Ti-Zr-V-Mn-Ni固溶体贮氢合金结构和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贮氢合金是镍-金属氢化物电池的核心材料,其综合性能的改善是提高镍-金属氢化物电池性能的关键。本研究以探索镍-金属氢化物电池新型负极材料为目的,以V基固溶体型贮氢合金为研究对象。
     本文以Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)合金为参比合金,以添加或取代的方法加入B、Mo、Cr、Si以及稀土La、Ce、Pr、Nd、Gd等元素,采用XRD、FESEM-EDS及TEM等方法研究了该类电极合金微观结构;针对V基固溶体合金电极吸放氢动力学性能较差及容量衰减严重等问题,采用EIS、恒电位放电及ICP-MS等分析技术对合金电极的吸放氢动力学性能及合金腐蚀情况进行表征,以期改善合金电极的吸放氢动力学性能和电化学性能。
     结果表明,所有合金均有V基固溶体相和C14型Laves相两相组成。添加Mo和B可提高Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)合金的放电容量,Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1。添加Si、Mo和Cr部分取代V对合金电极的循环稳定性改善明显;而Si、Mo、B和Cr的添加或取代却不同程度地降低了合金的高倍率放电性能,使合金电极表面上电化学反应的电荷转移电阻(Rct)显著增加,交换电流密度(I0)显著降低。添加B和Mo可显著改善Ti_(0.26)Zr_(0.08)V_(0.24)Mn_(0.1)Ni_(0.33)合金电极的高温放电性能,Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)Mo0.075合金电极在343 K高温下其放电容量仍达到633 mAh·g-1。
     研究了添加La、Ce、Pr、Nd和Gd五种稀土元素对Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)合金的微观结构和电化学性能的影响。结果表明,Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)和Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)RE0.01(RE = La, Ce, Pr, Nd, Gd)合金均由体心立方结构的V基固溶体主相和少量六方结构的C14型Laves相组成;在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。添加五种稀土元素都可以改善合金电极的活化性能,而对合金电极其它性能的影响则各有不同,其中添加Ce和Pr可以提高合金电极的最大放电容量,而添加Nd和Gd能改善合金电极的循环稳定性。工作温度对合金电极的放电容量影响较大,温度超过343 K时使其循环容量衰减加剧;而含稀土元素的合金电极在333 K温度下放电容量达到最大值。稀土对合金电极的荷电保持率产生一定影响;La、Ce、Pr稀土元素的添加能够改善合金电极的倍率放电性能。
     采用稀土元素Ce、Nd、Gd部分取代V元素,研究了Ti0.26Zr0.07V0.23Mn0.1Ni0.33RE0.01 (RE = Ce, Nd, Gd)电极合金微观结构和电化学性能。Nd元素可以有效改善合金的动力学性能,使合金电极表面上电化学反应的电荷转移电阻(Rct)显著降低,交换电流密度(I0)和氢的扩散系数显著增加;稀土元素Ce可以提高合金电极的放电容量,其最大放电容量在放电电流密度为60 mA·g-1可达403.9 mAh·g-1。
     研究机械球磨对Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)钒基固溶体材料的结构和电化学性能的影响。经机械球磨处理的Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)固溶体合金仍具有V基固溶体相和C14型Laves相结构;机械球磨可以明显改善Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)合金材料的放电循环稳定性,40周后的容量保持率从46.3%(t=30 min)提高到78.3%(t=180 min);电化学阻抗和恒电位放电研究表明,球磨处理使合金电极的动力学性能提高。
     采用FESEM-EDS、EIS及ICP-MS技术对Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)合金电极的容量衰减机制进行研究,该合金的容量衰减涉及到以下三方面:随循环次数的增加,合金电极表面的裂纹明显加宽、加深,存在氧化现象,这既增加电极的内阻,又阻碍氢在合金内的扩散;电荷转移电阻增加,交换电流密度减小,这些动力学因素的变化使得氢化物电极的放电容量逐渐减小;合金组分元素V、Ti和Zr的腐蚀溶解明显,这是合金电极容量衰减的主要原因之一。
In order to compete favorably with other advanced secondary batteries, the overall properties of hydrogen storage alloys used as negative materials in Ni/MH batteries should be substantially improved. The research and development of novel hydrogen storage alloys with high capacity, high rate dischargeability and high temperature dischargeability have obvious significance in both theoretical and practical application aspects.
     In this work, B, Mo, Cr, Si and rare earth elements La, Ce, Pr, Nd and Gd have been used as additive element to Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloy to improve the electrocatalytic activity and the kinetic performance of the alloy electrode. The microstructure and electrochemical properties of the alloy have been investigated by XRD, FESEM-EDS, TEM, EIS, potentiostatic discharge technique and ICP-MS measurements.
     The results show that all alloys are composed of V-based solid solution with body-centered-cube (BCC) structure and C14 Laves phase with hexagonal structure. The addition of B and Mo increases the discharge capacity of Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloy electrode and Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)B0.1 alloy delivers the discharge capacity of 476.7 mAh·g-1at discharge current of 60 mA·g-1. It is found that a small addition of Si, Mo and substitution of Cr for V greatly improve the cycle life of Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloy electrode. But addition of Si、Mo、B or substitution of Cr for V decreases the high-rate discharge ability of the alloy electrode in some extent. EIS indicates that addition of Si, Mo and B or the substitution of Cr for V decreases the dynamic performance, which makes the charge transfer resistance (Rct) increases and the exchange current density (I0) decreases markedly. Considerable improvement in the high-temperature dischargeability is observed by addition of B and Mo, and the discharge capacity is up to 633 mAh·g-1 at 343 K for Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33)Mo0.075 alloy electrode.
     The effects of five kinds of rare earth element addition on microstructure and electrochemical properties of Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloys are studied in this paper. It is found that these alloys all consist of V-based solid solution with bcc structure as main phase and C14 Laves phase with hexagonal structure. The cell volumes of two phases are swelled after rare earth elements are added to the alloy. In the alloy, a new phase is found, which comprises of Ce and some other elements. Various kinds of rare earth elements can improve the activation characteristics of the electrodes alloy. However, the effect on the other performance of electrode alloy is different each other with the different rare earth elements addition. Cerium and praseodymium addition can enhance the maximum discharge capacity of electrode alloy, and neodymium and gadolinium addition improve the cycle stability of the electrode alloy. The discharge capacity of the alloys is quite sensitive to temperature, and the excessively high temperature makes the discharge capacity of the electrode alloys to degrade. The discharge capacity of the electrode alloys which contains of rare earth element is up to maximum at 333 K. The rare earth element has certain influence on the charge retention of the electrode alloy, and the addition with rare earth elements La, Ce, Pr can improve the high-rate dischargeability of the electrode alloy, respectively.
     Effects of rare earth elements Ce, Nd, Gd partial substitution for V on the microstructure and electrochemical properties of Ti0.26Zr0.07V0.23Mn0.1Ni0.33RE0.01 (RE = Ce, Nd, Gd) hydrogen storage alloy have been investigated. The partial substitution of Nd for V is beneficial for Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloy to improve the kinetic performance, which makes the charge transfer resistance (Rct) decreases and the exchange current density (I0) and the hydrogen diffusion coefficient (D) increase markedly. The partial substitution of rare earth element Ce for V can improve the discharge capacity of the electrode alloy, and its maximum discharge capacity can reach 403.9 mAh·g-1 with discharge current density of 60 mA·g-1.
     In present study, high-energy ball milling (HEBM) is used to improve the cyclic stability and other electrochemical properties of Ti0.26Zr0.07Mn0.1Ni0.33V0.24 alloy. The effect of the milling time on crystallographic and electrochemical characteristics of the alloy has been investigated systematically. Electrochemical studies show that the cyclic stability of the ball-milled alloys is noticeably improved. The capacity retention rate C40/Cmax after 40 cycles increases from 46.3% (t=30 min) to 78.3% (t=180 min), although the maximum discharge capacity of the ball-milled alloys decreases moderately. Both electrochemical impedance spectra and Potentiostatic discharge studies indicate that the electrochemical kinetics of the ball-milled alloys is improved with increasing the ball-milling time.
     The performances degradation of Ti_(0.26)Zr_(0.07)V_(0.24)Mn_(0.1)Ni_(0.33) alloy electrode has been investigated. The decrease of hydrogen diffusion coefficient (D), the increase of charge transfer resistances (Rct), and the dissolution of V and Zr elements to KOH solution with charge/discharge cycling would be responsible for the performances degradation of the alloy electrode.
引文
1张羊换,王国清,董小平,等.AB2型Laves相贮氢合金的研究进展.金属功能材料,2005, 12(4):25-30
    2周增林,宋月清,崔舜,等.高倍率AB5型稀土贮氢合金的研究进展.稀有金属,2004, 28(2):408-413
    3李荣,周上祺,梁国明,等.钒基固溶体型贮氢材料的研究进展.材料导报, 2004, 18(5):89-91
    4 Arvind K. Singh, Ajay K. Singh, O.N. Srivastava. On thesynthesis characterization and hydrogenation behavior of V-Ti-Fe alloy. Int. J. Hydrogen Energy, 1995, 20:647-651
    5 N. Kuriyama, M. Tsukahara, K. Takahashi, et al. Deterioration behavior of a multi-phase vanadium-based solid solution alloy electrode. J. Alloys Compd., 2003, 356/357:738-741
    6 E.W. Justi, H.H. Ewe, A.W Kalberlan, et al. Electrocatalysis in the nickel-titanium system. Energy Conversion, 1970, 10:183-187
    7 C. Iwakura, M. Matsuoka. Progress in Batteries& Battery Materials. J. Reilly, in Proc. Symp., 1991, 10:108-110
    8 L. Schlapbach, A. Zuttel. Hydrogen storage materials for mobile applications. Nature, 2001, 414:353-358
    9屠海令,吴伯荣,朱磊译.北京:冶金工业出版社, 2006:185-186
    10 V. A. Yartys, I. R. Harris, V. V. Panasyuk. New Metal Hydrides: a Survey. Materials Science, 2001, 37(2):219-240
    11高学平,卢志威,张欢,等.储氢材料与金属氢化物-镍电池.物理, 2004, 33(3):170-176
    12 Hong Kuochih. The Development of Hydrogen Storage Electrode Alloys for Nickel Hydride Batteries. J. Power Sources, 2001, 96:85-89
    13 T. Sakai, T, Hazama, H. Miyamura. Rare-earth-based alloy electrodes for a nickel-metal hydride battery. J. Less-Common Met., 1991, 172/174:1175-1178
    14 Y.Q. Lei, J.J. Jiang, D.L. Sun. Effect of rare earth composition on the electrochemical properties of multicomponent RENi5-xMx (M=Co, Mn, Ti) alloys. J. Alloys Compd., 1995, 231(1/2):553-557
    15 J.M. Cocciantelli, P.B ernard, S. Fernandez, et al. The influence of Co and various additives on the performance of MmNi4.3?xMn0.33Al0.4Cox hydrogen storage alloys and Ni/MH prismatic sealedcells. J Alloys Compd., 1997, 253/254:642-647
    16 S. Li, G.L Pan, X.P Gao, et al. The electrochemical properties of MmNi3.6Co0.7Al0.3Mn0.4 alloy modified with carbon nano-materials by ball milling. J. Alloys Compd., 2004, 364(1/2):250-256
    17 H.C. Lin, K.M. Lin, H.T. Chou, et al. Effects of annealing and NaOH pretreatment on an LmNi3.65Al0.34Mn0.27Co0.74 hydrogen storage alloy. J. Alloys Compd., 2003, 358(1/2):281-287
    18 F.J. Liu, S. Suda. F-treatment effect on the hydriding properties of the La-substituted AB2 compound (Ti, Zr)(Mn, Cr, Ni)2. J. Alloys Compd., 1995, 231:666-669
    19 T. Imoto, K. Satoh, K. Nishimura, et al. Poisoning by air of AB5 type rare-earth nickel hydrogen-absorbing alloys. J. Alloys Compd.,1995, 223(1):60-64
    20 C. Khaldi, H. Mathlouthi, J. Lamloumi, et al. Effect of partial substitution of Co with Fe on the properties of LaNi3.55Mn0.4Al0.3Co0.75?xFex (x=0, 0.15, 0.55) alloys electrodes. J. Alloys Compd., 2003, 360(1/2):266-271
    21 Z.H. Ma, J.F. Qiu, L.X. Chen, et al. Effects of annealing on microstructure and electrochemical properties of the low Co-containing alloy Ml(NiCoMnAlFe)5 for Ni/MH battery electrode. J. Power Sources, 2004, 125(2):267-272
    22 M.Y. Song, I.H. Kwon, D.S. Lee. Activation of Zr0.8Ti0.2Mn0.4V0.6Ni electrode by hot-charging treatment and its cycling performance for Ni-MH secondary battery. J. Alloys Compd., 2004, 370(1/2):307-314
    23 K. Ramya, N. Rajalakshmi, P. Sridhar, et al. Electrochemical characteristics of titanium-based hydrogen storage alloys. J. Alloys Compd., 2004, 373(1/2):252-259
    24 J.S. Kim, G.H. Paik, W.I. Cho, et al. Kim. Corrosion behaviour of Zr1?xTixV0.6Ni1.2M0.2 (M=Ni, Cr, Mn) AB2-type metal hydride alloys in alkaline solution. J. Power Sources, 1998, 75:1-8
    25 W.E. Triaca, H.A.Peretti, H.L.Corso, et al. Hydrogen absorption studies of an over-stoichiometric zirconium-based AB2 alloy. J. Power Sources, 2003, 113(1):151-156
    26 M.F. Wen, Y.C. Zhai, X.H Wang, et al. Properties of Zr-Ti-V-Mn-Ni hydride alloy. Trans. Nonfer. Met. Soc. China, 2002, 12(5):826-828
    27 E. Higuchi, Z.P. Li, S. Suda, et al. Structural and electrochemical characterization of fluorinated AB2-type Laves phase alloys obtained by different pulverization methods. J. Alloys Compd., 2002, 335(1/2):241-245
    28 K. Kadir, I. Uehara, T. Sakai. Synthesis and structure determination of a new series of hydrogenstorage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers. J Alloys Compd., 1997, 257:115-121
    29 K. Kadir, D. Noreus, I. Yamashita. Structural determination of AMgNi4 (where A=Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J. Alloys Compd., 2002, 345(1/2):140-143
    30 K. Kadir, N. Kuriyama, T. Sakai, I. Uehara, L. Eriksson. Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J. Alloys Compd., 1999, 284(1/2):145-154
    31 K. Kadir, T. Sakai, I. Uehare. Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9. J. Alloys Compd., 1999, 287(1/2):264-270
    32 K. Kadir, T. Sakai, I. Uehara. Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. J. Alloys Compd., 2000, 302(1/2): 112-117
    33 Z.M. Wang, H.Y. Zhou, Z.F. Gu, et al. Preparation of LaMgNi4 alloy and its electrode properties. J. Alloys Compd., 2004, 377(1/2):L7-9
    34 B. Liao, Y.Q. Lei, L.X. Chen, et al. Effect of Co substitution for Ni on the structural and electrochemical properties of La2Mg(Ni1-xCox)9 (x=0.1~0.5) hydrogen storage electrode alloys. Electrochimica Acta, 2004, 50(4):1057-1063
    35 B. Liao, Y.Q. Lei, G.L. Lu, et al. Phase structure and electrochemical properties of La-Mg-Ni system AB3 type hydrogen storage electrode alloys. Acta Met. Sinica, 2005, 41(1):41-48
    36 X.P. Gao, Y. Wang, Z.W. Lu, et al. Preparation and electrochemical hydrogen storage of the nanoccystalline LaMg12 alloy with Ni powder. Chem. Mater., 2004, 16:2515-2517
    37 B. Liao, Y.Q. Lei, G.L. Lu, et al. The electrochemical properties of LaxMg3-xNi9 (x=1.0-2.0) hydrogen storage alloys. J. Alloys Compd., 2003, 356:746-749
    38 Y.F. Liu, H.G. Pan, M.X. Gao, et al. Investigation on the characteristics of La0.7Mg0.3Ni2.65Mn0.1Co0.75+x (x=0.00~0.85) metal hydride electrode alloys for Ni/MH batteries - Part II: Electrochemical performances. J. Alloys Compd., 2005, 388(1):109-117
    39 H.G. Pan, Y.F Liu., M.X. Gao, et al. Electrochemical properties of the La0.7Mg0.3Ni2.65-xMn0.1Co0.75Alx (x=0~0.5) hydrogen storage alloy electrodes. J. Electrochem. Soc., 2005, 152(2):A326-332
    40 H.G. Pan, Y.F. Liu, M.X. Gao, et al. Structural and electrochemical properties of the La0.7Mg0.3Ni2.975-xCo0.525Mnx hydrogen storage electrode alloys. J. Electrochem. Soc., 2004, 151(3):A374-380
    41 B. Liao, Y.Q. Lei, L.X. Chen, et al. A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys. J. Alloys Compd., 2004, 376(1/2):186-195
    42 H.G. Pan, Q.W. Jin, M.X. Gao, et al. An electrochemical study of La0.4Ce0.3Mg0.3Ni2.975-xMnxCo0.525 (x=0.1~0.4) hydrogen storage alloys. J. Alloys Compd., 2004, 376(1/2):196-204
    43 X.B. Zhang, W.Y. Yin, Y.J. Chai, et al. Structure and electrochemical characteristics of RENi3 alloy. Mat. Sci. Eng. B-Solid, 2005, 117(2):123-128
    44张新波赵敏寿.高功率镍氢电池La1-xMgx(NiCoAl)3.6金属氢化物电极的电化学性能研究.高等学校化学学报, 2003, 24(9):1680-1682
    45 X.B. Zhang, W.Y. Yin, Y.J. Chai, et al. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery. J. Solid State Chemistry, 2004, 177(7):2373-2377
    46 X.B. Zhang, D.Z Sun., W.Y. Yin, et al. Crystallographic and electrochemical characteristics of La0.7Mg0.3Ni3 ? x(Al0.5Mo0.5)x (x=0~0.4) hydrogen storage alloys. Electrochimica Acta, 2005, 50(16/17):3407-3413
    47 X.B. Zhang, D.Z. Sun, W.Y. Yin, et al. Effect of La/Ce ratio on the structure and electrochemical characteristics of La0.7?xCexMg0.3Ni2.8Co0.5(x=0.1~0.5) hydrogen storage alloys. Electrochimica Acta, 2005, 50(9):1957-1964
    48 Sang Soo Han, Hee Yong Lee, Nam Hoon Goo, et al. Improvement of electrode performances of Mg2Ni by mechanical alloying. J. Alloys Compd., 2002, 330/332(17):841-845
    49 H. Imamura, N. Sakasai. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials. J.Alloys Compd., 1997, 253:34-37
    50 R.L. Holtz, M.A. Iman. Hydrogen storage capacity of submicron magnesium-nickel alloys. J. Mater. Sci., 1997, 32:2267-2274
    51 G. Liangt. Hydrogen storage properties of nanocrystalline Mg1.9Ti0.1Ni made by mechanicalalloying. J. Alloys Comp., 1999, 282:286-290
    52 Sapruk, B. Reichman.US Patent 4,1986, 623:597
    53 M. Terzieva, M. Khrussanova, P. Peshev . Hydriding and dehydriding characteristics of Mg-LaNi5 compostie material prepared by mechanical alloying. J. Alloys Comp., 1998, 267:235-239
    54 G.G. LibowitZ, A.J. Malland. Mechanism for activation of intermetallic hydrogen absorbers .Mater. Sci. Forum, 1988, 31:177-183
    55 M Tsukahara,K. Takahashi, T Mishima, et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0    56 M Tsukahara,K.Takahashi, T.Mshima,et al. Heat-treatment effects of V-based solid solution alloy with TiNi-based network structure on hydrogen storage and electrode properties. J.Alloys Compd., 1996, 243:133-138
    57 M Tsukahara, K.Takahashi, T.Mishma, et al. V-based solid solution alloys with Laves phase network: hydrogen absorption properties and microstructure. J. Alloys Compd., 1996, 236:151-155
    58 M. Tsukahara,K. TakahAshi, T. Mshima,et al. Vanadium-based solid solution alloys with three–dimensional network structure for high capacity metal hydride electrodes. J.Alloys Compd., 1997, 253:583-586
    59 G. Adachi, K. Niki, H. Nagai, et al. The effect of hydrogen adsorption on the electrical resistivity of LaNi5 and MmNi0.45Mn0.5 film. J .Less-Common Met., 1982, 88:213-216
    60颜鸣皋.材料科学前沿研究.北京:航空工业出版社, 1994:60-214
    61朱云峰,刘永锋,李锐,等.钛钒基贮氢电极合金研究.电池, 2002, (32):89-91
    62 Gifford Paul, Adama John, Corrigan Dennis, et al. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. J. Power Source, 1999, 80:157-163
    63廖小珍,刘文华,马紫峰.贮氢合金进展.稀有金属, 2001, 25(2):139-142
    64 M. Tsukahara, K. Takahashi, T. Mishima, et al. Metal hydride electrodes based on solid solution type alloy TiV3Nix (0≤x≤0.75). J. Alloys Compd., 1995, 226:203-207
    65 M. Tsukahara,K. Fakahashi,T. Mishima,et al. Phase structure of V-based solution containing Ti and Ni and their hydrogen absorption- desorption properties. J. Alloys Compd., 1995, 224:162-167
    66雷永泉.新能源材料.天津:天津大学出版社, 2000: 96-102
    67 F. Feng, M. Geng, D.O. Northwood. Electrochemical behavior of intermetallic-based metal hydride used in Ni/metal hydride (MH) batteries: a review. International journal of Hydrogen Energy, 2001, 26:725-734.
    68 Q.A. Zhang, Y.Q. Lei, L.X. Chen, et al. Effects of annealing treatment on phase composition and electrochemical properties of a V3TiNi0.56Co0.14Nb0.047Ta0.047 alloy. Materials Chemistry and Physics, 2001, 69:241-245
    69 T. Kuriiwa, T. Tamura, T. Amemiya, et al. New V-based alloys with high protium absorption and desorption capacity. J. Alloys Compd., 1999, 293/295:433-436
    70 Y.F Zhu, H.G. Pan, M.X. Gao, et al. Influence of annealing treatment on Laves phase compound containing a V-based BCC solid solution phase-Part II: Electrochemical properties. International Journal of Hydrogen Energy, 2003, 28:395-401
    71 M. Okada,T. Kuriiwa, T. Tamura, et al. Ti-V-Cr bcc alloys with high protium content. J. Alloys Compd., 2002, 330/332:511-516
    72 T. Tamura, Y. Tominaga, K. Matsumoto, et.al. .Protium absorption properties of Ti-V-Cr-Mn alloys with a b.c.c. structure. J. Alloys Compd., 2002, 330/332:522-525
    73桑革,沈崇雨,张义涛,等.贮氢合金表面处理改善吸放氢性能研究.稀有金属, 2006, 30(2):31-34
    74孙春文,唐致远,郭鹤桐,等.化学镀Ni-Co-P合金对Mm(NiCoAlMn)5贮氢合金电极动力学性能的影响.中国稀土学报, 2001, 19(2):115-120
    75叶德龙,闫康平,王金国,等.电池负极材料贮氢合金的表面处理.表面技术, 2000, 20(4):21-26
    76 Hiroshi Inoue, Rie Miyauchi, Toshiyuki Tanaka, et al. Effect of ball-milling with Ni and Raney Ni on surface structural characteristics of TiV2.1Ni 0.3 alloy. J. Alloys Compd., 2001, 325:299-303
    77 J.H. Kim, H. Lee, P. S. Lee, et al. A Study on the improvement of the cyclic durability by Cr substitution in V-Ti alloy and surface modification by the ball-milling process. J. Alloys Compd., 2003, 348:293-300
    78 M.Tsukahara, K.takahashi, T. mishima, et al. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes. J. Alloys Compd., 1997, 253/254:583-586
    79 Q.A. Zhang, Y.Q. Lei, X.G. Yang, et al. Phase structures and electrochemical properties of Cr-added V3TiNi0.56Hf0.24Mn0.15 alloys. International Journal of Hydrogen Energy, 2000,25:977-981
    80 M. Tsukahara, K. Takahashi,T. Isomura. Improvement of the cycle stability of vanadium-based alloy for nickel-metal hydride (Ni/MH) battery. J. Alloys Compd., 1999, 287(1/2):215-220
    81 Jun Shi, Makoto Tsukahara, Hiroyuki T. Takeshita, et al. Influence of carbon on electrode properties of V-Ti-Ni type hydrogen storage alloy. J. Alloys Compd., 1999, 293/295:716-720
    82 J.S.Yu, K. Y. Lee, J.Y. Lee. Effect of Ni containing surface phase on the electrode characteristic of Ti1.0Mn1.0V0.5. J. Alloys Compd., 1997, 259:270-275
    83 Han Ho Lee, Ki Young Lee. The Ti-based Metal Hydride Electrode for Ni-MH Rechargeable Batteries. J. Alloys Compd., 1996, 239:63-70
    84 M. Tsukahara, K. Takahashi, T. M ishima, et al. Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption-desorption properties. J. Alloys Compd., 1995, 224:162-167
    85 J.S. Yu,K.Y. Lee,J.Y. Lee.Effect of Ni containing surface phase on the electrode characteristics of Ti1.0Mn1.0V0.5. J.Alloys Compd., 1997, 259:270-275
    86 C. Iwakura,H. S.G Inoue, S. Nohara, et al. Raman and X-ray photoelectron spectroscopic investigations on a new electrode material for nickel-metal hydride batteries:MgNi-graphite composites prepared by ball-milling. J. Electrochem.Soc., 1999, 146:1659-1663
    87陈立新,代发帮,刘剑,等. Cu粉复合球磨处理对V基固溶体型贮氢合金电化学性能的影响.中国有色金属学报, 2005, 15(4):661-666
    88 Y.J. Chai, W.Y. Yin, Z.Y. Li, et al. Structure and Electro- chemical Characteristics of Ti0.25-xZrxV0.35Cr0.1Ni0.3(x=0.05~0.15) Alloys. Intermetallics, 2005, 13(11):1141-1145
    89乔玉卿,赵敏寿,李梅晔. Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构及电化学性能研究.无机化学学报, 2006, 22(3):415-420
    90 C. Iwakura, Y. Kajiya, H. Yoneyama, et al. Self-discharge mechanism of nickel-hydrogen batteries using metal hydride anodes. J. Electrochem. Soc., 1989, 134:1351-1356.
    91 T. Sakai, H. Miyamura, N. Kuriyama, et al. Study of the hydriding kinetics of LaNi4.7Al0.3-H system by a step-wise method. J. Less-Common Met., 1159:127-132.
    92 N. Kuriyanma, T. Sakai, H. Miyamura, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd., 1993, 202:183-188
    93 G. Zheng, B. N Popov, R. E. White. The Role of Thallium as a Hydrogen Entry Promoter onCathodically Polarized HY-130 Steel. J. Electrochem. Soc., 1995, 142:2695-2699
    94 D. N. Gruen, M. H. Mendelsohn, A. E. Dwight. Effect of Mn addition on the hydrogen storage performance of Vanadium-based BCC solid solution alloy. J. Less-Common Met., 1977, 56(19):11-15
    95 P. H. L. Notten, P.Hokkeling. Double phase hydride forming compounds: a new class of highly electrocatalytic materials. J. Electrochem. Soc., 1991, 138:1877-1885
    96 H.L. Chu, S.J. Qiu, L.X. Sun, et al. Electrochemical hydrogen storage properties of La0.7Mg0.3Ni3.5–Ti0.17Zr0.08V0.35Cr0.1Ni0.3 composites. International Journal of Hydrogen Energy, 2008, 33(2):755-761
    97 J.Y. Park, C.N. Park, C.J.Park, et al. Effects of the ball-milling with LmNi4.1Al0.25Mn0.3Co0.65 alloy on the electrode characteristics of Ti0.32Cr0.43V0.25 alloy for Ni/MH batteries. International Journal of Hydrogen Energy, 2007, 32(17):4215-4219
    98 S. M. Lee, H. Lee, J. H. Kim. A Study on The Development of Hypo-stoichiomentric Zr-based Hydrogen Storage Alloys with Ultra-high Capacity for Anode Material of Ni/MH Secondary Battery. J. Alloy and Compd., 2000, 308:259-269
    99 K. Yang, S. Chen, F. Wu. Study on the surface modification of metal hydride electrodes with cobalt. Journal of Power Sources, 2008, 184(2):617-621
    100 Z. P. Li, E.Higuchi, B. H. Liu. Electrochemical Properties and Characteristics of A Fluorinated AB2-alloy. J. Alloy and Compd., 1999, 293/295:593-600
    101 J.Y. Kim, C.N. Park, J.S. Shim, et al. Effects of addition of manganese and LmNi4.1Al0.25Mn0.3Co0.65 alloy on electrochemical characteristics of Ti0.32Cr0.43?xMnxV0.25 (x=0~0.08) alloys as anode materials for nickel–metal-hydride batteries. Journal of Power Sources, 2008, 180(1): 648-652
    102 Y.J. Chai, M.S. Zhao, N. Wang. Crystal structural and electrochemical properties of Ti0.17Zr0.08V0.35Cr0.10Ni0.30?xMnx (x=0~0.12) alloys. Materials Science and Engineering: B, 2008, 147(1):47-51
    103 W.X. Chen. Effects of Addition of Rare-Earth Element on Electrochemical Characteristics of ZrNi1.1Mn0.5V0.3Cr0.1 Hydrogen Storage Alloy Electrodes. J. Alloy and Compd., 2001, 319:119-123
    104 X.P. Gao, Y.M. Sun, E. Higuchi, et al. The Effect of The Particle Pulverization on ElectrochemicalProperties of Laves Phase Alloys. Electrochimica Acta, 2000, 45:3099-3104
    105 S. W. Cho, H. Enoki, E. Akiba. Effect of Fe Addition on Hydrogen Storage Characteristics of Ti0.16Zr0.05Cr0.22V0.57 Alloy. J. Alloy and Compd., 2000, 307:304-310
    106 J. Chen, S.X. Dou, H.K. Liu. Hydrogen Desorption and Electrode Properties of Zr0.8Ti0.2 (V0.3Ni0.6M0.1) Alloys. J. Alloy and Compd., 1997, 256:40-44
    107 J.S. Kim, C.H. Paik, W.I. Cho, et al. Corrosion Behavior of Zr1-x TixV0.6Ni1.2M0.2 (M=Ni, Cr, Mn) AB2-type Metal Hydride Alloys in Alkaline Solution. J. Power Sources, 1998, 75:1-8
    108 K. Yang, D. Chen, L. Chen, et al. Microsteucture. Electrochemical Performance And Gas-phase Hydrogen Storage Property of Zr0.9Ti0.1[(Ni,V,Mn)0.95Co0.05]αLaves Phase Alloys. J. Alloys Compd., 2002, 333:184-189
    109 J.Yu, K.Lee, J.Y. Lee. Effect of Ni containing surface phases on the electrode characteristics of Ti1.0Mn1.0V0.5. J. Alloys Comp., 1997, 259:270-275
    110 T. Gamv, Y. Moriwaki, N. Yanagihara, T. Iwaki. Formation and properties of titanium-manganese alloy hydrides. Int. J. Hydrogen Energy, 1985, 10:39-47
    111 Y.H. Xu, C.P. Chen, S.Q. Li et al. High-temperature electrochemical performance and phase composition of Ti0.7Zr0.5V0.2Mn1.8-xNix hydrogen storage electrode alloys. Trans Nonferrous Met. Soc. China, 2001, 3:350-355
    112 H.H. Lee, K.Y. Lee, J.Y. Lee. The hydrogenation characteristics of Ti-Zr-V-Mn-Ni C14 type Laves phase alloys for metal hydride electrodes. J. Alloys Compd., 1997, 253/254:601-604
    113 H.H. Lee,K.Y. Lee,J.Y. Lee. Degradation mechanism of Ti-Zr-V-Mn-Ni metal hydride electrodes. J. Alloys Compd., 1997, 260:201-206
    114 S.R. Ovshinsky, M.A. Fetcenko, J. Ross. A Nickel Metal Hydride Battery for Electric Vehicles Science, 1993, 260:176-181
    115张文魁. AB2非化学计量比贮氢合金研究.杭州:浙江大学博士论文,1997
    116 T. Sakai, H. Miyamura, N. Kuriyama, et al. The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys. J. Less-Common Met., 1990, 159(1):127-139
    117 N. Kuriyama, T. Sakai, H. Miyamura, et al. Deterioration Mechanism of Metal Hydride Electrodes. J. Electrochem. Soc., 1992, 139:172-176
    118 N. Kuriyama, T. Sakai, H. Miyamura, et al. Electrochemical impedance and deteriorationbehavior of metal hydride electrodes. J. Alloys Compd., 1993, 202(1/2):183-197
    119 C. Iwakura, S.Y. Ryuji, M. Keisuke, et al. Effects of Ti-V substitution on electrochemical and structural characteristics of MgNi alloy prepared by mechanical alloying. Electrochimica Acta, 2001, 46:2781-2786
    120 Q.A. Zhang, Y.Q. Lei, L.X. Chen, et al. Electrochemical behaviors of a V3TiNi0.56Hf0.24 alloy electrode during charge–discharge cycling. Materials Chemistry and Physics, 2001, 71(1):58-61.
    121 Y.H. Xu, C.P. Cheng, X.L. Wang, et al. The analysis of the two discharge plateaus for Ti-Ni-based metal hydride electrode alloys. Journal of Power Sources, 2002, 112:105-108
    122乔玉卿,赵敏寿,朱新坚,等.机械合金化制备Mg-Ni合金氢化物电极材料的研究进展.无机材料学报, 2005, 20(1):33-41
    123 T. Sakai, H. Miyamura, N. Kuriyama, et al. Metal hydride anodes for nickel-hydrogen secondary battery. J. Electrochem. Soc., 1990, 137(3):795-799
    124 C. Iwakura, Y. Kajiya, Y. Hiroshi, et al. Self-discharge Mechanism of Nickel-Hydrogen Batteries Using Metal Hydride Anodes. J. Electrochem. Soc., 1989, 134:1351-1356
    125 J.S. Yu,B.H. Liu,K. Cho. The effects of partial substitution of Mn by Cr on the electrochemical cycle life of Ti-Zr-V-Mn-Ni alloy electrodes of a Ni/MH battery. J. Alloys Compd., 1998, 278(1/2):283-290
    126 D. Zhang, J. Tang, K.A. Gschneidner. A redetermination of the La-Ni phase diagram from LaNi to LaNi5 (50–83.3 at.% Ni). J. Less Common Met., 1991, 169(1):45-53
    127 C. Iwakura, M. Miyamoto, H. Inoue, et al. Effect of stoichiometric ratio on discharge efficiency of hydrogen storage alloy electrodes. J. Alloys Compd., 1997, 259(1/2):132-136.
    128 C. Iwakura, T. Oura, H. Inoue, M. Matsuoka. Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB5-type hydrogen storage alloys. Electrochim. Acta, 1996, 41(1):117-121
    129 P. H. L. Notten ,P. Hokkeling. Double-phase hydride forming compounds: A new class of highly electrocatalytic materials. J. Electroehem. Soc., 1991, 138(7):1877-1885
    130 P.H. L. Notten, R.E. F. Einerhand, J.L. C. Daatns. On the nature of the electrochemical cycling stability hydride-forming compounds: Part I. Crystallography and electrochemistry. J. Alloys Compd., 1994, 210:221-232
    131 C.S. Wang, Y Q. Lei, Q. D, Wang, Studies of electrochemical properties of TiNi alloy used as anMH electrode. II. Discharge kinetics. Electrochlrnica Acta, 1998, 43(21/22):3209-3216
    132 H.G. Pan, Y. F. Zhu, M.X. Gao, et al. Investigation of the structure and electrochemical properties of superstoichiometric Ti-Zr-V-Mn-Cr-Ni hydrogen storage alloys. J. Electrochem. Soc., 2002, 149(7):A829-833
    133 C. Bordeanx, F. Bernard, N. Cerand. Fractioning and residual stresses in LaNi5 type alloy. Int.J.Hydro.Energy, 1997, 22(5):475-479
    134 C. Audry, P. Bernard, Y. Champion, et al. Effect of the cooling rate of superstoichiometric AB5 alloys with low Co content on their electrochemical performances. J. Alloys and Compd., 2002, 330/332:871-874
    135 Tetsuo Sakai, Keisuke Oguro, Hiroshi Miyamura, et al. Some factors affecting the cycle lives of LaNi5 based alloy electrodes of hydrogen battery .J. Less-Common Metals, 1990, 161(2):193-202
    136 C.S. Wang, X.H. Wang, Y.Q. Lei. A new method of determining the thermodynamic parameters of metal hydride electrode materials. Int. J. Hydrogen Energy, 1997, 22(12):1117-1124
    137 P.H.L. Notten,P. Hokkeling. Double phase hydride forming compounds: a new class of highly electrocatalytic materials. J. Electrochem. Soc., 1991, 138:1877-1881
    138 X.P. Gao, Y.M. Sun, E. Toyoda, et al. The Effect of the Particle Pulverization on Electrochemical Properties of Laves Phase Alloys. Electrochimica Acta, 2000, 45:3099-3104
    139 C. Daniel, M. Felix, Z. Andreas. The Influence of Cobalt on The Electrochemical Cycling Stability of LaNi5-based Hydride Forming Alloys. J. Alloy and Comp., 1996, 241:160-166
    140 Y.h. Xu, C.P. Chen, X.L. Wang, et al. The analysis of the two discharge plateaus for Ti-Ni-based metal hydride electrode alloys. Journal of power source, 2002, 112:105-108
    141 T. Sakai, H. Miyamura, N. Kuriyama, et al. The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys. J. Less-Common Met., 1990, 159(1):127-139
    142 D.M. Kim, S.M. Lee, K.J. Jang, et al. The electrode characteristics of over-stoichiometric ZrMn0.5V0.5Ni1.4+y(y=0.0, 0.2, 0.4 and 0.6) alloys with C15 laves phase structure. J. Alloys Compd., 1998, 268:241-246.
    143 C. Iwakura, H. Inoue, S.G. Zhang, et al. Raman and X-ray photoelectron spectroscopic investigations on a new electrode material for nickel-metal hydride batteries:MgNi-graphite composites prepared by ball milling. J. Electrochem. Soc., 1999, 146:1659-1664
    144 M. Tsukahara, T. Kamiya, K. Takahashi, et al. Hydrogen storage and electrode properties of V-based solid solution type alloys prepared by a thermic process. J. Electrochem. Soc., 2000, 147:2941-2946
    145 H.G. Pan, Y. Chen, C.S. Wang, et al. Effect of alloys modi fied by an alkaline solution containing potassium borohydride on the kinetic properties of MINi3.7Co0.6Mn0.4Al0.3 hydride electrode. Electrochim Acta, 1999, 44:2263-2268
    146 C.S. Wang, Y.Q. Lei, Q.D. Wang. Studies of electrochemical properties of TiNi alloy used as an MH electrode (I): dischargeable capacity. Electrochim Acta, 1998, 43:3193-3197
    147胡子龙.贮氢材料.北京:化学工业出版社, 2002, 45-46
    148 Y.G. Yan, K.P.Yan, Y.G. Chen. Progress in research of V-based solid solution hydrogen storage alloy. Chinese Journal of Rare Metals, 2004, 28:738-743
    149柴玉俊,赵敏寿.几种固溶体储氢合金的研究近况.稀有金属材料与工程. 2005, 34(2):174-179
    150胡子龙.贮氢材料.北京:化学工业出版社, 2002: 1-2
    151 H. Inoue, H. Iden, R.S Ya, et al. Effect of Ni content on rate capability of Mg0.9Ti0.06V0.04Nix negative electrodes for Nickel/Metal hydride batteries. J. Electrochem. Soc., 2004, 151(7):A939-943
    152李佳,赵敏寿,侯春平,等.稀土对Ti-Zr-V-Cr-Ni合金微观结构和电化学性能的影响.中国稀土学报,2006, 24(6):764-769
    153黄亮,赵敏寿,李佳,等. La替代对Ti-V-Mn-Ni贮氢合金结构及电化学性能的影响.中国稀土学报, 2007, 2(1):74-78
    154 Y.Q. Qiao, M.S.Zhao, XJ. Zhu, et al. Effect of Cerium on Microstructure and Electrochemical Performance of Ti-V-Cr-Ni Electrode Alloy. Journal of Rare Earths, 2007, 25:341-345
    155 T. Sakai, H. Miyamura, N. Kuriyama, et al. Study of the hydriding kinetics of LaNi4.7Al0.3-H system by a step-wise method. J. Less-Commen Met., 1990, 159:127-132
    156 N. Kuriyanma, T. Sakai, H. Miyamura, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J. Alloys Compd., 1993, 202:183-197
    157 T. Nishina, H. Ura, I. Uchida. Determination of chemical diffusion coefficients in metal hydride particles with a microelectrode technique. J. Electrochem Soc., 1997, 144:1273-1277
    158 S.H. Kim, S.M. Lee, K. Cho, et al. The cycle life of Ti0.8Zr0.2V0.5Mn0.5-xCrxNi0.8(x=0~0.5) alloys to metal hydride electrodes of Ni-metal hydride rechargeable battery. J. Electrochem. Soc., 2000,147:2013-2017
    159 Y.H. Xu, C.P. Chen, X.L. Wang, et al. The structure and electrochemical properties of ball-milled Ti0.9Zr0.2Mn1.6Ni0.2V0.2 alloys. Solid State Ionics, 2002, 146:157-161
    160 X.B. Yu, F. Li, Z. Wu, et al. Enhanced electrochemical properties of ball-milled Ti30V15Mn15Cr + 20wt.% La(NiMnCoAl)5 alloy electrodes. Physics Letters A, 2004, 320(4/5):312-317
    161 X.B. Yu, Z. Wu, B. J. Xia, et al. Enhancement of hydrogen storage capacity of Ti-V-Cr-Mn BCC phase alloys. J. Alloys Compd., 2004, 372:272-277
    162 Y. Chen, C. Sequeira, C. P. Chen, et al. Electrochemical properties of the ball-milled La1.8Ca0.2Mg14Ni3+xwt%Ni composites (x=0, 50, 100 and 200). J. Alloys Compd., 2003, 354:120-123
    163 S.M. Lee, S.H. Kim, J.Y. Lee. A study on the electrode characteristics of Zr-based alloy surface-modified with Ti-based alloy by ball-milling process as an anode material for Ni/MH rechargeable batteries. J. Alloys Compd., 2002, 330/332:796-801
    164 S.M. Lee, J.S. Yu, P.S. Lee, et al. Characteristics of surface-modified metal hydride electrode with flake Ni by the ball-milling process. J. Alloys Compd., 2002, 330/332:835-840
    165 M. Jurczyk, M. Nowak, E. Jankowska. Nanocrystalline LaNi4?xMn0.75Al0.25Cox electrode materials prepared by mechanical alloying (0≤x≤1.0). J. Alloys Compd., 2002, 340:281-285
    166 J.S. Benjamin, J.E. Volin. The mechanism of mechanical alloying. Metall Trans., 1974, 5:1929-1934
    167 D.R. Maurice, T.H. Courtney. The physics of mechanical alloying: a first report. Metall Trans A, 1990, 21A(2):289-293
    168 H. Niu, D.O. Northwood. Enhanced electrochemical properties of ball-milled Mg2Ni electrodes. Int. J. Hydrogen Energy, 2002, 27:69-77
    169王秀丽,涂江平,陈长聘,等.纳米晶Mg2-xTixNi0.8Cr0.2四元合金的气态贮氢性能.中国有色金属学报,2004,1 (6):1022-1024
    170 Y. H. Zhang, G. Q. Wang, X. P. Dong, et al. Effects of rapid quenching on the electrochemical performances and microstructures of the Mm(NiMnSiAl)4.3Co0.6?xFex (x = 0–0.6) electrode alloys. J. Power Sources, 2004, 137:309-316
    171 T. Sakai, K. Oguro, H. Miyamura, N.Kuriyama, et al. Some factors affecting the cycle lives of LaNi5-based alloy electrode of hydrogen battery. J. Less-Common Met., 1990, 161:193-197
    172 Y. Zhang, L. Chen, Y.Q. Lei. The effect of partial substitution of Ti with Zr, Cr or V in the Mg35Ti10Ni55 electrode alloy on its electrochemical performance. Electrochim. Acta, 2002, 47:1793-1746
    173赵敏寿,刘玉萍,乔玉卿,等.稀土基AB2型金属氢化物电极衰变机理的探索.功能材料(增刊), 2004, 35:1905-1907
    174 S.R. Ovshinsky, M.A. Fetcenko, J. Ross. A Nickel Metal Hydride Battery for Electric Vehicles. Science, 1993, 260:176-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700