低渗透储层流固耦合渗流理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着石油工业的发展以及解决复杂石油工程问题的需要,流固耦合研究在石油钻井、开采、开发领域显得越来越重要,并已受到人们的高度重视。为了正确预测油气田开采过程,准确模拟油藏中的流体流动过程,揭示流体的分布规律,必须考虑由于注水和开采所引起的多相流体的渗流、应力状态的变化和储层变形之间的耦合作用。
     本文在前人大量的实验和理论研究成果的基础上,在低渗透储层流固耦合理论方面完成了以下研究工作:
     1、根据流固耦合渗流理论的基本思想,建立流固耦合渗流运动方程。在此基础上,将地质力学、渗流力学、岩土力学相结合,根据质量守恒原理,考虑低渗透油藏渗流时启动压力梯度和渗流特征,建立可变形低渗透多孔介质中流固耦合多相多组份渗流的数学模型,它包括流固耦合渗流的基本微分方程及其求解所需要的辅助方程。对流固耦合多相多组分渗流数学模型进行简化,即可得到低渗透储层流固耦合黑油模型和油水两相渗流的数学模型。
     2、在油藏岩土应力和应变分析基础上,结合有效应力原理和岩石骨架本构关系,建立了低渗透储层岩层骨架的数学模型,包括孔隙度方程、平衡方程、几何方程、岩石骨架本构关系等。固相平衡方程和流体黑油模型组成了多相(油、气、水)液体渗流的流固耦合模型,它们之间互含耦合项,互不独立,是一组完全耦合的偏微分方程,必须进行耦合求解。
     3、针对低渗透储层在变应力下的弹塑性变形特征,建立了弹性储层和弹塑性储层的本构模型,并给出了相应的矩阵描述和矩阵表达式。
     4、结合低渗透油藏的具体特征,给出了毛管压力和相对渗透率的计算模型。总结物性参数动态模型已有的研究成果,研究了低渗透储层渗流场和应力场之间的耦合关系,给出低渗透油藏流固耦合数值模拟求解所需的孔隙度、渗透率等物性参数动态变化的理论计算模型。并给出了计算启动压力梯度的动态模型。
     5、系统的研究了低渗透储层流固耦合数学模型的迭代耦合、解耦耦合和全耦合数值求解技术。
     迭代耦合的数值求解方法是:采用显式交替求解方式,即岩土变形数学模型滞后于渗流数学模型一个时间步。流体渗流数学模型采用块中心有限差分方法求解,其中油水两相流体渗流方程采用IMPES方法处理,即隐式求解油藏压力显式求解流体饱和度,油气水三相渗流方程采用SEQ顺序求解方法处理,并对流体和井参数处理进行了分析,采用正交极小化方法求解方程组;而岩土变形数学模型则采用有限元法求解,根据有限元基本原理,在建立位移函数的基础上,结合有效应力原理、虚位移原理和虚功等效原理,建立了单元平衡方程。并给出单元刚度矩阵以及自重载荷、孔隙流体压力载荷、面力载荷和初应力载荷的等效结点力的计算方法,在此基础上,建立总体平衡方程,采用增量初应力法求解单元平衡方程。由物性参数动态模型进行渗流场和变形场之间参数的相互修正。
     根据GALERKIN有限元法基本原理,建立了岩层骨架控制方程、压力方程、饱和度方程的GALERKIN有限元空间离散方程,利用全隐式格式对上述方程进行时间域的差分离散,建立了解耦耦合的数值求解模型。采用顺序求解方法,即先由固相方程求得固体变形,然后由压力方程求得压力分布,再顺次求得饱和度分布。
     以孔隙流体压力和岩石的结点位移作为基本未知量,推导出了可变形低渗透储层多相流体渗流和岩石变形之间耦合的有限元数值模型,利用GALERKIN有限元法得到了三相流体渗流的控制方程在
    
    摘要
    几何域上的离散方程,利用差分法得到了时间域上的离散方程,建立了全藕合数值求解模型。
     6、将有限差分法和有限元法结合起来,根据迭代祸合数值求解方法,进行了计算机程序设计。
     7、利用所编制的程序,对低渗透储层流固祸合渗流理论进行了应用示例模拟研究。
     本文建立的流固祸合模型、理论研究方法以及开发的数值模拟软件,可用于分析低渗透油藏地应
    力、岩石应变、孔隙度、渗透率、油藏压力等随时间和空间的变化规律,以及对油藏的渗流和开采动
    态的影响,对于真实模拟低渗透油藏的开发,指导低渗透油藏生产具有重要的意义。
With the recent development of oil industry and the need of solving complicated petroleum engineering problems, fluid-solid coupling study which is highly valued is becoming more and more important in oil drilling ^ oil production and oil development. In order to accurately predict production process on the oil-gas field > simulate fluid flowing process and reveal fluid distribution regularity, multiphase seepage flow derived from water injection and production process, change of stress state and coupling effect amongst reservoir distribution must be taken into consideration.
    On the basis of a great number of experiments and theoretical studies performed by former researchers, the work finished in this paper concerning fluid-solid coupling theory in low permeability reservoir focuses on several aspects of the following:
    1. According to the basic conception of fluid-solid coupling seepage flow theory, an equation of motion should be founded. Moreover, depending on mass conservation law, combing geomechanics seepage mechanics and rock mechanics, considering start-up pressure gradient and seepage flow characteristics while seeping in low permeability reservoir, then fluid-solid coupling multiphase and polycomponent seepage mathematical model in changeable low permeable and porous media is established, which includes basic differential equation of fluid-solid coupling seepage and its subsidiary equation needed when extracting an answer. Fluid-solid coupling black oil model and oil-water two-phase seepage mathematic model are captured by simplifying fluid-solid multiphase and polycomponent seepage mathematical model.
    2. Based on the analysis of rock stress and strain, combining effective stress principle and rock matrix constitutive relation, establishing mathematical model of rock matrix in low permeability reservoir including porosity equations, balance equations, geometrical equations and rock matrix constitutive relations, etc. Fluid-solid coupling model of multiphase (oil, gas, water) seepage are composed of solid phase balance equations and fluid black oil model. They contains coupling factors each other and also depends on each other, which are a group of partial differential equations solved by coupling.
    3. As to the elastic plastic distortion characteristics under the condition of changeable stress in low permeability reservoir, elastic reservoir and elastic plastic reservoir constitutive model are established and corresponding matrix description and matrix expressions are given, either.
    4. Calculation model of capillary pressure and relative permeability is given by combining specific characteristics in low permeability reservoir. Theoretical calculation model of dynamic variation on porosity, permeability and the like physical parameters needed when solving fluid-solid numerical simulation in low permeability reservoir is given through summarizing former results of physical parameters dynamic model, meanwhile, a dynamic model of computing start-up pressure gradient is given.
    5. Systematically studying fluid-solid coupling mathematical model of iterative coupling decoupled coupling and fully coupled numerical solution technique in low permeability reservoir.
    Numerical solution method of iterative coupling is: adopt explicit alternating solution method, that is, rock
    
    
    
    
    distortion mathematical model lag behind seepage mathematical model just one-step time. Fluid seepage mathematical model is solved by using block center finite difference method, oil-water two-phase fluid seepage equation belonging to the model adopts IMPES method, that is, adopting implicit method to solve reservoir pressure and explicit method to solve fluid saturation, oil-gas-water triphase seepage equations are solved by using SEQ sequence, and also analyzes fluid and well parameters, equation group is solved by using orthomin method, whereas rock distortion mathematical model is solved by using finite element method. According to the basic principle of finite element method, on the basis of establishing d
引文
1.白茅,刘天泉.孔隙裂隙弹性理论及引用导论[M].北京:石油工业出版社,1999.
    2.薛世峰,仝兴华,岳伯谦,董波,宋惠珍.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版).2000,24(2):109-114.
    3.董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(3),17-25.
    4.郭尚平.渗流力学进展[C].北京:石油工业出版社.1996:1-12.
    5. Lewis R W, Sukirman Y. Finite element modeling of three-phase flow in deforming saturated oil reservoirs[J]. Int. J. Num. Anal. Methods Geomech. 1993, 17: 577-598.
    6. Guiterrez L. The role of geomechanics in reservoir simulation[J]. SPE/SRM, 47392, 1998.
    7.Carroll MM.固体力学研究的趋势与良机(Ⅱ),2.地质材料力学[J].力学进展.1994,24(3):409-417.
    8.邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展.1997,27(1):19-38.
    9.仵彦卿,张倬元,王士天,黄润秋.岩体渗流场与应力场耦合的集中参数型数学模型研究[J].工程地质学报,1994,2(1):9-13.
    10. Terzaghi K. Theoretical soil mechanics[M]. Tiho Wiley, New York, 1943.
    11. Biot M A. General theory of three dimensional consolidation[J]. J. Appl. Phys. 1941, 12(5): 155-164.
    12. Biot M A. General solution of the equation of elasticity and consolidation for a porous material[J]. J. Appl. Phys. 1956, 27(3): 91-96.
    13. Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys. 1955, 26(2): 182-191.
    14. Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena [J]. J. Appl. Phys. 1954, 25(11): 1385-1391.
    15. Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. J. Appl. Phys. 1962, 33: 1482.
    16. Lubinski A. Theory of elasticity for porous bodies displaying a strong pore structure[C]. Proc. 2nd U. S. National Congress of Applied Mechanics. 1954: 247-256.
    17. Geertsma J. A remark on the analogy between themo-elasticity and the elasticity of saturated porous media[J]. J. Mech. Phys. solids. 1957, 6: 13-16.
    18. Savage W Z, Braddock W A. A model for hydrostatic consolidation of pierre shale[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991, 28: 345-354.
    19. Zienkiewiez O C, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Int. J. Num. and Analy. Mech. in Geomech. 1984, 8: 71-96.
    20. Verruijt A. Elastic storage of aquifers[A]. In: Flow Through Porous Media[C]. De wiest R J M, New York: Tiho Wiley, 1969.
    21. Mctigue D F. Thermoelastic response of fluid-saturated porous rock[J]. J. Geophys. Res. 1986, 91: 9533-9542.
    22. Wong S K. Analysis and implications of in -situ stress changes during steam stimulation of cold lake oil sands[J]. SPE Reservoir Engineering. February, 1988, 55-61.
    23. Settari A, Puchyr P J, et al. Partially decoupled modeling of hydraulic fracturing processes[J]. SPE
    
    Reservoir Engineering. February, 1990, 37-44.
    24. Rice J R, Michael P Cleary. Some basic stress diffusion solution for fluid-saturated elastic porous media with compressible constituents[J]. Rev. Geophysics and Space Physics. 1976, 14(2): 227-241.
    25. Lewis R W. Finite element modeling of two-phase heat and fluid flow in deforming porous media[J]. Trans Porous Media. 1989, 4: 319-334.
    26. Vaziri H H. Coupled fluid flow and stress analysis of oil sand subject to heating[J]. JCPT. 1988, 27(5): 84-91.
    27. Settari A, Kry p R.and Yee C T. Coupling of fluid flow and soil behaviour to model injection into uncemented oil sands[J]. JCPT. 1989, 28(1): 81-92.
    28. Settari A. Physics and modeling of thermal flow and soil mechanics in unconsolidated porous media[J]. SPE Production Engineering. February, 1992: 47-55.
    29. Fung L S K. A coupled geomechanical multiphase flow model for analysis of in situ revovery in cohesionless oil sands[J]. JCPT. 1992, 31(6): 56-67.
    30. Fung L S K. Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs[J]. JCPT. 1994, 33(4): 22-28.
    31. Tortike W S, Farouq Ali S M. Reservoir simulation integrated with geomechanics[J]. JCPT. 1993, 32(5): 28-37.
    32. Tortike W S, Farouq Ali S M. Prediction of oil sand failure due to steam-induced stresses[J]. JCPT. 1991, 30 (1): 87-96.
    33. Tortike W S, Farouq Ali S M. A framework for multiphase nonisothermal fluid flow in a deforming heavy oil reservoir[J]. SPE16030.
    34. Chen H Y, Teufel L W and Lee R L. Coupled fluid flow and geomechanics in reservoir study-1, theory and governing equations[J]. SPE 30752.
    35. Jose G Osorio, et al. Numerical simulation of the impact of flow-induced geomechanical response on the production of stress-sensitive reservoirs[J]. SPE 51929.
    36. Susan E Minkoff, Charlesm Stone, et al. Staggered in time coupling of reservoir flow simulation and geomechanicl deformation: step 1-one-way coupling[J]. SPE 51920.
    37.李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算结构力学及其应用.1990,7(3):1-11.
    38.张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践.1993,15(1):20-22
    39.张洪武,钟万勰,钱令希.土体固结分析的一种有效算法[J].计算结构力学及其应用.1991,8(4):389-395.
    40.陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报.1994,13(4):299-308.
    41.黎水泉,徐秉业.双重介质裂缝型油气藏油水两相流动与固体变形藕合数学模型[J].天然气工业.1999,19(4):43-45.
    42.仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报.2000,16(1):1-5.
    43.冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报.1999,16(1):24-31.
    44.董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报.1998,19(1):64-70.
    45.薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-数学模型[J].地震地质.1999,21(3):243-252.
    46.薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-方程解耦与有限元公式[J].地震地质.1999,21(3):253-260.
    47.范学平,李秀生,张士诚,徐向荣.低渗透变形介质油气藏渗流流固耦研究[J].新疆石油地质.2001,
    
    22(1):76-78.
    48.范学平,李秀生,张士诚,徐向荣.低渗透气藏整体压裂流固耦合数学模拟[J].石油勘探与开发.2000,27(1):76-79,83.
    49.刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报.1999,18(6):397-401.
    50.刘建军.天然气流固耦合渗流计算的有限元方法[J].新疆石油地质.2000,21(6):487-490.
    51.刘建军,耿万东.地下水渗流的固液耦合理论及数值方法[J].勘察科学技术.2000年第4期:7-9.
    52. Detournay E, Cheng A H D. Poroelastic response of a borehole in a non-hydrostatic stress field[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1988, 25(3): 171-182.
    53. Kojic M, Cheatham J B. Theory of plasticity of porous media with fluid flow[J]. SPEJ. 1974, June: 263.
    54. Risnes R, et al. Sand stresses around a wellbore[J]. SPEJ. 1982, 22: 883-898.
    55. Wang Y, Dusseault M B. Borehole yield and hydraulic fracture initiation in poorly consolidated rock strata[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1991, 28: 247-260.
    56.徐曾和,徐小荷.广义平面应力条件下径向渗流的液固耦合[J].地质力学学报.1999,5(3):12-16.
    57. Settari A, et al. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction[J]. SPE 51927.
    58.路保平,张传进.岩石力学在油气开发中的应用前景分析[J].石油钻探技术.2000,28(1):7-9.
    59.冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报.1998,20(2):69-73.
    60.董平川,郎兆新,徐小荷.油井开采过程中油层变形的流固耦合分析[J].地质力学学报.2000,6(2):6-10.
    61. Settarri A. New development in simulation[J], JCPT. 1993, 32(1): 21-24.
    62.徐泽民,张塞,姚军辉.应力场与渗流场耦合分析在油气预测中的应用[J].新疆石油地质.1996,17(3):207-210.
    63.徐泽民,张塞,杨立中,刘丹.渗流场与应力场耦合分析在地质科学中的应用[J].辽宁地质.1996,3:234-239.
    64.郭尚平.渗流力学的近况和展望[J].力学与实践.1981,3(3):1-16.
    65.陈洪凯.裂隙岩体渗流研究现状(Ⅱ)[J].重庆交通学院学报.1996,15(2):29-34.
    66.冉启全.流固耦合油藏数值模拟理论与方法研究[D].南充:西南石油学院,1996.
    67.曾海容.裂纹扩展与固液耦合三维有限单元正反演模型研究[D].北京:中国地震局地质研究所,1996.
    68.董平川.油气储层流固耦合理论、数值模拟及应用[D].沈阳:东北大学,1998.
    69.徐曾和.渗流的流固耦合问题与应用[D].沈阳:东北大学,1998.
    70.薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油工程中的应用[D].北京:中国地震局地质研究所,2000.
    71.刘建军.裂缝性低渗透油藏流固耦合理论及工程应用[D].北京:中国科学院,中国石油天然气总公司渗流流体力学研究所,2002.
    72.邓英尔.低渗介质单相与两相流体非达西渗流研究[D].北京:中国科学院,中国石油天然气总公司渗流流体力学研究所,1999.
    73.殷代印.高含水期砂岩油田周期注水机理及应用研究[D].安达:大庆石油学院,2001.
    74.许季军.可变形多孔介质渗透率的实验研究[M].沈阳:东北大学,1997.
    75.李宁,陈飞熊.饱和土体固液两相介质动力耦合问题的有限元解析[J].西安公路交通大学学报.1999,19(4):6-10.
    
    
    76.陈祖安,伍向阳,孙德明,杨伟.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    77.陈洁,李尧臣.三维多孔介质中应力与渗流的摄动-有限元分析[J].上海铁道大学学报.1999,20(10):6-10.
    78.邓英尔,刘慈群.注入率对低渗油田开发的影响[J].西南石油学院学报,1999,21(1):21-24.
    79.贺跃光,颜荣贵.矿业可持续发展中的岩石力学与工程-中国岩石力学与工程学会第五次学术大会评述[J].矿冶工程,1998,18(4):17-19.
    80.李传亮.上覆压力与流体压力和骨架应力之间的关系式[J].新疆石油地质,1998,19(6):518-519.
    81.刘从彪,刘翔鹗.油藏三维地应力场数学模型的建立[J].石油勘探与开发.1994,21(4):48-53.
    82.刘建军,刘先贵等.低渗透储层流固耦合渗流规律的研究[J].低渗透油气田.5(2):37-41.
    83.刘先贵,刘建军.降压开采对低渗储层渗透性的影响[J].重庆大学学报(自然科学版),2000,23(增刊):93-96.
    84.钱向东,任青文,姜弘道.简论岩体的两类力学模型[J].河南大学学报,1999,27(2):110-112.
    85.史连杰,陈建革,苏永新,贾振岐.大庆东部低渗透油藏开发过程中储层介质和流体的变化[J].大庆石油学院学报,1999,23(2):85-87.
    86.宋付权,刘慈群.含启动压力梯度油藏的两相渗流分析[J].石油大学学报(自然科学版).1999,23(3):47-50.
    87.苏玉亮,栾志安,张永高.变形介质油藏开发特征[J].石油学报,2000,21(2):51-55.
    88.速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的实验研究[J].岩土工程学报.1997,19(4):73-77.
    89.孙黎娟,吴凡,赵卫华,赵良君.油藏启动压力的规律研究与应用[J].断块油气田.1998,5(5):30-33.
    90.汤连生,周萃英.裂隙岩体固液两相介质的应力耦合模型研究[J].中山大学学报(自然科学版).1996,35(增刊):137-143.
    91.陶振宇,窦铁生.关于岩石水力模型[J].力学进展.1994,24(3):409-417.
    92.陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1988(1):8-14.
    93.王恩志.双重介质地下水流耦合离散模型的研究[J].工程勘察,1992(4):29-34.
    94.王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报.1998(7):55-59.
    95.仵彦卿.岩体裂隙系统渗流场与应力场耦合模型[J].地质灾害与环境保护.1996,7(1):31-34.
    96.仵彦卿,张倬元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究[J].工程地质学报.1996,4(3):40-46.
    97.仵彦卿.岩体水力学基础(五)-岩体渗流场与应力场耦合的裂隙网络模型[J].水文地质工程地质.1997(5):41-45.
    98.仵彦卿.岩石水力学基础(六)-岩体渗流场与应力场耦合的双重介质模型[J].水文地质工程地质.1998(1):43-46.
    99.仵彦卿.岩石水力学基础(七)-岩体水力学参数的确定方法[J].水文地质工程地质.1998(2):42-48.
    100.仵彦卿,高荣芳.影响油气运移的应力场地温场渗流场耦合的双重介质模型[J].西安理工大学学报,1998,14(2):113-117.
    101.徐永福,孙长龙,俞鸿年,吴正跟.常温下砂岩的变形特征及其影响因素[J].岩土力学.1995,16(1):70-77.
    102.殷有泉.岩体介质渐进破坏的弹塑性本构关系[J].固体力学学报,1981(1):58-64.
    103.殷宗泽.土力学学科发展的现状与展望[J].河南大学学报,1999,27(1):1-5.
    
    
    104.袁兴柏,易敏,陈丽萍.油藏条件下岩石孔隙度与压缩系数的测试计算方法[J].西南石油学院学报.1994,16(1):28-34.
    105.郑宏,葛修润,谷先荣,丰定祥.关于岩土工程有限元分析中的若干问题[J].岩土力学.1995,16(3):7-12.
    106.周远田.岩石渗透率与其应力的关系及应用[J].矿物岩石,1993,19(1):33-38.
    107. Aziz S Odeh. Comparison of solutions to a three-dimensional black-Oil reservoir simulation problem[J]. JCPT. January 1981: 13-25.
    108. Scott J D, et al. Volume and permeability changes associated with steam stimulation in an oil sands reservoir[J]. JCPT. 1994, 33(7): 44-52.
    109. Hojka K, et al. Analytical solutions for transient thermoelastic stress fields around a borehole during fluid injection into permeable media[J]. JCPT. 1993, 32(4).
    110. Wong R C K, et al. Oil sand strength parameters st low effective stress: Its effects on sand production[J]. JCPT. 1994, 33(5): 44-49.
    111. Chalaturnyk R J, et al. Evaluation of reservoir properties form geomechancal tests[J]. JCPT. 1992, 31(5): 31-40.
    112. Richard G Wan, et al. A constitutive model for the effective stress-strain behaviour of oil sands[J]. JCPT. 1991, 30(4): 89-98.
    113. Tortike WS, et al. Prediction of oil sand failure due to steam-induced stresses[J]. JCPT. 1991,30(1):87-96.
    114. Tortike W S, et al. Reservoir simulation integrated with geomechanics[J]. JCPT. 1993, 32(5): 28-37.
    115. Adam Rewis, et al. Simulation of coupled thermal/fluid-flow/geomechanical interactions in fluid[J]. SPE 51921.
    116. Rhett D W, et al. Effect of reservoir stress path on compressibility and permeability of sandstones[J]. SPE24756.
    117. Her-Yuan Chen, et al. Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally[J]. SPE 38884.
    118. Larry S-K Fung, et al. Reservoir simulation with a control-volume finite-element method[J]. SPE 21224.
    119. Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. DVS. May 1956, Vol.27, NO.5.
    120. Morita N, et al. Realistic sand production[J]. SPE 16989.
    121. Warplnski N R, et al. Determination of the effective stress law for permeability and deformation in low-permeability rocks[J]. SPE Formation Evaaluation. June 1992: 123-131.
    122. Wu Y -S, et al. Flow and displacement of bingham non-newtonian fluids in porous media [J]. SPE Reservoir Engineering. August 1992: 369-376.
    123.冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发.1997,24(3):61-65.
    124.徐曾和,章子霞.二维轴对称耦合流动问题的解析解及应用[J].力学与实践.1992,14(6):44-47.
    125.冉启全,李士伦.油藏渗流与应力耦合分析中的有限元等效结点力的计算方法[J].油气井测试.1997,6(3):12-17.
    126.冉启全,李士伦,杜志敏,孙雷.流固藕合多相多组分渗流数学模型的建立[J].油气井测试.1996,5(3):14-18.
    127.曾海容,宋惠珍.地下流体场与应力场耦合方程的有限单元法[J].石油勘探与开发.1998,25(4):
    
    90-92.
    128.董平川,徐小荷.油、水二相流固耦合渗流的数学模型[J].石油勘探与开发.1998,25(5):93-96.
    129.李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报.1995,17(2):13-19.
    130.邓英尔,刘慈群.低渗多孔介质单向非定常渗流数值模拟[J].低渗透油田.1998,3(4).
    131.程时清,陈明卓,油水两相低速非达西渗流数值模拟[J].石油勘探与开发.1998,25(1):41-43.
    132.张云真,曹富新.弹性力学及其有限元法[M].北京:中国铁道出版社,1983.
    133.张本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986.
    134.饶寿期.有限元与边界元法[M].北京:北京航空航天大学出版社,1990.
    135.王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社,1997.
    136.李嘉珩.有限单元法及程序实例[M].北京:人民铁道出版社,1979.
    137.陆严清.塑形变性理论及应用[M].北京:国防工业出版社,1988.
    138.崔世杰,张清杰.应用塑性力学[M].郑州:河南科学技术出版社,1992.
    139.张国瑞.有限元法[M].北京:机械工业出版社,1991.
    140.张铜生,张富德.简明有限元法及其应用[M].北京:地震出版社,1990.
    141.吕合祥,蒋和洋.非线性有限元[M].北京:化学工业出版社,1992.
    142.[美]董平,罗塞托斯J N.有限单元法—基本方法与实施[M].北京:国防工业出版社,1979.
    143.殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,清华大学出版社,1987.
    144.徐芝纶.弹性力学[M].北京:高等教育出版社,1994.
    145.刘北辰.陆鸿森:弹性力学[M].北京:治金工业出版社,1979.
    146.孙学增.井壁岩石力学基础[M].哈尔滨:哈尔滨工业大学出版社,1994.
    147.高玉臣.固体力学基础[M].北京:中国铁道出版社,1999.
    148.尹祥础.固体力学[M].北京:地震出版社,1985.
    149.屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    150.J C耶格,N G W库克.岩石力学基础[M].北京:科学出版社,1981.
    151.华东水利学院编.岩石力学[M].北京:水利出版社,1980.
    152.[苏]К.С.巴斯宁耶夫А.М.费拉索夫И.Н.科钦娜β.М.马克西莫夫.地下流体力学[M].北京:石油工业出版社,1992.
    153.孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    154.吴林高,缪俊发.渗流力学[M].上海:上海科学技术文献出版社,1992.
    155.翟云芳.渗流力学[M].北京:石油工业出版社,1999.
    156.张建国,雷光伦,张艳玉.油气层渗流力学[M].北京:石油大学出版社,1998.
    157.Bear J.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    158.葛家理.油气层渗流力学[M].北京:石油工业出版社,1982.
    159.葛家理,同登科.复杂渗流系统的非线性流体力学[M].北京:石油工业出版社,1998.
    160.陈材侃.计算流体力学[M].重庆:重庆出版社,1992.
    161.中国石油天然气总公司开发生产局编.低渗透油田开发技术[C].全国低渗透油田开发技术座谈会论文选,北京:石油工业出版社,1998.
    162.李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1996.
    163.裘怿楠,刘雨芬.低渗透砂岩油藏开发模式[M].北京:石油工业出版社,1998.
    164.闵琪,金贵孝,荣春龙.低渗透油气田研究与实践[M].北京:石油工业出版社,1998.
    165.闵琪,金贵孝,荣春龙.低渗透油气田研究与实践(续一)[M].北京:石油工业出版社,1999.
    166.冈秦麟.特殊低渗透油气田开采技术[M].北京:石油工业出版社,1999.
    167.黄延章等著.低渗透油层渗透机理[M].北京:石油工业出版社,1998.
    
    
    168.刘漪厚等编著.扶余裂缝型低渗透砂岩油藏[M].北京:石油工业出版社,1997.
    169.钟显彪等编著.红岗萨尔图层低渗透砂岩油藏[M].北京:石油工业出版,1997.
    170.朱义吾等编著.马岭层状低渗透砂岩油藏[M].北京:石油工业出版社,1997.
    171.邱光东等编著.老君庙M层低渗透砂岩油藏[M].北京:石油工业出版社,1998.
    172.韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社,1993.
    173.陈月明.油藏数值模拟基础[M].东营:石油大学出版社,1989.
    174.范江.油藏数值模拟[M].北京:石油工业出版社,1995.
    175.宋考平,宋洪才,吴文祥.油藏数值模拟理论基础[M].北京:石油工业出版社,1996.
    176.袁奕群,袁庆峰.黑油模型在油田开发中的应用[M].北京:石油工业出版社,1995.
    177.黎水泉,徐秉业.双重孔隙介质流固耦合理论模型[J].水动力学研究与进展.2001,16(4):460-466.
    178.徐曾和,徐小荷.饱和多孔地层中定量抽放的流固耦合问题[J].岩土工程学报.1999,21(6):737-741.
    179.陈永敏,周娟,刘文香,刘学伟.低速非达西渗流现象的实验论证[J].重庆大学报(自然科学版).2000,23(增刊):59-61.
    180.梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报(自然科学版).1999,18(5):483-485.
    181.梁冰,刘建军,范厚彬,章梦涛.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报.2000,19(1):1-5.
    182.Chin L Y等.渗透率随应力变化的井的地质力学和流体流动的全耦合分析.SPE48857.
    183.徐曾和,徐小荷.二维应力场下承压地层中渗流的液固耦合问题[J].岩石力学与工程学报.1999,18(6):645-650.
    184.龚晓南.21世纪岩土工程发展展望[J].岩土工程学报.2000,22(2):238-242.
    185.姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报.2001,23(2):153-156.
    186.赵阳升,杨栋,郑少河,胡耀青.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].Science in China(E辑).29(1):82-86.
    187.王仁.力学模型及其局限性[J].力学与实践.2001,23(2):70-72.
    188.肖鲁川,甄力,郑岩.特低渗透储层非达西渗流特征研究[J].大庆石油地质与开发.2000,19(5):27-28.
    189.彭苏萍,屈洪亮,罗立平,王磊,段延娥.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报.2000,25(2):113-116.
    190.王晓鸿,仵彦卿.渗流场-应力场耦合分析[J].勘察科学技术.1998,(4):3-6.
    191.郑泉水,黄克智等.世纪之交的力学-参加第20届国际理论与应用学大会有感[J].力学进展.2001,31(1):144-155.
    192.周维恒,杨若琼,杨强.岩石力学发展的最新趋势-第九届国际岩石力学大会会议内容介绍[J].岩石力学与工程学报.2000,19(1):117-119.
    193.张学文,尹家宏.低渗透砂岩油藏油水相对渗透率曲线特征[J].特种油气藏.1999,6(2):27-31.
    194.郑颖人.广义塑性力学理论[J].岩土力学.2000,21(2):188-192.
    195.韩宝平,冯启岩,于礼山,毛琼,李炉明,张洪茂.全应力应变过程中碳酸岩盐渗透性研究[J].工程地质学报.2000,8(1):127-128.
    196.杨代泉,沈珠江,Harianto,Rahardjo,Leong,Eng,Choon.非饱和土孔隙气、水、汽、热耦合运动之模拟[J].岩土工程学报.2000,22(3):357-361.
    197.李长洪,蔡美峰,乔兰,王双红.岩石全应力-应变曲线及其与岩爆关系[J].北京科技大学学
    
    报.1999,21(6):1-6.
    198.胡云进,速宝玉,詹美礼.裂隙岩体非饱和渗流研究综述[J].河南大学学报.2000,28(1):40-46.
    199.史謌,杨东全,杨惠珠.岩石的孔隙弹性研究[J].北京大学学报(自然科学版).2000,36(2):214-220.
    200.吴凡,孙黎娟,何江.孔隙度、渗透率与净覆压的规律研究和应用[J].西南石油学院学报.1999,21(4):1-5.
    201.白以龙,周恒.迎接新世纪挑战的力学-力学学科21世纪初发展战略的建议[J].力学与实践.1999,21(1):1-5.
    202.钟万勰,程耿东.跨世纪的中国计算机学[J].力学与实践.1999,21(1):1-6.
    203. Zhang H W, Heeres O M and de Borst R, Schrefler B A. Implicit integration of a generalized plasticity constitutive model for partially saturated soil[J]. Engineering Computers. 2001, 18 (1/2): 314-336.
    204. Zhang L W, Sanavia L and Schrefler B A. An internal length scale in dynamic swain localization of multiphase porous media[J]. Mech. Cohes. —Frict. Mater. 1999(4), 443-460.
    205. Zhang H W, Sanavia L, Schrefler B A. Numerical analysis of dynamic strain localization in initially water saturated dense sand with a modified generalized plasticity model[J]. Computers Structures. 79(2001): 441-459.
    206. Zhang H W, Schrefler B A. Uniqueness and localization analysis of elastic-plastic saturated porous media[J]. Int. J. Numer. Meth. Geomech. 2001, 25: 29-48.
    207. Amit Sharma, et al. Flow-induced stress distribution in a multi-rate and multi-well reservior[J]. SPE39914.
    208. Daniel E.Ochs, et al. Relating in situ stress and transient pressure testing for a fractured well[J]. SPE38674.
    209. Heffer K J, et al. Novel techniques show links between reservoir flow directionality, earth stress, fault structure and geomechanical changes in mature waterfloods[J]. SPE30711.
    210. Klimentos T, et al. Experimental determination of the Biot elastic constant: applications in formation evaluation(sonic porosity, rock strength, earth stresses and sanding predictions)[J]. SPE30593.
    211. Hettema M H H, et al. Production-induced compaction of sandstone reservoirs: the strong influence of field stress[J]. SPE50630.
    212. Yuting Duan, et al. Stress sensitivity of naturally fractured-porous reservoir with dual-porosity. SPE50909.
    213. Laurent J, et al. Pore pressure influence in the poroelastic behaviour of rocks: experimental studies and results[J]. SPE20922.
    214. Gambolati G. Equation for one—dimensional vertical flow of groundwater Ⅰ:the rigorous theory[J]. Warer Resource Res. 1973, 9(4): 1022-1028.
    215. Magnus Wangen. A finite element formulation in lagrangian co-ordinates for heat and fluid in compacting sedimentary basins[J]. Int. J. Num. Anal. Methods Geomech. 1993, 17: 401-432.
    216. Skempton A W. Effective stress in soils, concrete and rocks. In pore pressure and suction in soils. Butterworth london, 1961.
    217.贾振岐,王延峰,付俊林,张连仲.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报.2001,25(3):73-76.
    218.刘建军,刘先贵.开发过程中三场耦合的数学模型[J].特种油气藏.2001,8(2):31-37.
    219.裴桂红,刘建军,王锦山.地下水石油类污染的数学模型及计算方法[J].辽宁工程技术大学学报(自然科学版).2001,20(2):240-243.
    220.刘建军,刘先贵,曾流芳.低渗裂缝性储层渗透性能变化的动态模拟[J].辽宁工程技术大学学
    
    报(自然科学版).2001,20(4):543-545.
    221.刘建军,刘先贵等.裂缝性砂岩油藏渗流的等效连续介质模型[J].重庆大学学报.2000,23(增刊):158-160.
    222.王媛.多孔介质渗流与应力的耦合计算方法[J].工程勘察.1995(2):33-37.
    223.冯文光.非达西低速渗流的研究现状与进展[J].石油勘探与开发.1986,13(4):76-80.
    224.闫庆来,何秋轩,任晓娟等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报.1990,5(6):1-6.
    225.周维恒.高等岩石力学[M].北京:水利电力出版社,1990.
    226.范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002,29(2):117-119.
    227.阮敏,王连刚.低渗透油田开发与压敏效应[J].石油学报,2002,23(3):73-76.
    228.吕成远,王建,孙志刚.低渗透砂岩油藏启动压力梯度实验研究[J].石油勘探与开发,2002,29(2):86-89.
    229.周涌沂,彭仕宓,李允,李阳.低速非达西渗流的全隐式模拟模型[J].石油勘探与开发,2002,29(2):90-93.
    230. Vinsone, P. K. W. Orthomin, an iterative method for solving sparse banded sets of simultaneous linear equations[J]. SPE 5279.
    231.周志军,刘永建,马英健,刘英芝,吴洪彪。低渗透储层流固耦合渗流理论模型[J].大庆石油学院学报,2002,26(3):29-32.
    232. Zhijun Zhou, Yongjian Liu, Kaoping Song, Dianjun Guo. Advances and Applications of Fluid-solid Coupling Seepage Flow Theory in Oil Reservoir[J]. Information, April, 2002.
    233. Aziz, K. and Settari, A. Petroleum Reservoir Simulation[M]. Applied Science Publishers, London and New York, 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700