基于DM642的嵌入式视频通信系统中QoS技术的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了如何在视频通信系统中保证视频业务的QoS,在基于DM642的嵌入式多媒体终端上设计并实现了视频流量预测、欠采样噪声处理、缓存机制、I帧重传机制和拥塞控制机制等QoS保证技术。
     本文首先介绍了视频通信系统中QoS保证技术及国内外研究状况,并研究了基于DM642的多媒体终端的硬件和软件设计。其次,详细分析了几种流量预测方法,并采用灰色预测算法进行视频流量预测,使终端能预测下一时刻的流量特点,以便进行拥塞控制;针对通过降低分辨率减小发送速率时引入的欠采样噪声,提出了频域和空域两种欠采样噪声处理方法;为了减小视频的时延抖动和丢包率,设计并实现了视频缓存机制和I帧重传机制;实现了一种QoS参量实时统计方法,使终端能实时了解网络状况和接收端信息;详细讨论了拥塞控制的原理与方法,并结合多媒体终端设计了一种基于RTCP反馈的闭环自适应拥塞控制机制,通过三种速率调整方法根据网络拥塞等级调整发送速率,从而适应网络带宽的变化。接着,本文在嵌入式终端上对这些QoS技术进行了实验,结果表明具有一定的有效性和实用性。最后,对全文工作进行了总结,并指出了今后有待进一步完善的工作。
With the rapid development of network technology and multimedia technology, IP-based audio and video network communication has been widely used. The big improvement of the digital signal processors DSPs’processing ability provides the possibility for the embedded video communication. Real-time video communication is sensitive to the QoS (Quality of Service) indicators, such as delay, delay jitter, packet loss rate and so on, however, the best-effort IP network can not provides better QoS guarantee. Therefore, how to improve QoS in IP-based video communication has become a challenging research topic.
     The video communication system in this paper is an embedded multimedia communication terminal based on DM642. TI’s DM642 is a specialized multimedia applications oriented DSP chip. In the DSP chip, the internal bus frequency is 600MHz, the external bus frequency is 100MHz, the computational speed is 4800MIPS,and there are eight parallel computing units. The multimedia terminal could provide communication service in text, audio, video through dialing keyboard and real-time display of the QoS parameter statistics, so we can timely analysis the performance of the video service and estimate the level of network congestion.
     In the embedded multimedia communication terminal based on DM642, this paper deeply studies the technologies to improve the video QoS in several aspects such as flow prediction, noise processing, error control, congestion control and so on, which provide some QoS guarantee when the quality of the network declines.
     In order to improve QoS of the video in the network with fluctuating bandwidth, proper use and optimization of network bandwidth resources is a very important issue. To research a reasonable forecasting model to predict video traffic is helpful to improve network utilization and video service quality to some extent. Considering video communication systems and comparing several common video traffic predicting models such as the auto-regressive model (AR), moving average model (MA), autoregressive moving average model (ARMA), the gray model, wavelet decomposition model and neural network model, this paper uses the gray model to predict video flow. The experimental results show that the prediction is accurate.
     In the video communication system, we can alleviate network congestion by sampling the video image to reduce image resolution. However, the aliasing noise is introduced in the down-sampling process, which seriously affects the video quality. This paper adopts frequency domain and spatial domain processing methods to process the video image before down sampling. The experimental results show that the two methods can both reduce the aliasing noise in the video image. The spatial domain processing method is better in real-time and effect.
     In order to reduce the delay jitter of the video, This paper develops a receiver cache mechanism whose structure is a linear queue. It ensures the stability and continuity of the playing video in the receiver and provides a basis for the retransmission mechanism. The experimental results show that the delay jitter is smaller and more stable after using the cache mechanism which guarantees the video stream to play steadily, continuously and smoothly.
     The fluctuation and suddenness of the IP network bandwidth introduce the packet loss rate in the video transmission. In order to reduce the packet loss rate on the impact of the video quality, this paper proposes an I-frame retransmission mechanism. It only retransmits the I frames which contain key information and has a smaller number, so it not only improves the video quality, but also reduces the retransmission overhead. The experimental results show that the method can improve the decoding accuracy and improve the picture quality.
     In order to obtain the QoS information of the real-time video traffic, this paper develops a method of collecting the video service statistical parameters to analyze the video performance and the level of network congestion. The statistical parameters include format, frame rate, flow, predict flow, packet loss rate, delay jitter and number of the retransmitted frames.
     Generally speaking, network congestion affects the video QoS. Therefore, it is an effective strategy of guaranteeing QoS to develop a reasonable mechanism for congestion control. At present, there are two congestion control solutions: one is a network-based method by increasing the network bandwidth; the other is a terminal-based method by controlling rate. The terminal-based method is divided into a window-based method and a rate-based method. This paper adopts a threshold-based sending rate congestion control method. After sending a RTP packet with sequence number and time stamp in the sender, the receiver calculates the QoS statistics such as delay jitter and packet loss rate according to the sequence and time stamp when receiving the RTP packet, and send a RTCP feedback packet to the sender periodically. The sender compares the feedback loss rate with the threshold to analyze the level of network congestion. By adjusting frame rate, compression rate and resolution rate to change send rate, a closed-loop adaptive congestion control mechanism is achieved. The experimental results show that the video packet loss rate decreases obviously and the send rate is more adapted to the bandwidth fluctuation after using the method.
     In conclusion, this paper mainly studies the QoS technologies in the video communication system, develops and implements several measures to improve the video QoS in the multimedia terminal based on DM642. Firstly, it develops a method to predict video flow and proposes two methods to process the aliasing noise, then realizes the video cache mechanism and I-frame retransmission mechanism, finally discusses the principles and methods of congestion control in detail. Considering the multimedia terminal, this paper proposes a closed-loop feedback RTCP-based adaptive congestion control mechanism by adjusting frame rate, compression rate and resolution rate according to the level of network congestion to change send rate to adapt the variation of network bandwidth. This paper dose some experiments about these QoS technologies in the embedded multimedia terminal of these, the results show that there is some effectiveness and practicality. At present, there are still some imperfections in the system, the author will be further his study in future work.
引文
[1] Yan Jinyao, Katrinis, Kostas, May, Martin and Plattner, Bernhard .Media and TCP-friendly congestion control for scalable video streaming[J].IEEE Transactions on Multimedia, 2006,8(2):196-206.
    [2]王珍燕.流媒体视频传输拥塞控制与QoS的研究[D].成都:西南交通大学,2006.
    [3] B.Maglaries,et al. Performance Models of Multiplexing in Packet Video Communications. IEEE Transaction on Communication, 1988,36 (7):834-844.
    [4]刘晓颖,刘晓东,戴琼海,林孝康.一种基于模糊神经网络的VBR MPEG视频流量预测模型[J].小型微型计算机系统,2006,27(4):766-768.
    [5]曹建华,刘渊,戴悦.基于残差改进的灰色模型网络流量预测[J].计算机工程与设计,2007,28(21):5133-5146.
    [6]曹建华,刘渊,戴悦.一种基于灰色神经网络的网络流量预测模型[J].计算机工程与应用,2008,44(5):155-157.
    [7]迟学芬,韩昌元,金辉. CCD推扫遥感成像中的欠采样噪声处理[J].电子学报,2003, 31(9): 1323-1326.
    [8] Chi Xue-fen,Wang Yi-ning; Zhao yan. Aliasing noise processing for chrominance signals in video communication over Internet [J]. Proceedings of SPIE-The International Society for Optical Engineering, Electronic Imaging and Multimedia Technology IV, 2005,5637: 156-164.
    [9] Haitao Zhang, Dazun Zhao, Mali Gong. Aliasing in minification of digital images[J]. Optical Engineering, 2001,40(11): 2540-2545.
    [10]李洪霞,潘伟,迟学芬,吴伟刚. TMS320DM642对视频图像欠采样压缩处理的实现[J].吉林大学学报:信息科学版, 2008, 26(2):147-151.
    [11] Yao Wang, Qin-Fan Zhu. Error Control and Concealment for Video Communication:A Review [J].Proceedings of the IEEE,1998,86(5):974-997.
    [12]胡飞,朱耀庭,朱光喜.Internet视频点播差错控制[J].计算机研究与发展,2002,39(1):28-34.
    [13]刘涛,周兵,李笑佳.基于RTP的多媒体可靠实时传输[J].华中科技大学学报(自然科学版),2003,31(10):43-45.
    [14]陶文强,李德星.改善Internet视频流QoS的途径和方法[J].广西通信技术,2006,2:17-20.
    [15]季敏,张利萍.拥塞控制综述[J].军民两用技术与产品,2006,(8):40-41.
    [16] Liu Jun.Weighted-fairness AIMD congestion control for streaming media delivery. Proceedings - International Conference on Computer Communications and Networks, August 3-7,2008[C].New York: Institute of Electrical and Electronics Engineers Inc.,2008: 197-202.
    [17]吴敏娜.视频会议中视频实时传输系统的研究与实现[D].武汉:华中科技大学,2004.
    [18] YangY,Lam S.General AIMD congestion control[C]. Proceedings of IEEE ICNP 2000osaka,Japan:2000.
    [19]耿福泉,方敏,赵林亮,王光兴.基于RTCP反馈的TCP友好的实时流媒体拥塞控制机制[J].东北大学学报(自然科学版),2006,27(11):1204-1207.
    [20]陈明.基于阈值限定的多媒体流TCP友好拥塞控制机制研究[D].长沙:湖南大学,2004.
    [21]黄奎,吴亦川,郑健平,吴志美.基于自适应加权平均的TCP友好拥塞控制机制[J].软件学报,2005,16(12):2124-2131.
    [22] Yuan-Cheng Lai. TCP-friendly congestion control to guarantee smoothness by Slack Term[J].Computer Communications,2007, 30:341-350.
    [23] M. Mahdavi,S.Floyd.TCP-Friendly unicast rate-based flow control[M]. Technical Note sent to the end2end-interest mailing list, 1997.
    [24] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion control for unicast applications[J].ACM SIGCOMM Computer Communication Review, 2000,30(10): 43–56.
    [25] S. jin,L. Guo,I. Matta,and A. Bestavros.A spectrum of TCP-Friendly window-based congestion control algorithms[J].IEEE/ACM Transactions on networking, 2003,11(3): 341–355.
    [26] Texas Instruments Incorporated. TMS320DM642 Video/Imaging Fixed-Point Digital Signal Processor[EB/OL].[2002-07].http://www.ti.com.
    [27]彭启琮,张诗雅,常冉.Ti DSP集成开发环境(CCS)使用手册[M].北京:清华大学出版社,2005.
    [28]李方慧,王飞,何佩琨. TMS320C6000系列DSPs原理与应用[M].北京:电子工业出版社,2002.
    [29] Texas Instruments Incorporated. Reference Frameworks for eXpressDSP Software:RF5, An Extensive, High-Density System [EB/OL].[2003-04].http://www.ti.com.
    [30] Yoo S J,et al,,Predictive and measurement-based dynamic resource management QoS control for videos[J].Computer Communication,2003,26(14):1651-1661.
    [31]邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652.
    [32]兰孝奇,严红萍,刘精攀.灰色系统预测模型在沉降监测中的应用[J].勘察科学技术,2006(1):55-57.
    [33]洪飞,吴志美.MPEG-4视频业务的多重分形分析与建模[J].通信学报, 2003,24(12):52-57.
    [34] Simon S,Haykin,叶世伟,史忠植译,.神经网络原理(Neural Networks a comprehensive foundation)[M].机械工业出版社,2004.
    [35] MetzC.IP QOS: traveling in first class on the Internet [J]. IEEE Internet Computing,1999,3(2):84-88.
    [36]樊昌信等.通信原理[M].北京:国防工业出版社,2001:187-191.
    [37]迟学芬,韩昌元,易志栋.欠采样噪声分析与光电一体化设计[J].光电工程,2003,30(2):56-59.
    [38]Texas Instruments Incorporated.TMS320C64x DSP Library Programmer’s Reference [EB/OL].[2002-04].http://www.ti.com.
    [39]Texas Instruments : TMS320C6000 Optimizing Compiler User’s Guide [EB/OL].[2002-10]. http://www.ti.com.
    [40] William K.Pratt.数字图像处理[M].北京:机械工业出版社, 2005:104-108.
    [41]张岩峰,王翠荣,赵煜辉,高远.视频会议中的同步缓冲设计[J].计算机科学,2008,35(4).
    [42]陆辉.具有QoS保障的流媒体服务接入体系在安防监控中的应用[D].杭州:浙江大学,2006.
    [43]黄景,唐九飞,李鹏.网络教学直播系统屏幕数据传输差错控制研究[J].计算机工程与设计,2007,28(13):3119-3122.
    [44] G Ramamurthy, D Raychaudhuri. Performance of packet video with combined error recovery and concealment. Boston,USA:Proc of Infocom’95,1995:753-761.
    [45]Wah B W. Su X, Lin D. A Survey of Error-concealment Schemes for Real-time Audio and Video Transmissions over the Internet [C]. In Proc.Int’1 Symposium on Multimedia Software Engineering,IEEE Taipei, Taiwan, Dec.,2000:17-24.
    [46]迟学芬,祝宇鸿,吴伟刚等.一种能动态分析与显示多维细粒度业务参量的多媒体终端:中国,200920093245.8[P].2009-03-23.
    [47]王雅辉,迟学芬,祝宇鸿,吴伟刚等.嵌入式多媒体通信终端中文字交互功能的实现[J].吉林大学学报:信息科学版, 2009, 27(1):56-61.
    [48] J.Postel. Transmission Control Protocol [S].IETF RFC793,1981.
    [49] NagleJ. Congestion Control in IP/TCP Internetworks [S]. IETF RFC896,1984.
    [50]姜明.互联网服务质量及拥塞控制的研究[D].杭州:浙江大学,2004.
    [51]罗万明,林闯,阎保平.TCP/IP拥塞控制研究[J].计算机学报,2001,24(l):1-18.
    [52]罗万明.支持服务质量QoS的拥塞控制及其机制的研究[D].北京:中国科学院,2001.
    [53]王凤.基于视频源端的拥塞控制算法研究[D].广州:暨南大学,2008.
    [54] BusseI,DeffnerB,SchulzrinneH. Dynamic QoS control of multimedia applications based on RTP[J].Computer Communication,1996,19(1):49-58.
    [55] M.Handley,S. Floyd,J.Padhye,J.Widmer. TCP Friendly Rate Control (TFRC): Protocol Specification [S].IETF RFC3448,2003.
    [56] H. Schulzrinne,Columbia University,S. Casner,et al. RTP: A Transport Protocol for Real-Time Applications [S].IETF RFC3550,2003.
    [57] YD/T1071-2006.IP电话网关设备技术要求[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700