白僵菌、巴氏新小绥螨和西花蓟马间的互作关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高对单一害虫的生物防治效果和减少经济损失,生防工作者提出多天敌联合应用的策略。经过多年的科研实践,该策略逐渐成为一个热议的话题,备受争议。由于天敌之间可能存在的兼性捕食或寄生作用、对资源的掠夺性竞争和拮抗等关系,因此,多天敌的兼容性和如何协调使用成为联合应用能否取得成功的关键。
     本论文以外来入侵害虫西花蓟马为防治对象,通过筛选高毒力的球孢白僵菌菌株,并引入一种对西花蓟马具有较高防治潜力的国内优势捕食螨品种——巴氏新小绥螨,在室内和温室开展了这几者之间的互作关系研究,从多角度评价白僵菌和捕食螨的兼容性以及二者联合应用的潜力和方法。研究的主要内容如下:一、白僵菌、巴氏新小绥螨和西花蓟马两两互作关系研究
     生测法筛选出了一种对西花蓟马具有高毒力的菌株,并测定了不同浓度和不同持续时间的白僵菌孢子液对西花蓟马的毒力作用。用扫描电镜方法比较了高毒力菌株对西花蓟马成虫和巴氏新小绥螨成螨的侵染过程,发现白僵菌处理西花蓟马成虫后,孢子在60h内可以完成体表附着、萌发、穿透体壁和成功入侵的整个过程,进一步表现出对西花蓟马具有较高的毒力作用;对巴氏新小绥螨进行同样处理后,白僵菌孢子可以在其体壁完成附着和萌发阶段,但不能穿透捕食螨体壁,表明捕食螨对白僵菌的侵染具有防御能力。通过定性和定量两个方面,研究了巴氏新小绥螨携带白僵菌孢子防治西花蓟马成虫的能力,并研究了其所携带孢子的数量和活力,结果表明由于捕食螨行为的影响,导致其携带和传播孢子的能力有限。用白僵菌处理后的雌成螨,其产卵前期显著延长。试验还发现捕食螨具有直接取食白僵菌孢子的现象。二、白僵菌、巴氏新小绥螨和西花蓟马三者互作关系研究
     用功能反应方法,研究被白僵菌处理的巴氏新小绥螨对西花蓟马初孵若虫的捕食能力,结果表明捕食螨的捕食能力不受白僵菌影响,且捕食螨对被白僵菌侵染12h后的蓟马若虫的捕食量增加。通过室内模拟和生测方法,发现被捕食螨攻击过的蓟马2龄若虫和蛹,容易被白僵菌侵染。通过测定捕食螨对白僵菌的趋性反应,表明无论有无蓟马的引诱,捕食螨都对白僵菌孢子液处理0和12h后的菜豆叶片具有明显的排斥反应。通过两性生命表研究,巴氏新小绥螨取食被菌侵染的蓟马若虫后,生命表参数变化显著,表明白僵菌对捕食螨具有间接影响。三、温室单独和联合应用白僵菌和巴氏新小绥螨防治西花蓟马
     通过在温室中设置不同的处理,研究单独、同时联合和间隔联合应用白僵菌和捕食螨对西花蓟马的防治效果,结果表明白僵菌和捕食螨同时联合应用时,二者之间具有明显的交互作用,从而抑制了联合应用的效果,而间隔联合应用能够起到对西花蓟马的增效防治作用。因此,建议白僵菌和捕食螨在田间采取间隔联合应用的方式。
In order to improve biocontrol effect on single target pest and minimize economic losses, multiplenatural enemies to be integrated has been recommended in the IPM strategy. However, the issue ofbenefits of introducing single or multiple natural enemy species for classical biological control hasbecoming controversial after many years of scientific practice. Since the intraguild predation (IGP),resource competition and antagonism exist among enemies, a better understanding of the interactionsamong multiple natural enemy species would improve their integration into pest management practices.
     This paper investigated the interactions between Beauveria bassiana and predatory miteNeoseiulus barkeri for the control of their target pest, Frankliniella occidentalis, one of the mostimportant insect pests in ornamentals and vegetables worldwide. Neoseiulus barkeri is distributedwidely and displayed potential for biological control of several species of thrips. Beauveria bassianawas demonstrated potential in managing F. occidentalis. Our study was conducted in laboratory andgreenhouse to evaluate the compatibility between B. bassiana and N. barkeri and the potential use of B.bassiana in combination with N. barkeri for the control of F. occidentalis.
     1. Interaction between B. bassiana, N. barkeri and F. occidentalis
     We screened one of the most virulent strains against F. occidentalis from30new fungal isolates. Thedirect toxicity of different concentration of B. bassiana and the residual toxicity at different time to F.occidentalis were tested. We compared the fungal infection process in the predator and thrips byscanning electron microscopy. The results revealed that B. bassiana successfully infected F. occidentaliswithin60h. In contrast, we never observed penetration of the cuticle of N. barkeri. Neoseiulus barkeridisplayed effective defense against B. bassiana. The ability of conidia carried by N. barkeri and thevitality of conidia were tested, and the results showed that the treated N. barkeri can carry a largenumber of conidia within a short time, the conidia can be dispersed and infected F. occidentalis, andthese synergistic effects were rapidly weakened by the self-grooming behavior of N. barkeri. We alsofound that the preoviposition duration of the female N. barkeri was significantly longer and conidiacould be fed by N. barkeri.
     2. Interaction among B. bassiana, N. barkeri and F. occidentalis
     From functional response and bioassay experiments, we showed that the predation capability of N.barkeri was not affected by B. bassiana. The first instar larvae of F. occidentalis after having beentreated with the fungus for12h were more vulnerable to be killed by N. barkeri. Second instar larvaeand pupae of F. occidentalis which had been attacked by N. barkeri were more susceptible to B.bassiana infection. When treated the leaves of kidney bean with B. bassiana solution, N. barkeridisplayed behavioral repellence. From two-sex life table study, we found that the life table parameters ofN. barkeri were strongly affected when fed on infected F. occidentalis.
     3. Application of B. bassiana and N. barkeri for controlling F. occidentalis in greenhouse.
     We determined the effects of single and combined application of B. bassiana and N. barkeri forcontrolling F. occidentalis in cucumber greenhouse experiments. The results indicated that there were obvious interactions between B. bassiana and N. barkeri with little synergistic effects for F. occidentalisbiological control when combined both simultaneously, so the application of B. bassiana in combinationwith N. barkeri at certain intervals was suggested.
引文
1.陈斌,张琦,桂富荣,何永红,刘云龙,李正跃,肖关丽.球孢白僵菌不同分离株对西花蓟马的毒力测定.生物安全学报,2012,21(1):14-19.
    2.方小端,吴伟南,刘慧,潘志萍,郭明昉.西方花蓟马的生物防治研究进展.中国生物防治,2008a,24(4):363-368.
    3.方小端,吴伟南,刘慧,潘志萍,郭明昉.以植绥螨防治入侵害虫西方花蓟马的研究进展.中国植保导刊,2008b,4:10-13.
    4.郭书伟,魏新田,魏修山.白僵菌的施药技术改进及对地下害虫的防治研究.北京农业,2007年21期.
    5.赫英伟.白僵菌的研究概况.黑龙江农业科学,2010(4):145-147.
    6.洪晓月.农业螨类学.中国农业出版社,2012.
    7.孔琼,袁盛勇,郭亚力,张宏瑞,田学军,李河.球孢白僵菌MZ041016菌株及其与化学农药混配对禾谷缢管蚜的毒力测定.江苏农业科学,2008,4:115-117.
    8.李美,符悦冠.胡瓜钝绥螨室内种群生命表研究.植物保护,2007,33(2):84-87.
    9.李银平,雷仲仁.防治西花蓟马高效白僵菌菌株筛选及产孢特性研究.植保科技创新与病虫防控专业化——中国植物保护学会2011年学术年会论文集,2011.
    10.李银平.球孢白僵菌对蓟马控制技术研究[硕士学位论文].北京:中国农业科学院,2012.
    11.林华峰,胡萃,李增智,等.白僵菌生物学特性及其林间应用研究.安徽农业大学学报,1999,26(1):54-581.
    12.刘清明,苑园园,林健荣,钟杨生.昆虫表皮蛋白及其基因表达调控机理的研究进展.昆虫知识,2010,47(2):247-255.
    13.吕丁丁,李增智,王成树.虫生真菌分子致病机理及基因工程改造研究进展.微生物学通报,2008,35(3):443-449.
    14.蒲蛰龙,李增智.昆虫真菌学.合肥:安徽科学技术出版社,1996:532-542.
    15.任洁,雷仲仁,张令军,李红岭,花蕾.北京地区西花蓟马发生为害调查研究.中国植保导刊,2006,26(5):5-7.
    16.任巧云,关贵全,李有全,马米玲,刘爱红,刘军龙,牛庆丽,金玉荣,王子坚,罗建勋,殷宏.八种杀蜱药物与球孢白僵菌分生孢子的生物相容性.中国兽医科学,2009,39(5):456-460.
    17.宋健,曹伟平,杜立新,王刚,王容燕,王金耀,冯书亮.球孢白僵菌HFW-05油悬剂对天敌昆虫的毒力测定.华北农学报,2011,26(增刊),180-183.
    18.孙月华,郅军锐.菜豆—二斑叶螨—伪钝绥螨相互关系的研究.应用昆虫学报,2011,48(4):1002-1010.
    19.王海鸿,雷仲仁,李雪,代安国,陈翰秋.西藏发现重要外来入侵害虫——西花蓟马.植物保护,2013,39(1):181-183.
    20.王静,雷仲仁,高玉林.虫生真菌和捕食螨对西花蓟马的联合控制作用初步研究.公共植保与绿色防控2010年论文集,2010.
    21.王静,雷仲仁,徐洪富,高玉林,王海鸿.白僵菌对西花蓟马若虫的致病力和对巴氏钝绥螨的影响.中国生物防治学报,2011,27(4):479-484.
    22.王雅卉,郑长英,王俊平.球孢白僵菌对西花蓟马成虫的毒力及体表侵染的扫描电镜观察.中国生物防治学报,2011,27(3):324-330.
    23.王中康,殷幼平,彭国雄,夏玉先.杀虫真菌功能基因克隆和菌株改良研究进展.《中国虫生真菌研究与应用》(第五卷).2003.
    24.王梓清,王伯明,胡小叶,兰清秀,罗佳,范青海.温湿度对剑毛帕厉螨生长发育的影响.江西农业大学学报,2009,31(6):1039-1043.
    25.问锦曾,雷仲仁,谭正华,王音,符伟,黄虹.5株绿僵菌对东亚飞蝗的毒力测定.植物保护,2003,29:50-52.
    26.吴正铠.杀虫微生物(第一卷).杀虫微生物编委会编.北京:北京农业大学出版社,1987:41-46.
    27.谢翎.球孢白僵菌抗逆相关功能基因克隆与基因工程菌构建研究[博士学位论文].安徽合肥:安徽农业大学,2009.
    28.徐学农,吕佳乐,王恩东.捕食螨在中国的研究与应用.中国植保导刊,2013:26-34.
    29.徐学农,王恩东.基于生物防治的西花蓟马治理及思考.环境昆虫学报,2010,32(1):96-105.
    30.徐学农,Borgemeister C, Poehling HM.联合释放黄瓜钝绥螨或小花蝽和尖狭下盾螨防治西方花蓟马.北京,中国农业科学技术出版社.2005
    31.徐学农,王恩东.国外昆虫天敌商品化生产技术及应用.中国生物防治,2008,24(1):75-79.
    32.杨华,崔元玗,张升,孙晓军.外来入侵害虫——西花蓟马在新疆的发生为害.新疆农业科学,2010,47(11):2252-2253.
    33.杨敏芝,谭云峰,田志来.不同温、湿度和光照对白僵菌孢子活力的影响.吉林农业科学,2005,3:60-61.
    34.杨运华,杜开书,石明旺.虫生真菌的生物防治研究进展.河南科技学院学报,2011,39(1):34-37.
    35.喻国辉,程萍,古德祥,张古忍.三种寄主植物叶片提取物对美洲斑潜蝇雌成虫嗅觉记忆的影响.昆虫学报,2008,51(6):659-664.
    36.喻国辉,李一平,古德祥,张古忍.不同参数对美洲斑潜蝇寄主选择偏嗜性分析的影响.中山大学学报(自然科学版),2005,44(1):65-67.
    37.袁盛勇,张宏瑞,孔琼,王平,孙士卿,李正跃,肖春.球孢白僵菌MZ041016菌株对西花蓟马的毒力测定.华中农业大学学报,2011,30(2):197-199.
    38.翟锦彬,黄秀梨,许萍.杀虫真菌──球孢白僵菌的昆虫致病机理研究近况.微生物学通报,1995,22(1):45-48.
    39.张安盛,张思聪,庄乾营,李丽莉,门兴元,周仙红,于毅.外来入侵害虫——西花蓟马在山东省不同地区主要花卉上的分布.生物安全学报,2012,21(2):114-118.
    40.张宝鑫,李敦松,冯莉,黄少华.捕食螨的大量繁殖及其应用技术的研究进展.中国生物防治,2007,23(3):279-283.
    41.张成省. Alternarla alternate菌丝细胞壁凝集素的分离纯化及特性研究.泰安:山东农业大学,2002.
    42.张金平,范青海,张帆.应用实验种群生命表评价巴氏新小绥螨对西花蓟马的控制能力.环境昆虫学报,2008,30(3):229-232.
    43.张丽靖,冯明光.基于球孢白僵菌的真菌杀虫剂生产工艺与剂型述评.浙江农业学报,2004,16(6):395-399.
    44.张倩倩,范青海.猎物对巴氏钝绥螨生长发育和繁殖的影响.华东昆虫学报,2005,14(2):165-168.
    45.张素华,雷仲仁,范淑英,问锦曾.不同温度下4株白僵菌对西花蓟马的致病力.植物保护,2009,35(6):64-67.
    46.张衍雷,付卫东,张国良,王薇.北京地区西花蓟马发生动态调查.山东农业大学学报,2011,42(2):194-196.
    47.张艳璇,林坚贞,季洁.工厂化生产胡瓜钝绥螨防治柑橘全爪螨的应用效果.植物保护与推广,2002,22(10):25-28.
    48.致军锐,李景柱,宋琼章.利用胡瓜钝绥螨防治西花蓟马研究进展.中国生物防治.2007,23(增刊),60-63.
    49. Abbott WS. A Method for Computing the Effectiveness of Insecticides, Journal of EconomicEntomology,1925,18:265-267.
    50. Agboton BV, Hanna R, Onzo A, Vidal S, von Tiedemann A. Interactions between the predatory miteTyphlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences forthe suppression of their shared prey/host Mononychellus tanajoa. Experimental and AppliedAcarology,2013,60:205-217.
    51. Alma CR, Goettel MS, Roitberg BD, Gillespie DR. Combined effects of the entomopathogenicfungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, onwhitefly populations. BioControl,2007,52:669-681.
    52. Al-mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG. Dissemination of Beauveria bassiana byhoney bees (Hymenoptera: Apidae) for control tarnished plant bug (Hemiptera: Miridae) on canola.Biological Control,2006,35:1569-1577.
    53. Andersen SO,Hojrup P. Roepstorff P. Insect cuticular proteins. Insect biochemistry and molecularbiology,1995,25(2):153-176.
    54. Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM. Control of western flower thrips(Frankliniella occidentalis) pupae with Metarhizium anisoplian in peat and peat alternative growingmedia. Biological control,2007,40:293-297.
    55. Bennison J,Manlden K,Maher H.In:Proceedings of the Joint IOBC—WPRS Working Group atVictoria.Canada:Bulletin—OILB—SROP,2002:9-12.
    56. Bennison JA, Jacobson RJ. Integrated control of Frankliniella occidentalis Pergande in UKcucumber crops-evaluation of a controlled release system of introducing Amblyseius cucumeris.Medelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit, Gent.1991,56:251-258.
    57. Berndt O.Entomopathogenic nematodes and soil-dwelling predatory mites:Suitable antagonists forenhanced biological control of Frankliniella occidentalis (Pergande)(Thysanoptera:Thripidae).Hannover University,Germany,2002.
    58. Berndt O, Meyh fer R, Poehling HM. The edaphic phase in the ontogenesis of Frankliniellaoccidentalis and comparison of Hypoaspis miles and H. aculeifer as predators of soil-dwellingthrips stages. Biological control,2004,30:17-24.
    59. Berndt O, Meyhofer R, Poehling HM. The edaphic phase in the ontogenesis of Frankliniellaoccidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators ofsoil-dwelling thrips stages. Biological Control,2004a,30:17-24.
    60. Blaakweer A,Geervliet JBF,Vanloon JJA,1994. Comparative headspace analysis of cabbage plantsdamaged by two species of Pieris caterpillars: Consequences for inflight host location by Cotesiaparasitoids.Entomologia Experimentalis et Applicata,1994,73(2):175-182.
    61. Briggs CJ. Competition among parasitoid species on a stage-structured host and its effect on hostsuppression. American Naturalist,1993,141:372-397.
    62. Brodeur J, Boivin G. Trophic and guild influences in biological control. Springer, Dordrect.2006.
    63. Brodsgaard HF. Insecticide resistance in European and African strains of western flower thrips(Thysanoptera: Thripidae) tested in a new residual on glass test. Journal of Economic Entomology,1994,87:1141-1146.
    64. Brodsgaard HF, Hansena LS. Effect of Amblyseius cucumeris and Amblyseius barkeri as biologicalcontrol agents of thrips tabaci on glasshouse cucumbers. Biocontrol Science and Technology,1992,2(3):215-223.
    65. Charnley AK, St Leger RJ. The role of cuticle-degrading enzymes in fungal pathogenesis in insects.Cole E T, Hoch H C. Fungal Spore Disease Initiation in Plants and Animals. New York: PlenumPress.1991, pp.267-287.
    66. Chi H, Liu H. Two new methods for study of insect population ecology. Bulletin of the Institute ofZoology Academia Sinica.1985,24:225-240.
    67. Chi H. Life-table analysis incorporating both sex and variable development rate among individuals.Environmental Entomology,1988,17:26-31.
    68. Chi H. TWOSEX-MSChart: computer program for age stage, two-sex life table analysis.2012a.Available from:.
    69. Chi H. CONSUME-MSChart: computer program for consumption rate analysis based on the agestage, two-sex life table.2012b. Available from:.
    70. Chi H, Su HY. Age-stge, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenotera:Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proofof the relationship between female fecundity and the net reproductive rate. EnvironmentalEntomology,2006,35:10-21.
    71. Chi H, Mou DF, Allahyari H, Yu JZ, Huang YB, Yang TC, Farhadi R, Gholizadeh M. Finitepredation rate: a novel parameter for the quantitative measurement of predation potential ofpredator at population level. In: Nature Precedings,2011, Available from:.
    72. Chi H, Yang, TC. Two-sex life table and predation rate of Propylaea japonica Thunberg(Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer)(Homoptera: Aphididae).Environmental Entomology,2003,32:327-333.
    73. Chow A, Chau A, Heinz KM. Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) withAmblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis(Thysanoptera: Thripidae) on greenhouse roses. Biological Control,2008,44:259-270.
    74. Clarkson JM, Charnley AK. New insights into the mechanisms of fungal pathogenesis in insects.Trends in Microbiology,1996,4:197-203.
    75. Colleen R. Alma David R, Gillespie, Bernard D, Roitberg, Mark SG. Threat of Infection andThreat-Avoidance Behavior in the Predator Dicyphus hesperus Feeding on Whitefly NymphsInfected with an Entomopathogen. Journal of Insect Behavior,2010,23:90-99.
    76. De Courcy Williams ME, Kravar-Garde L, Fenlon JS, Sunderland KD. Phytoseiid mites inprotected crops: the effect of humidity and food availability on egg hatch and adult life span ofIphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari:Phytoseiidae). Experimental and Applied Acarology,2004,32:1-13.
    77. Dedej S, Delaplane KS, Scherm H. Effectiveness of honey bees in delivering the biocontrol agentBacillus subtilis to blueberry flowers to suppress mummy berry disease. Biological Control,2004,31:422-427.
    78. Donka A, Sermann H, Buttner C. Effect of the entomopathogenic fungus Lecanicillinm muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism. Communications inagricultural and applied biological sciences,2008,73:395-404.
    79. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman&Hall, New York.1993.
    80. Eller FJ,Heeath RR,1990. Factors affecting oviposition by the parasitoid Microplitis croceipes(Hymenoptera: Braconidae) in an artificial substrate.Journal of economic entomology,1993,83:398-404.
    81. Farish DJ. The evolutionary implications of qualitative variation in the grooming behaviour of theHymenoptera (Insecta). Animal Behaviour,1972,20:662-676.
    82. Fisher, R A. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.1930.
    83. Furtado IP, Moraes GJ, Keller S. Infection of Euseius citrifolius (Acari: Phytoseiidae) by anentomophthoralean fungus in Brazil. Ecossistema,1996,21:85-86.
    84. Gao YL, Lei ZR, Reitz SR. Western flower thrips resistance to insecticides: detection, mechanismsand management strategies. Pest management science,2012,68:1111-1121.
    85. Gao YL, Reitz SR, Wang J, Xu XN, Lei ZR. Potential of a strain of the entomopathogenic fungusBeauveria bassiana (Hypocreales: Cordycipitaceae) as a biological control agent against westernflower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol Science andTechnology,2012,22:491-495.
    86. Gill SA, Resser R, Raupp MJ. Battling thrips: five pesticides put to the test. Grower talks.1998,10:46-48.
    87. Gillespie JP, Bailey AM, Cobb B, Vilcinskas A. Fungi as elicitor of insect immune responses.Archives of lnsect Biochemistry and Physiology,2000,44:49-68.
    88. Gillespie DR, Ramey CA. Life history and cold storage of Amblyseius cucumeris (Acarina:Phytoseiidae). Journal of Entomological Society of British Columbia,1988,85:71-76.
    89. Goodman D. Optimal life histories, optimal notation, and the value of reproductive value. AmericanNaturalist,1982,119:803-823.
    90. Gotoh T, Nozawa M, Yamaguchi K. Prey consumption and functional response of threeacarophagous species to eggs of the two-spotted spider mite in the laboratory. Applied Entomologyand Zoology,2004,39:97-105.
    91. Griffen BD. Detecting emergent effects of multiple predator species. Oecologia,2006,148:702-709.
    92. Hansen LS. Control of Thrips tabaci [Thysanoptera: Thripidae] on glasshouse cucumber using largeintroductions of predatory mites Amblyseius barkeri [Acarina: Phytossiidae], Entomophaga,1988,33,33-42.
    93. Hawkins BA, Cornell HV. Theoretical Approaches to Biological Control. CambridgeUniversityPress, Cambridge, UK.1999.
    94. Helyer NL, Brobyn PJ, Richardso PN, Edmondson RN Control of western flower thrips(Frankliniella occidentalis Pergande) pupae in compost. Annals of applied Biology,1995,127:405-412.
    95. Herron GA, James TM. Monitoring insecticide resistance in Australian Frankliniella occidentalisPergande (Thysanoptera: Thripidae) detects fipronil and spinosad resistance. Australian Journal ofEntomology,2005,44:299-3031.
    96. Holder DJ, Keyhani NO. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps)bassiana to substrata. Applied and environmental microbiology,2005,71(9):5260-5266.
    97. Holling CS. The components of predation as revealed by a study of small-mammal predation of theEuropean pine sawfly. Canadian Entomologist,1959,91:293-320.
    98. Houten van YM, stlie ML, Hoogerbrugge H, Bolckmans K. Biological control of western flowerthrips on sweet pepper using the predatory mites Amblyseius cucumeris, Iphiseius. degenerans, A.andersoni and A. swirskii. Bulletin OILB/SROP,2005,28(1):283-286.
    99. Huang YB, Chi H. Age-stage, two sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) with a discussion on the problem of applying female age-specific life tables to insectpopulations. Insect science,2012,19(2):263-273.
    100. Jacobson RJ, Chandler D, Fenlon J, Russell KM. Compatibility of Beauveria bassiana (Balsamo)Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniellaoccidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Science andTechnology,2001,11:391-400.
    101. Jyoti JL, Brewer GJ. Honeybees (Hymenoptera: Apidae) as vector of Bacillus thuringiensis forcontrol of branded sunflower moth (Lepidoptera: Tortricidae). Environmental Entomology,1999,28:1172-1176.
    102. Kapongo JP, Shipp L, Kevan P, Sutton JC. Co-vectoring of Beauveria bassiana and Clonostachysrosea by bumblebees (Bombus impatiens) for control of insect pests and suppression of grey mouldin greenhouse tomato and sweet pepper. Biological Control,2008,46:508-514.
    103. Kessler A, Baldwin IT. Defensive function of herbivore-in-duced plant volatile emissions in nature.Science.2001,291:2141-2144.
    104. Kirk WDJ, Terry LI. The spread of the western flower thrips Frankliniella occidentalis (Pergande).Agricultural and Forest Entomology,2003,5:301-310.
    105. Koike M, Kodama T, Kikuchi A, Okabe M, Kuramoti K, Saito Y. Effects of Verticillium lecanii(Lecanicillium spp.) against two-spotted spider mite, Tetranychus urticae and its natural enemyPhytoseiulus persimilis, in annual meeting of the society for invertebrate pathology, August7-11,Anchorage, Alaska, USA.2005, pp.7-11.
    106. Koschier EH, Kogel WJD, Visser JH. Assessing the attractiveness of volatile plant compounds towestern flower thrips Frankliniella occidentalis. Journal of Chemical Ecology,2000,26(12):2643-2655.
    107. Labbe RM, Cloutier C, Brodeur J. Prey selection by Dicyphus hesperus of infected or parasitizedgreenhouse whitefly. Biocontrol science and technology,2006,16:485-494.
    108. Lacey LA, Mesquita ALM, Mercadier G, Debire R, Kazmer DJ, Leclant F. Acuteand sublethalactivity of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina:Hyphomycetes) on adult Aphelinus asychis (Hymenoptera: Aphelinidae). Biological Control,1997,26:1452-1460.
    109. Leckie BM, Ownley BH, Pereira RM, Klingeman WE, Jones CJ, Gwinn KD. Mycelia and SpentFermentation Broth of Beauveria bassiana Incorporated Into Synthetic Diets Affect Mortality,Growth and Development of Larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Scienceand Technology,2008,18:697-710.
    110. LeOra Software. Polo-PC. A Users’ Guide to Probit or Logit Analysis. Berkeley, CA: LeOrasoftware.1987.
    111. Liang XH, Lei ZR, Wen JZ, Zhu ML. The Diurnal Flight Activity and Influential Factors ofFrankliniella occidentalis in the Greenhouse. Insect Science,2010,17:535-541.
    112. Losey JE, Denno RF. Positive predator-predator interactions: enhanced predation rates andsynergistic suppression of aphid populations. Ecology,1998,79:2143-2152.
    113. Ludwig SW, Oetting RD. Susceptibility of natural enemies to infection by Beauveria bassiana andimpact of insecticides on Ipheseius degenerans (Acari: Phytoseiidae). Journal of Agricultural andUrban Entomolology,2001,18:169-178.
    114. Ludwig SW, Oetting R. Effect of spinosad on Orius insidiosus (Hemiptera: Anthocoridae) whenused for Frankliniella occidentalis (Thysanoptera: Thripidae) control on greenhouse potchrysanthemums. Florida Entomology,2001,84(2):311-313.
    115. Luz C, Fargues J. Temperature and moisture requirements for conidial germination of an isolate ofBeauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia.1997,138,117-125.
    116. Maniania NK, Ekesi S, L hr B, Mwangi F. Prospects for biological control of the western flowerthrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, onchrysanthemum. Mycopathologia,2002,155(4):229-235.
    117. Messelink GJ, van Steenpaal SEF, Ramakers PMJ. Evaluation of phytoseiid predators for controlof western flower thrips on greenhouse cucumber. BioControl,2006,51:753-768.
    118. Messelink GJ, van Steenpaal SEF, van Wensveen W. Typhlodromips swirskii (Athias-Henriot)(Acari: Phytoseiidae): a new predator for thrips control in greenhouse cucumber. IOBC/WPRSBulletin2005,28(1):183-186.
    119. Mohammad S. Al-mazra’awi MS, Shipp JL., Broadbent AB, Kevan PG. Biological control ofLygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) byBombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweetpepper. Biological Control,2006,37:89-97.
    120. Mommaerts V, Smagghe G. Entomovectoring in plant protection. Arthropod-Plant Interactions,2011,5:81-95.
    121. Mwangi EN, Dipeolu OO, Newson RM, Kaaya GP, Hassan SM. Predators, parasitoids andpathogens of ticks: a review. Biocontrol Science and Technology,1991,1:147-156.
    122. Nagata T., Peters D. An anatomical perspective of tospovirus transmission. In Harris, K.F., Smith,O.P., Duffus, J.E.(Eds.), Virus-insect-plant Interactions. Academic Press, San Diego CA, pp.2001:51-67.
    123. Nagata RT, Wilksion LM, Nuessly GS. Longevity Fecundity, and Leaf Stippling of Liriomyzatrifolii (Diptera: Agromyzidae) as Affected by Lettuce Cultivar and Supplemental Feeding. Journalof Economic Entomology,1998,91:999-1004.
    124. Numa Vergel SJ, Bustos RA, Rodríguez CD, Cantor RF. Laboratory and greenhouse evaluation ofthe entomopathogenic fungi and garlic–pepper extract on the predatory mites, Phytoseiuluspersimilis and Neoseiulus californicus and their effect on the spider mite Tetranychus urticae.Biological Control,2011,57:143-149.
    125. Onzo A, Bello IA, Hanna R. Effects of the entomopathogenic fungus Neozygites tanajoae and thepredatory mite Typhlodromalus aripo on cassava green mite densities: screenhouse experiments.BioControl,2013,58:397-405.
    126. Poprawski TJ, Legaspi JC, Parker PE. Influence of entomopathogenic fungi on Serangiumparcesetosum (Coleoptera: Coccinellidae), an important predator of whiteflies (Homoptera:Aleyrodidae). Environmental Entomology,1998,27:785-795.
    127. Premachandra WTSD, Borgemeister C, Berndt O, Ehlers RU, Poehling HM. Combined releases ofentomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwellingstages of western flower thrips Frankliniella occidentalis. BioControl,2003,48(5):529-541.
    128. Rahman T, Broughton S, Spafford H. Effect of spinosad and predatory mites on control ofFrankliniella occidentalis in three strawberry cultivars. Entomologia experimentalis et applicata,2011,138:154-161.
    129. Rajasekhar Pinnamaneni P, Kalidas KRS. Sambasiva Rao. Cloning and expression of Bbchit1geneof Beauveria bassiana. The Open Entomology Journal,2010(4):30-35.
    130. Ramakers PMJ, van Leiburg MJ. Start of commercial production and introduction of Amblyseiusmckenziei (Acarina: Phytoseiidae) for the control of Thrips tabaci (Thysanoptera: Thripidae) inglasshouses. Medelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent,1982,47:541-545.
    131. Reitz SR. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The makingof a pest. Florida Entomologist,2009,92:7-13.
    132. Reitz SR, Gao YL, Lei ZR. Thrips: Pests of Concern to China and the United States. AgriculturalSciences in China,2011,10(6):867-892.
    133. Richard L, Schading Raymond I, Carruthers Barbara A, Mullin S. Rapid Determination of conidialviability for entomopathogenic hyphomycetes using fluorescence microscopy techniques.Biocontrol Science and Technology,1995,5:201-208.
    134. Rose USR, Tumlinson JH. Systemic induction of volatile release in cotton: how specific is thesignal to herbivory? Planta.2005,222:327-335.
    135. Rosenheim JA, Wilhoit LR, Armer CA. Influence of intraguild predation among generalist insectpredators on the suppression of an herbivore population. Oecologia,1993,96:439-449.
    136. Roy HE, Pell JK. Interactions between entomopathogenic fungi and other natural enemies:implications for biological control. Biocontrol Science and Technology,2000,10:737-752.
    137. Roy HE, Pell JK, Clark SJ, Alderson PG. Implications of predator foraging on aphid pathogendynamics. Journal of Invertebrate Pathology,1998,71:236-247.
    138. Sabelis MW, Hanna R, Onzo A, Palini A, Cakmak I, Janssen A. Multiple predators, intraguildinteractions and biological control of a single spider mite species. In: IOBC Proceedings, Florence,Italy, March,2009.
    139. Samuels RI, Paterson IC. Cuticle degrading proteases from insect moulting fluid and culturefiltrates of entomopathogenic fungi. Biochemistry and Molecular Biology,1995,110:661-669.
    140. Seiedy M, Saboori A, Allahyari H, Hassanloui R T, Tork M. Functional response of Phytoseiuluspersimilis (Acari: Phytoseiidae) on untreated and Beauveria bassiana-treated adults of Tetranychusurticae (Acari: Tetranychidae). Journal of Insect Behavior,2012,25:543-553.
    141. Seiedya M, Saboorib A, Allahyari H. Interactions of two natural enemies of Tetranychus urticae,the fungal entomopathogen Beauveria bassiana and the predatory mite, Phytoseiulus persimilis.Biocontrol Science and Technology,2012,22:873-882.
    142. Wu SY, Gao YL, Xu XN, Zhang YP, Wang J, Lei ZR, Smagghe G. Laboratory and greenhouseevaluation of a new entomopathogenic strain of Beauveria bassiana for control of the onion thripsThrips tabaci. Biocontrol Science and Technology,2013,23(7):794-802.
    143. Shibao M, Tanaka H.Control of the western flower thrips, Frankliniella occidentalis (Pergande) ongreenhouse eggplant by releasing Orius strigicollis (Poppius). Preceedings of the Kansai PlantProtection Society,2000,42:27-30.
    144. Shipp JL,Wang K. Evaluation of Amblyseius cucumeris (Acari: Phytoseiidae) and Orius insidiosus(Hemiptera: Anthocoridae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) ongreenhouse tomatoes. Biological Control,2003,28(3):271-281.
    145. Shipp JL,Whitfield GH.Functional response of the predatory mite Amblyseius cucumeris (Acail:phytoseiidae) on western flower thrips Frankliniella ccioccidentalis (Thysanoptera:Thilpidae).Environmental Entomology,1991,20(2):694-699.
    146. Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends in Ecology&Evolution,1998,13:350-355.
    147. Simelane DO, Steinkraus DC, Kring TJ. Predation Rate and Development of Coccinellaseptempunctata L. Influenced by Neozygites fresenii-Infected Cotton Aphid Prey. BiologicalControl,2008,44:128-135.
    148. Sloman IS,Reynolds SE. Inhibition of ecdysteroid secretion from Manduca sexta prothoracicglands in vitro by destruxinscyclic depsipeptide toxins from the insect pathogenic fungiMetarhizium anisopliae. Insect biochemistry and molecular biology,1993,23:43-46.
    149. St Leger RJ, Butt TM, Staples RC, et al. Second messenger involvement in differentiation of theentomopathogenic fungus, Metarhizium anisopliae. J Gen Microbiol,1990,136:17791789.
    150. Stleger RJ. The role of cuticle-degrading proteases in fungal pathogenesis in insects. CanadianJournal of Botany73(suppl1e-h),1995:1119-1125.
    151. Sunderland KD, Axelsen JA, Dromph K, Freier B, Hemptinne JL, Holst NH, Mols PJM, PetersenMK, Powell W, Ruggle P, Triltsch H, Winder L. Pest control by a community of natural enemies.Acta Jutlandica.1997,72:271-326.
    152. Thoeming G, Poehling HM. Integrating soil-applied azadiractin with Amblyseius cucumeris (Acari:Phytoseiidae) and Hypoaspis miles (Acari: Laelapidae) for the management of Frankliniellaoccidentalis (Thysanoptera: Thripidae). Environmental entomology,2006,35:746-756.
    153. Tumlinson JH,Turlingstc J,Lewisw J. The semiochemical complexes that mediate insect parasitodforaging.Agricultural Zoology Reviews,1992,5:221-252.
    154. Ugine TA, Wraight SP, Sanderson JP. Acquisition of lethal doses of Beauveria bassiana conidia bywestern flower thrips, Frankliniella occidentalis, exposed to foliar spray residues of formulated andunformulated conidia. Journal of invertebrate pathology,2005,90(1):10-23.
    155. Ullman DE, Meideros R, Campbell LR, Whitfield AE, Sherwood JE, German TL. Thrips as vectorsof tospoviruses. Advances in botanical research,2002,36:113-140.
    156. Van der Hoeven WAD, van Rijn PCJ. Factors affecting the attack success of predatory mites onthrips larvae.Proceedings of the Section Experimental and Applied Entomology of the NetherlandsEntomological Society.(NEV Amsterdam),1990,1:25-30.
    157. Van der Schaaf ED, Malais M, Ravensberg W. The use of Verticillium lecanii against whitefly andthrips in glasshouse vegetables in the Netherlands. In: Proceedings and Abstracts,5th InternationalColloquium on Invertebrate Pathology and Microbial Control. Adelaide, Austarlia,20–24August1990.
    158. Vance-Chalcraft HD, Soluk DA. Multiple predator effects result in risk reduction for prey acrossmultiple prey densities. Oecologia,2005,144:472–480.
    159. Vestergaard S, Gillespie AT, Butt TM, Schreiter G, Eilenberg J. Pathogenicity of the hyphomycetefungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniellaoccidentalis. Biocontrol Science and Technology,1995,5:185-192.
    160. Vinson SB. Host selection by insect parasitoid.Annual Review of Entomology,1976,21:109-133.
    161. Wang CS, Hu G, St Leger RJ. Differential gene expression by Metarhizium anisopliae growing inrootexudate and host(Manduca sexta)cuticle or hemolymph reveals mechanisms of physiologicaladaptation. Fungal Genetics and Biology,2005,42:704-718.
    162. Wiethoff J, Poehling HM, Meyhoefer R. Combining plant-and soil-dwelling predatory mites tooptimise biological control of thrips. Experimental and Applied Acarology,2004,34:239-261.
    163. Wittmann EJ, Leather SR. Compatibility of Orius laevigatus Fieber (Hemiptera: Anthocoridae)with Neoseiulus (Amblyseius) cucumeris Oudemans (Acari: Phytoseiidae) and Iphiseius(Amblyseius) degenerans Berlese (Acari: Phytoseiidae) in the biocontrol of Frankliniellaoccidentalis Pergande (Thysanoptera: Thripidae). Experimental and Applied Acarology,1997,21:523-538.
    164. Wosten HA. Hydrophobins: multipurpose proteins. Annual Reviews in Microbiology,2001,55:625646.
    165. Wu SY, Gao YL, Xu XN, Mark SG, and Lei ZR. Compatibility of Beauveria bassiana withNeoseiulus barkeri for control of Frankliniella occidentalis. Journal of Integrative Agriculture2014b.(DOI:10.1016/S2095-3119(13)60731-5).
    166. Wu SY, Gao YL, Zhang YP, Wang ED, Xu XN, Lei ZR. An Entomopathogenic Strain ofBeauveria bassiana against Frankliniella occidentalis with no Detrimental Effect on the PredatoryMite Neoseiulus barkeri: Evidence from Laboratory Bioassay and Scanning Electron MicroscopicObservation. Plos One.2014a,9(1): e84732.
    167. Xu XN. Combined releases of predators for biological control of spider mites Tetranychus urticaeKoch and western flower thrips Frankliniella occidentalis (Pergande). Cuvillier Verlag G ttingen,Germany.2004.
    168. Yu JZ, Chi H, Chen BH. Life table and predation of Lemnia biplagiata (Coleoptera: Coccinellidae)fed on Aphis gossypii (Homoptera: Aphididae) with a proof on relationship among grossreproduction rate, net reproduction rate, and preadult survivorship. Annals of the EntomologicalSociety of America,2005,98:475-482.
    169. Zhang SY, Satoshi Kono, Tamotsu Murai, Tadashi Miyata. Mechanisms of resistance to spinosad inthe western flower thrip, Frankliniella occidentalis (Pergande)(Thysanoptera: Thripidae). InsectScience,2008,15:125-132.
    170. Zhang ZJ, Wu QJ, Li XF, Zhang YJ, Xu BY, Zhu GR. Life history of western flower thrips,
    Frankliniella occidentalis (Thysan., Thripae), on five different vegetable leaves. Journal of Applied
    Entomology,2007,131:347-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700