,6(3):364-368.
    [50] 孙世刚,李南海,卢国强,陈声培,四碳醇电催化氧化机理的现场FTIR反射光谱研究.精细化工,1996,13:1-5.
    [51] N.H. Li, S. G. Sun, In situ FTIR spectroscopic studies of electrooxidation of C4 alcohol on platinum electrodes. Part I. reaction mechanism of 1-butanol oxidation. J. Electroanal. Chem., 1997, 436(1-2): 65-72.
    [52] F. Largeaud, K. B. Kokh, B. Beden, C. Lamy, On the electrochemical reactivity of anomers: electrocatalytic oxidation of α-and P-D-glucose on platinum electrodes in acid and basic media. J. Electroanal.Chem., 1995, 397: 261-269.
    [53] X. Zhang, K. Y. Chan, J. K. You, Z. G. Lin, A. C. C. Tseung, Partial oxidation of glucose by a Pt/WO_3 electrode. J. Electroanal.Chem., 1997, 430: 147-153.
    [54] S.B. Aoun, G.S. Bang, T. Koga, Y. Nonak, T. Sotomura, I. Taniguchi, Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes' in alkaline solutions. Electrochemy. Commun, 2003, 5(4):317-320.
    [55] A.T. Governo, L. Proenca, P. Parpot, M.I.S. Lopes, I.T.E. Fonseca, Electrooxidation of D-xylose on platinum and gold electrodes in alkaline medium. Electrochim. Acta., 2004, 49:1535-1545.
    [56] H. Druliolle, K.Bo Kokoh, F. Hahn, C. Lamy, B. Beden, On some mechanistic aspects of the electrochemical oxidation of lactose at platinum and gold electrode in alkaline medium. J. Electroanal. Chem., 1997, 426: 103-115.
    [57] I.Y. Bae, E.Yeager, In situ infared studies of glucose oxidation on platinum in an alkaline medium. J. Electroanal. Chem., 1991, 309: 131-145.
    [58] H.W.Lei, Bingliang Wu, C.S. Cha, H. Kita, Electrooxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. J. Electroanal. Chem., 1995,382: 103-110.
    [59] F. Huerta, E. Morallon, F. Cases, A. Rodes, J.L. Vazquez, A. Aldaz, Electrochemical behavior of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part I. Glycine on Pt (111). J. Electroanal. Chem., 1997, 421: 179-185.
    [60] F. Huerta, E. Morallon, F. Cases, A. Rodes, J. L. Vazquez, A. Aldaz, Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part Ⅱ. Serine and alanine on Pt (111). J. Electroanal. Chem., 1997, 431: 269-275.
    [61] F. Huerta, E. Morallon, F. Cases, A. Rodes, J. L. Vazquez, A. Aldaz, Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part Ⅲ. Glycine on Pt (100) and Pt (110). J. Electroanal. Chem., 1998, 445: 155-164.
    [62] F. Huerta, E. Morallon, F. Cases, A. Rodes, J. L. Vazquez, A. Aldaz, Electrochemical behaviour of amino acids on Pt(h,k,l). A voltammetric and in situ FTIR study. Part Ⅳ. Serine and atanine on Pt (100) and Pt (110). J. Electroanal. Chem., 1999, 475: 38-45.
    [63] K. Orura, M. Kobuyash, M. Nakayama, Y. Miho, Electrochemical and in situ FTIR studies on the adsorption and oxidation of glycine and lysine in alkaline medium. J. Electroanal. Chem., 1998, 449: 101-109.
    [64] K. Orura, M. Kobuyash, M. Nakayama, Y. Miho, In situ FTIR studies on the electrochemical oxidation of histidine and tyrosine. J. Electroanal. Chem., 1999, 463: 218-223.
    [65] K. Orura, M. Kobuyash, M. Nakayama, Y. Miho. Spectrochemical and EQCM studies on the oxidation of glycil-peptides in alkaline medium. J. Electroanal. Chem., 2000, 482: 32-39.
    [66] 甄春花,范纯洁,谷艳娟,陈声培,孙世刚,碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化.物理化学学报,2003,19(1):60-64.
    [67] C. H. Zhen, S. G. Sun, C. J. Fan, S. P. Chen, B. W. Mao, Y. J. Fan, In situ FTIRS and EQCM studies of glycine adsorption and oxidation on Au(111) electrode in alkaline solutions. Electrochim. Acta., 2004, 49: 1249-1255.
    [68] A. Zimmermann, L. Dunsch, Investigation of the electropolymerization of aniline by the in situ techniques of attenuated total reflection (ATR) and external reflection (IRRAS). J. Mol. Struct.,1997, 410-411: 165-171.
    [69] I. Rodry'guez, B.R. Scharifker, J. Mostany, In situ FTIR study of redox and overoxidation processes in polypyrrole films. J. Electroanal.Chem., 2000, 491: 117-125.
    [70] E. Lankinen, G. Sundholm, P. Talonen, T. Laitinen, T. Saario, Characterization of a poly(3-methyl thiophene) film by an in-situ dcresistance measurement technique and in situ FTIR spectroelectrochemistry. J. Electroanal.Chem., 1998, 447: 135-145.
    [71] K. Ogura, M. Nakayama, K. Nakaoka, Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian blue. J. Electroanal.Chem., 1999,474: 101-106.
    [72] H. Noda, K. Ataka, L.J.Wan, M.S. Osawa, Time-resolved surface-enhanced infrared study of molecular adsorption at the electrochemical interface, Surf. Sci., 1999, 427-428: 190-194.
    [73] S. Pronkin, T. W. owski, Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes, J. Electroanal.Chem., 2003, 550-551: 131-147.
    [74] S.G. Sun, Y. Lin, Kinetics of isopropanol oxidation on Pt (111), Pt(l 10), Pt(lOO), Pt(610) and Pt(211) single crystal electrodes- Studies of in situ time-resolved FTIR spectroscopy. Electrochim. Acta., 1998,44: 1153-1162.
    [75] J. Fahrenfort, Attenuated total reflection: A new principle for the production of useful infrared reflection spectra of organic compounds. Spectrochim. Acta., 1961,17: 698-709.
    [76] N.J. Harrick, Internal reflection spectroscopy. New York: Wiley, 1967.
    [77] N. Rochat, A. Chabli, F. Bertin, C. Vergnaud, P. Mur, S. Petitdidier, P. Besson, Infrared analysis of thin layers by attenuated total reflection spectroscopy. Mater. Sci. Eng., B. 2003,102,16-21.
    [78] K. Ohta, R. Iwamoto, Lower limit of the thickness of the measurable surface layer by Fourier transform infrared attenuated total reflection spectrometry. Anal. Chem., 1985, 57 (13): 2491-2499.
    [79] E.J. Vorenkamp, A.F. Kroesen, Interdiffusion and adhesion of poly(vinyl chloride) and poly(methyl methacrylate), Polym. Commun., 1989, 30(4): 116-120.
    [80] 罗传秋, 刘泳, 杨继萍, 翁健 , 表面改性医用橡胶的光谱研究. 光谱学与光谱分析, 1999, 19 (4):553-555.
    [81] M. E. Diaz, B. J. K. Chittur, R. L. Cerro, Infrared spectroscopy analysis of the structure of multilayer Langmuir-Blodgett films: Effect of deposition velocity and pH, Langmuir, 2005,21:610-616.
    [82] M.E. Soderquist, A.G. Walton, Structural changes in proteins adsorbed on polymer surfaces. J. Colliod Interface Sci., 1980, 75: 386-397.
    [83] W. Norde, F. Macritchie, G. Nowicka, J. Lyklema, Protein adsorption at solid-liquid interfaces: Reversibility and conformation aspects. J. Colliod Interface Sci., 1986, 112:447-456.
    [84] K.K. Chittur, FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials., 1998,19:357-369.
    [85] Robert Ros Seigel, Philipp Harder, Reiner Dahint, and Michael Grunze, On-line detection of nonspecific protein adsorption at artificial surfaces, Anal. Chem., 1997, 69: 3321-3328.
    [86] S.A. Sukhishvili, S. Granick, Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charge surface. J. Chem. Phys., 110 (20): 10153-10161.
    [87] G.C.M. Steffensa, L. Nothdurft, G. Buse, H. Thissen, H. H.ocker, D. Klee, High density binding of proteins and peptides to poly(d,L-Lactide) grafted with polyacrylic acid, Biomaterials., 2002, 23: 3523-3531.
    [88] P.Vermette, Virginie Gauvreau, Michel Pe'zolet, Gae'tan Laroche, Albumin and fibrinogen adsorption onto phosphatidylcholine monolayers investigated by Fourier transform infrared spectroscopy. Colloids Surf., B 2003, 29: 285-295.
    [89] Y. Yokoyama, R. Ishiguro, H. Maeda, M. Mukaiyama, K. Kameyama, K. Hiramatsu, Quantitative analysis of protein adsorption on a planar surface by Fourier transform infrared spectroscopy: lysozyme adsorbed on hydrophobicsilicon-containing polymer. J. Colliod Interface Sci., 2003, 268: 23-32.
    [90] C.H. Specht, F.H. Frimmel, An in situ ATR-FTIR study on the adsorption of dicarboxylic acids onto kaolinite in aqueous suspensions. Phys. Chem. Chem. Phys., 2001,3:5444-5449.
    [91] P.A. Connor, A.J. McQuillan, Phosphate adsorption onto TiO_2 from aqueous solution: An in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15: 2916-2921.
    [92] K.D. Dobson, A.J. McQuillan, In situ infrared spectroscopic analysis of the adsorption of aliphatic carboxylic acids to TiO_2, ZrC_2, Al_2O_3, and Ta_2O_5 from aqueous solution. Spectrochim.Acta, Part A., 1999. 55: 1395-1405.
    [93] L.J. Kirwan, P.D. Fawell, W.V. Bronswijk, In situ FTIR-ATR examination of poly(acrylic acid ) adsorbed onto hematite at low pH. Langmuir., 2003,19: 5802-5807.
    [94] U. Wolf, R. Leiberich, J. Seeba, Application of infrared ATR spectroscopy to in situ reaction monitoring. Catal. Today., 1999, 49: 411-418.
    [95] F. Robson, Isobutylene polymerization kinetics at low [TiCl_4] via real-time in situ FTIR-ATR spectroscopy. Polymer preprints, Division of polymer chemistry, American Chemical Society, 1998, 39(1): 32-37.
    [96] Tom Scherzer, Ulrich Decker, Real-time FTIR-ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light. Vib. Spectrosc, 1999, 19(2):385-398.
    [97] P. Fairbrother, W.O. George, Fermentation of cheese whey-monitoring by FTIR. J.M. Williams, Anal. Proc, 1989, 26:264-267.
    [98] 邱江,叶勤,张嗣,红外光谱技术在生物过程监测中的应用.生物工程学报,1998,14(1):1-5.
    [99] D. Picque, D. Lefier, R. Grappin, Monitoring of fermentation by infrared spectrometry: Alcoholic and lactic fermentations. Anal. Chim. Acta., 1993, 279: 67-72.
    [100] 刘布鸣,钟正贤,傅立叶红外光谱法在生物领域应用简介.Guangxi,1994,1(2):76.
    [101] 章宏强,蒋俊光,林祥钦,乙腈中对氨基苯酚氧化还原的显微红外光谱电化学.傅立叶变换红外光谱技术及应用研讨会论文集(三、四).北京建材工业出版社,1999,270-273.
    [102] H. J. Salavagione, J. A. P. Garces, E. M. C. Barbero, J. L. Vazquez, Spectroelectrochemical study of the oxidation of aminophenols on platinum electrode in acid medium. J Electroanal Chem., 2004, 565: 375-383.
    [103] M. F. Arucs, M. D. Hawley, The electrochemical oxidation of p-dimethylamineophenol in aqueous solution. J Electroanal Chem., 1968, 18:175-183.
    [104] M. Aceituno, D. Constantine, H_2O_2/TiO_2 photocatalytic oxidation of metol. Identificationof intermediates and reaction pathways. Water Research, 2002, 36: 3582-3585.
    [105] 孙世刚,扬东方,田昭武.电催化过程的现场FTIR反射光谱研究-正丙醇在铂电极上的氧化.自然科学进展,1990,1:41-44.
    [106] 张占军,李经建,吴锡尊,张文智,蔡生民.肾上腺素电氧化过程的快速扫描循环伏安研究.物理化学学报,2001,17(6):542-546.
    [107] 刘春艳,任新民,苯胺类化合物的电化学氧化及随后化学反应.应用化学,1990,7(3):19-23.
    [108] J. M. Ortega, Conducting potential range for poly(o-aminophenol). J. Thin Solid Film, 2000, 371: 28-35.
    [109] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem., 1979, 101: 19-28.
    [110] S. Ding, X.Z. Zhang. Investigations on polarography with linearly changing potential(XV). The adsorptive complex wave of Cu (II)-L-Adrenaline. J. Chem. Chinese University (in Chinese), 1991, 12(5): 598-562.
    [111] M. L. Ramos, J. F. Tyson, J. David, Curran.Determination of acetaminophen by flow injection with on-line chemical derivatization: Investigations using visible and FTIR spectrophotometry. Electrochim Acta., 1998, 364:107-116.
    [112] M. nakayama, S. saeki, K. ogura, In Situ Observation of Electrochemical Formation and Degradation Processes of Polyaniline by Fourier transform Infrared Spectroscopy. Analytical Sciences, 1999, 15: 259-263.
    [113] J.M. Sanchez-Ruiz, M. Martinez-Carrion, Ionization state of the coenzyme 5'-phosphate ester in cytosolic aspartate aminotransferase-A Fourier transform infrared spectroscopic study. Biochemistry., 1986, 25: 2915-2920.
    [114] R.A. John, Pyridoxal phosphate-dependent enzymes. Biochim Biophys Acta., 1995, 1248:81-96.
    [115] S. Cinta, C. Morari, E. Vogel, D. Maniu, M. Aluas, T. Iliescu, O. Cozar, W. Kiefer, Vibrational studies of B6 vitamin. Vib. Spectrosc, 1999, 19: 329.
    [116] J. Soderhjelm, J. Lindquist, Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst., 1975, 100: 349-354.
    [117] E. Jacobsen, T.M. Tommelstad, Differential pulse polarographic determination of pyridoxine in multivitamins tablets. Anal.Chim.Acta., 1984, 162: 379-383.
    [118] Y.F. Yik, H.K. Lee, S.F.Y. Li, S.B. Khoo, Micellar electrokinetic capillary chromatography of vitamin B6 with electrochemical detection. J. Chromotogr. A., 1991, 585: 139-144.
    [119] Q. Hu, T.S. Zhou, L. Zhang, H. Li, Y.Z. Fang, Separation and determination of three water-soluble vitamins in pharmaceutical preparations and food by micellar electrokinetic chromatography with amperometric electrochemical detection. Anal. Chim. Acta., 2001, 437: 123-129.
    [120] S.R. Hernandez, G.G. Ribero, H.C. Goicoechea, Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations. Talanta., 2003,61:743-752.
    [121] M.F.S. Teixeira. A. Segnini, F.C. Moraes, L.H. Marcolino-Junior, O. Fatibello-Filho, E.T.G. Cavalheiro, Determination of Vitamin B6 (pyridoxine) in pharmaceutical preparation by cyclic voltammetry at a copper (II) hexacyanoferrate (III) modified carbon paste electrode. J. Braz. Chem.Soc, 2003, 14(2): 316-321.
    [122] M.F.S. Teixeira, G. Marino, E.R. Dockal, E.T.G. Cavalheiro, Voltammetric determination of pyridoxine (Vitamin B6) at a carbon paste electrode modified with vanadyl(IV) - Salen complex. Anal. Chim. Acta., 2004, 508: 79-85.
    [123] J.D. Mahuren, T.A. Pauly, S.P.Coburn, Identification of 5-pyridoxic acid and 5-pyridoxicacidlactone as metabolites of vitamin B6 in humans. J. Nutr. Biochem., 1991,2 : 449-453.
    [124] T. Pineda, M.I. Lopez-Cozar, J.M. Sevilla, M. Blazquez, Electrochemical reduction of the final product of vitamin B-6 catabolism: a spectroscopic characterization of the reduced products of 4-pyridoxic acid. J. Electroanal. Chem., 1996, 403: 101-107.
    [125] S. Zhu, X. Hu, J. Zheng, Z. Guo, study on mechanism of the electrochemical reaction of vitamin B6. Acta Pharm. Sinica (Chinese), 1996, 31(6): 455-460.
    [126] T. Pineda, J.M. Sevilla, A.J. Roman, M. Blazquez, Electrooxidation of pyridoxal (PL) on a polycrystalline gold electrode in alkaline solutions. J. Electroanal. Chem., 2000, 492: 38-45.
    [127] L. Tan, Q.J. Xie, S.Z. Yao, Electrochemical and Spectroelectrochemical Studies on Pyridoxine Hydrochloride Using a Poly(methylene blue) Modified Electrode. Electroanalysis., 2004, 16: 1592-1597.
    [128] Z.J. Cao, Q.J. Xie, M. Li, S. Z. Yao, Simultaneous EQCM and fluorescence detection of adsorption/desorption and oxidation for pyridoxol in aqueous KOH on a gold electrode. J. Electroanal. Chem., 2004, 568: 343-351.
    [129] F. Bartl, H. Urjasz, B. Brzezinski, FT-IR study of pyridoxal phosphate. J. Mol. Struct., 1998,441:77-81.
    [130] A. Salva, J. Frau, F. Munoz, B. Vilanova, J. Donoso, FTIR study of pyridoxamine 5' phosphate, Biochim Biophys Acta., 2003,1647: 83-87.
    [131] D.S. Corrigan, L-W.H. Leung, M.J. Weaver, Single potential-alteration surface infrared spectroscopy: examination of absorbed species involved in irreversible electrode reactions. Anal. Chem., 1987, 59: 2252-2256.
    [132] R.R. Adzic , J.X. Wang, O.M. Magnussen, B.M. Ocko, Structure of Electrode Surfaces in the Course of Electrocatalytic Reactions: Oxidation of CO, Glucose, and Formaldehyde on Reconstructed and Unreconstructed Au(100). Langmuir, 1996, 12: 513-517.
    [133] A.R. Hind, S.K. Bhargava, A. McKinnon, At the solid/liquid interface: FTIR/ATR — the tool of choice. Adv. Colloid. Interface Sci., 2001, 93: 91-114.
    [134] A.E. Bolzan, T. Iwasita, A.J. Arvia, In situ FTIRRAS study of the electro-oxidation reactions of thiourea and gold in aqueous acid solutions. J. Electroanal. Chem., 2003, 554-555: 49-60.
    [135] C.H. Zhen, S.G. Sun, C.J. Fan, S.P. Chen, B.W. Mao, Y.J. Fan, In situ FTIRS and EQCM Electrochim. Acta., 2004, 49: 249-1255.
    [136] J.G. Love, P.A. Brookby, A.J. McQuillan, Infrared spectroelectrochemistry of the oxidation of absolute methanol at a platinum electrode. J. Electroanal. Chem., 1999, 464: 93-100.
    [137] M.E.M. Chbihi, D. Takky, F. Hahn, H. Huser, J.M. Leger, C. Lamy, In situ infrared reflectance spectroscopic study of propanediol electrooxidation at platinum and gold: Part 1. 1,3-Propanediol. J. Electroanal. Chem., 1999, 463: 63-71.
    [138] S. Pons, The use of fourier transform infrared spectroscopy for in situ recording of species in the electrode-electrolyte solution-interphase. J. Electroanal. Chem., 1983, 150:495-504.
    [139] N. Nanbu, F. Kitamura, T. Ohsaka, K. Tokuda, Adsorption of pyridine on a polycrystalline gold electrode surface studied by infrared reflection absorption spectroscopy. J. Electroanal. Chem., 1999, 470: 136-143.
    [140] Z. Borkowska, A. Tymosiak-Zielinska, G. Shul, Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta., 2004, 49: 1209-1220.
    [141] K. Endo, Y. Katayama, T. Miura, A rotating disk electrode study on the ammonia oxidation. Electrochim.Acta., 2005, 50 (11): 2181-2185.
    [142] 郑秋容,沈培康, 何丹若,甲酸在旋转圆盘电极上的氧化机理. 无锡轻工大大学学报, 1999, 18(1): 58-61.
    [143] P. Parpot, A.P. Bettencourt, G. Chamoulaud, K.B. Kokoh, E.M. Belgsir, Electrochemical investigations of the oxidation-reduction of furfural in aqueous medium: Application to electrosynthesis. Electrochim. Acta., 2004, 49: 397-403.
    [144] J.G. Ren, H.X. Zhang, Q.L. Ren, C.K. Xia, J. Wan, Z.B. Qin, Study of the catalytic electrooxidation of ascorbic acid on an electrode modified by macrocyclic compounds of Fe(III), Mn(III), Ni(II), and Co(II) with TBP. J. Electroanal. Chem., 2001,504:59-63.
    [145] B. Beden, I. Cetin, A. Kahyaoglu, D. Takky, C. Lamy, Electrocatalytic oxidation of saturated oxygenated compounds on gold electrodes. J. Catal., 1987, 104: 37-46.
    [146] D.E. Metzler, E.E. Snell, Spectra and ionization constants of the vitamin B6 croup and related 3-hydroxypyridine derivatives. J. Am. Chem. Soc, 1955, 77: 2431-2437.
    [147] L.D. Burke, T.G. Ryan, The role of incipient hydrous oxides in the oxidation of glucose and some of its derivatives in aqueous media. Electrochim. Acta., 1992, 37: 1363-1370.
    [148] R.M. van Effen, D.H. Evans, The effects of isotopic substitution and competitive adsorption on the oxidation of aldehydes and alcohols at gold electrodes. J. Electroanal. Chem., 1980, 107:405-418.
    [149] Y. Ikezawa, T. Sawatari, T.K.H. Goto, K. Toriba, In situ FTIR study of pyridine adsorbed on a polycrystalline gold electrode. Electrochim. Acta., 1998, 43: 3297-3301.
    [150] T. Iliescu, S. Cinta, S. Astilean, I. Bratu, pH influence on the Raman spectra of PP vitamin in silver sol. J. Mol. Struct., 1997, 410-411:193-196.
    [151] J. J. Gray, The interaction of proteins with solid surfaces. Struct. Biol., 2004, 4:110-115.
    [152] T. A. Horbett, Biological activity of adsorbed protein. Surf. Sci. Seri., 2003, 110: 393-413.
    [153] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, (Eds): Biomaterials Science: an introduction to material in medicine. San Diego: Academic Press., 1996.
    [154] S. Akyuz, F. Severcan Melittin-lipid interactions: a FTIR spectroscopic study. J. Mol. Struct., 1988, 175: 371-376.
    [155] A. R. Jahangir, W. G. McClung, R. M. Cornelius, C. B. McCloskey, J. L. Brash, J. P. Santerre, Fluorinated surface-modifying macromolecules: modulating adhesive protein and platelet interactions on a polyether-urethane, J. Biomed. Mater. Res., 2002, 60: 135-147.
    [156] M. Shen, L. Wartinson, M. S. Wagner, D. G. Castner, B. D. Rather, T. A. Horbett, PEO-like plasma polymerized tetraglyme surface interactions with leokocytes and proteins: in vitro and in vivo studies. J. Biomater. Sci. Polym. Ed., 2002, 13: 367-390.
    [157] 徐琳,王乃岩,霸书红,王云龙,傅里叶变换衰减全反射红外光谱法的应用与进展.光谱学与光谱分析,20004,24(3):317-319.
    [158] A. D. Roddick-Lanzilotta, P. A. Connor, A, J. McQuillan, An in situ infrared spectroscopic study of the adsorption of lysine to TiO_2 from an aqueous solution. Langmuir., 1998, 14: 6479-6484.
    [159] G. C. M. Steffensa, L. Nothdurft, G. Buse, H. Thissen, H. H. ocker, D. Klee, High density binding of proteins and peptides to poly(d,L-Lactide) grafted with polyacrylic acid, Biomaterials., 2002, 23:3523-3531.
    [160] 邢本刚,梁宏,FTIR在蛋白质二级结构研究中的应用进展.广西师范大学学报,1999,15(3):45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700