棉花叶绿体Cu/Zn-SOD基因植物表达载体的构建及转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短季棉的早熟早衰问题严重影响棉花的产量和品质;目前短季棉早熟早衰问题在生理生化水平已经作了比较详细的研究,已有的结果显示:早熟不早衰品种和早熟早衰品种相比,早熟不早衰品种的抗氧化酶活性后期表现高、稳定,在抗氧化酶系统中主要起作用的关键酶是SOD,因此,进一步从分子水平揭示早熟不早衰的分子机制,克隆相关基因并进行遗传转化研究是非常必要的,对于提高短季棉产量、品质具有重要的意义。
     (1)棉花叶绿体Cu-ZnSOD基因植物表达载体的构建:以质粒PBI121作为植物遗传转化的载体,对所克隆的棉花叶绿体Cu-ZnSOD基因和PBI121作Bam HI/SacI双酶切,电泳回收目的基因片段和载体片段,再用连接酶将二者连接起来,并转化到农杆菌LBA4404感受态细胞中,即成为棉花叶绿体Cu-ZnSOD基因植物表达载体PBI-YSOD。对所构建的植物表达载体PBI-YSOD进行相关的质粒提取检测和PCR检测,结果显示:植物表达载体PCR结果和目的基因大小相同,转化质粒和空质粒相比,略有增大,表明目的基因片段已经转化到了农杆菌中,可以对植物进行遗传转化。
     (2)烟草遗传转化与转化植株的检测:利用农杆菌介导法将所构建的植物表达载体导入NC89烟草,卡那霉素筛选得到23株阳性植株,经PCR、Southern blotting检测结果显示有四个烟草株系中整合了棉花叶绿体Cu/Zn-SOD基因,SOD酶活性测定结果显示四株转基因烟草植株SOD酶活性都明显高于非转基因烟草,离体叶片暗处理试验结果也证明四株转基因烟草比非转基因烟草SOD酶活下降速度明显减慢,百草枯喷施试验表明,转基因烟草都比非转基因烟草对百草枯的耐性增强,这一系列试验间接地说明外源基因的导入增强了烟草的耐衰老能力。
     (3)棉花的遗传转化:以中棉所24号和早熟早衰材料652583为材料,利用农杆菌介导法将所构建的植物表达载体导入中棉所24号和早熟早衰材料652583,经过愈伤化,胚性愈伤,抗性芽三个阶段的卡那霉素筛选,目前得到9株中棉所24号卡那霉素抗性植株,早熟早衰材料652583抗性芽还在进一步的筛选中。
The problem of earliness with decrepitude has worse effect on the yield in theshort-season cotton in our country. Up to now, about the problem of earliness withdecrepitude in short-season cotton, careful research has been done on the physiologicallevel, the results of the formers: comparing the varieties of earliness with not-decrepitudewith the varieties of earliness with decrepitude, the antioxidant enzyme activity ofearliness with not-decrepitude are higher and steadier in the growth retrial period, the keyenzymes in system of antioxidant enzyme are SOD. If we want to understand themolecular mechanism about earliness with decrepitude, it is very important of cloningthe correlative genes and studying its function. These genes can help us to improve theyield and quality.
     (1) plant binary vector construction of cotton chloroplast Cu-ZnSOD gene: PlasmidpBI 121 was used as the genetic transformation carrier. The cotton chloroplastCu-ZnSOD genes and pBI 121 was digested by BamHI/SacI, then extracted the genefragments and vector fragment by electrophoresis, linked up the two fragments andtransformed it into Agrobacterium tumefaciens LBA4404 competent cells, which is plantexpression vector, pBI-YSOD. The result of extraction plasmid of pBI-YSOD and PCRshowed that fragment of plant expression vector the same to the target gene, plasmidpBI-YSOD is bigger than plasmid pBI121, which showed that cotton chloroplastCu-ZnSOD gene fragments has be transferred into the Agrobacterium tumefaciens, andcan be used as carriers for genetic transformation.
     (2) Tobacco Genetic transformation and detection of transgenic plant: Cotton chloroplastCu-ZnSOD gene plant expression vector was constructed and introduced into tobacco NC89 viaAgrobacterium tumefaciens. There 23 plant display positive reaction in kanamycin selection. The resultshowed that 4 plantlets display positive reaction in PCR analysis、Southern blotting and SOD enzymeactivity detection, also indicated that SOD enzyme activity in aparted cotyledon of 4 transgenic plantsis higher than of non transgenic plant, and the sensitivity to paraquat in non transgenic plant is higherthan in 4 transgenic plants. Totally, the integration of foreign gene increased tobacco resisted- caducityactivity.
     (3) Cotton genetic transformation: CCRI 24 and breeding material 652583 were used as materials for Agrobacterium infection, Cotton chloroplast Cu-ZnSOD gene plantexpression vector was constructed and introduced into CCRI 24 and breeding material 652583via Agrobacterium tumefaciens. There are 9 plantlet CCRI 24 display positive reaction inkanamycin selection, but resist seeding of breeding material 652583 is in selection still.
引文
1.波钦诺克XH著(荆家海丁钟荣译).植物生物化学分析方法科学出版社,1981
    2.蔡艳俊.自求恩医科大学学报,1994:20(6):591
    3.曹仪植,宋占午.植物生理学.兰州:兰州大学出版社,1998,380-381
    4.陈锦云,林祥永,兰志斌等.超氧化物歧化酶防治烟草气候斑点病效果初报.福建农业科技,1996,(5):13
    5.陈忠宁,毛宗万,唐雯霞.铜锌超氧化物歧化酶和结构、机理及其模拟研究进展.化学通报,1993,6:1-8
    6.程光宇,魏锦城,邹玉珍,吴国荣.枸杞果实CuZn SOD的纯化及其性质的研究.南京师范大学学报(自然科学版),1991,14(2):82-92
    7.方允中,李文杰.自由基与酶.北京:科学出版社,1989
    8.梁永生,李福山.河北医学,2001;7(9):794-795
    9.林秀坤.猪肝铜锌超氧化物歧化酶的研究.医药工业,1986,17(2):44
    10.刘群.河北医药,2001,23(9):666-667
    11.刘晓鹏,姜宁,田阼茂,吕胜安,袁勤生.转人Cu/Zn-SOD基因马铃薯的研究.华东理工大学学报,2003,29(3):255-258
    12.慕平利,崔红.烟草叶片直接再生.基因转化体系的建立.河南农业科学,2005,4:27-29
    13.钱素英.肿瘤学杂志,2002;7(5):270-271
    14.秦水琼,贾士荣.植物抗氧化逆境的基因下程.农业生物技术学报,1997,5(1):15-22
    15.盛良全,郑晓云,闫向阳,肖厚荣,厦炳乐,刘少民.生命体中的超氧化物歧化酶.医学基础与药学研究,2002,48(6):48-53
    16.覃鹏,刘飞虎,梁雪妮.超氧化物歧化酶与植物抗逆性.黑龙江农业科学,2002,(1):31-34
    17.汤章城.植物对水分胁迫的反应和适应性II.植物对干旱的反应和适应性.植物生理学通讯,1983,(4):1-7
    18.王关林,方宏筠.植物基因工程(第二版).北京:科学出版社,2002:527-528
    19.王关林,方宏筠.植物基因工程.北京:科技出版社,2002
    20.王建华,刘鸿先,徐同.SOD在植物逆境和哀老生理中的作用.PLant Plysiology Communications,1989,(1):1-7
    21.维兰.肿瘤研究与临床,2000;7(5):270-271
    22.文才艺,吴元华,李浩戈等.接种PVYN后烟草叶片SOD活性和MDA含量的变化.中国烟草科学,1999,(1):12-14
    23.翁清清,俞建瑛,陶宗晋.人血红细胞的超氧化物歧化酶的纯化及其稳定性的研究.生物化学与生物物理学报,1988,20(4):357
    24.闫新甫.全球转基因作物种植概况.世界农业,2001,4:22-23
    25.杨芩,邹国林,朱汝番.鸭血超氧化物歧化酶的纯化及性质研究.生物化学杂志.1989,5(2):169
    26.余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1999.722-723.
    27.喻树迅,范术丽,原日红,余学科,巩万奎.清除活性氧酶类对棉花早熟不早衰特性的遗传影响.棉花学报,1999,11(2):100-105
    28.喻树迅,黄祯茂,姜瑞云,原日红,聂先舟,徐竹生,徐久玮.不同短季棉品种衰老过程生长机理的研究.作物学报,1994,20(5):629-635
    29.赵克健.袖珍进口药品手册.北京:中国医药科技出版社1997:67
    30.周立,樊开明,郑远旗.金属螯合亲和层析法纯化猪红细胞超氧化物歧化酶.生物化学杂志,1989,5(3):265
    31.朱玉贤,李毅.现代分子生物学.北京:高等教育出版社1997,11-12
    32.邹国林,罗时文,荣俊等.小白菜叶绿体铜锌超氧化物歧化酶的纯化和某些性质的研究.生物化学与生物物理学报,1989,21(1):51
    33.邹国林,罗时文.一种小白菜叶细胞溶质铜锌超氧化物歧化酶的纯化和性质的研究.生物化学杂志,1989,5(2):182
    34.邹国林,钟晓凌,王东梅、曹新文,朱汝番.猪红细胞铜锌超氧化物歧化酶纯化和性质研究.武汉大学学报(自然科学版),1988,1:115
    35. Alscher R.G., Erturk N., Heath L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plant, Journal of Experimental Botany, 2002, 53 (372): 1331-1341
    36. ASADA K. Production and action of active oxygen in photosynthetic tissue. CRC Press, Boca Raton. FL, 1994, pp77-104
    37. BAUM J A, Scandalios JG.. Developmental expression and intracellular localization of superoxide dismutases in maize.Differentiation, 1979, 13:133-140
    38. Bowler C, Van Camp, W Van, Montagu M, lnze D. Superoxide dismutase in plants. Critical Reviews in Plant Science, 1994, 13:199-218
    39. Casano LM, Gomez LD, Lascano HR, et al. Inactivation and degradation of Cu/Zn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant and Cell Physiology, 1997, 38(4): 433-440
    40. FOYER D P, Kunert K J. Protection against oxygen radicals:an important defense mechanism studied in transgenic plants, Plant Cell Environ, 1994, 17:507-523
    41. Guo HJ, Dong ZQ, Lin YZ, et al. Effect of infection of Verticiilium wilt on the SOD,POD activities and photosynthetic character in cotton leaves. Scientia Agricultura Sinica, 1995, 28(6): 40-46
    42. GUPTA A S, Eebb R P, Holaday A S and Allen R D. Overexpression of superoxide dismutase protects plants from oxidative stress.Plant Physiol, 1993a, 103:1067-1073
    43. GUPTA A S, Heinen J L, Holaday A S, Burke JJ, Allen R D. increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic CuZn- superoxide dismutase.Proc Natl Acad Sci USA, 1993b, 90: 1629-1633
    44. Hahn CK, Kim JP, Jung J. Induction of antioxygenic enzymes as defense systems in plant cells against lowtemperature stress.Mn~(2+)-induced SOD activation and enhancement of cold tolerance in rice seedlings. Hanguk Nonghwahak Hoechi. 1991,34 (2) : 168-173
    45. Hinchee MAW, Connor-Ward DV, Newell CA. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology, 1988,6:915-922
    46. Horsch R.B, Fry J.E., Hoffmam N.L., Eichholtz D., Rogers S.G., and Fraley R.T., A simple and general method for transferring genes into plant, Science, 1985,227 (7) : 1229-1231
    47. Hu AS, Guan YL, Jiang BF, et al. Study on the mechanism of high temperature damage of citrus and its prevention.South ChinaFruits, 1998, 27 (2) : 1-14
    48. Hu JJ, Gu ZY, Wen JL, et al. Effect of water stress on membranelipid peroxidation in maple. Journal of Northwest Forestry College, 1999, 14 (2) : 7-11
    49. Hwang cc. Fang RH Surg Assoc Rup China. 1995. 28 (5) : 387
    50. KAZUO, Tsugane, Kyoko, Kobayashi, Yasuo Niwa, Yasushi Ohba, Keishiro Wada, and Hirokazu Kobayashi. A recessive arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell, 1999, (11) : 1195-1206
    51. Lamattina L., Lezica R.P., Conde R.D. Protein Metabolism in Senescing Wheat Leaves—Determination of synthesis and degradation rates and their effects on protein loss ( Plant Physiol. ) ,1985,77:587-590
    
    52. Lin C T, Lin M T, Chen Y T, Shaw J F. Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His- tagged recombinant protein method. Plant Mol Biol, 1995,28 (2) : 303-311
    53. Mann T al. Proc.Roy. Soc. (London) 1938, 126: 3O3-315
    54. MCCORD J M, Fridovich I.. Superoxide dismutase an enzymatic function for erythrocuprein. J.Biol.Chem. 1969, 244: 6049-6055
    55. MCKERSIE B D, Chen Y, Beus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) . Plant Physiol, 1993, 103: 1155-1163
    56. Ogawa K, Kanematsu S, Adada K. Intra- and extra- cellular localization of "cytosolic" GuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol, 1996, 37 (6) : 790-799
    57. Perl A., Perl-Treves R., Galili S., Aviv D., Shalgi E., Malkin S., and Galun E.. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase, Theor. Appl. Genet., 1993, 85 (5) : 568-576
    58. Picher L H , Brennan, Hurley A, et al. Over production of petunia chloropastic copper—zinc in transgenic tobacco, Plant Physiol, 1991,97:452-455
    59. Ryan C F, Scandalios J G.. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and pro-karyotic superoxide dismutase.Archives of Biochemistry and Biophysics, 2002, 399 (1) : 19-36
    60. TANAKA Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science, 1999, 148: 131-138
    61. Tang LZ, Cheng SW, Xu XZ. Effects of waterlogging stress on leaf growth and physiological properties of poplar clone seedlings. Jour-nal of Plant Resources and Environment, 1999, 8(1): 15-21
    62. TEPPERMAN J M, Dunsmuir P. Transformed plants with elevated levels of chloroplast superoxide dismutase are not more resistant to superoxide toxicity. Plant Mol Biol, 1990, 14: 501-511
    63. VAN CAMP W, Capian K, Wan Montagu M, et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol, 1996, 12:1703-1714
    64. Wang XX, Li SD, et al. Effect of chilling temperature on POD es-terase and SOD in tomato during seedling and flowering stages. China Vegetables. 1997, (3) : 1-4
    65. Wang YP, Liu YQ, Shi L. SOD activity of wheat varieties with different resistance to scab. Acta Phytophysiologica Sinica, 1993, 19 (4) : 353-358
    66. Wang YR, Zeng SX, Liu HX. Effect of cold hardening on SOD andglutathione reductase activities and on the contents of the reduced formof glutathione and ascorbic acid in rice and cucumber.Acta Botani-ca Sinica. 1995,37 (10) : 776-780
    67. Xu ZH (许智宏). Plant Biotechnology, Shanghai: Shanghai Scientific and Technical Publishers (上海科学技术出版社) ,1998p.321
    
    68. Yang X. The effect of water stress on cell protective enzyme activityand membrane lipid peroxidation in broccoli (Brassica oleraceaL.var.italica P.) .Advances in Horticulture, 1998, (2) : 567-571
    
    69. Ye CL, Ke YQ, Chen W. Astudy on the physiology of heattolerancein Chinese cabbage III.Ability to scavenge active oxygen of enzymeand non-enzyme system and heat tolerance.Journal of Fujian A-gricultural University, 1997,26 (4) : 498-501
    70. Yu Q, Osborne LD, Rengel Z. Increased tolerance to Mn deficiency in transgenic tobacco overproducing superoxide dismutase. Annals of Botany, 1999c, 84 (4) : 543-547
    71. Yu Q, Rengel Z. Drought and salinity differentially influence activities of superoxide dismutases in narrow leafed lupins. Plant Science Limerick, 1999b, 142 (1) : 1-11
    72. Yu Q, Rengel Z. Waterlogging influences plant growth and activitiesof superoxide dismutases in narrow-leafed lupin and transgenic tobac-co plants.Journal of Plant Physiology, 1999a, 155 (3) : 431-438
    73. Yun XF, Li RX. Studies of induced resistance to downy mildew of cucumber with SOD isozyme protein in cotyledons.Acta Phytopathologica Sinica, 1997,27 (3) : 221-224
    74. Zhang N. Characterization of the 5' Flanking Regan of the Human Mn-SOD Gene. Biochem Biophys ResCommu. 1996,220: 171
    75. ZHANGH. Isolation,purification of Superoxide Dismutase.Biotechnology, 2002, 12: 23-24
    76. Zou Q, Xu CC, Zhao SJ. The role of SOD in protectingthe photosynthetic apparatus of soyabean leaves from midday high light stress.Acta Phytophysiologica Sinica, 1995,21 (4) : 397-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700