电磁分离铝合金夹杂物及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金材料具有质量轻、强度高、耐腐蚀、耐疲劳等优异性能,在航天航空、机械制造、IT业等领域得到了越来越广泛的应用。然而,铝合金材料中的金属夹杂物和非金属夹杂物等缺陷,严重影响材料质量和使用安全。传统的过滤净化技术虽然能有效地清除微米级大小的夹杂物,但存在过滤效率随时间下降的问题。电磁净化方法,可以从根本上克服上述方法的不足。电磁净化方法的基本原理是液态金属中杂质颗粒的电导率与金属液的电导率不同,夹杂颗粒在电磁场中受到电磁力的作用而产生定向迁移,与金属液分离,从而达到金属净化的目的。本文在实验研究基础上,对影响电磁净化效果的工艺参数进行了分析,为提高电磁净化效率提供理论依据。
     本文在电磁流体力学基本理论的基础上,运用积分方程法建立了分离器气隙的电磁场数学模型。对磁场的分布情况进行了模拟计算,并对计算结果进行了分析讨论,实验结果表明计算结果与实际测量结果基本一致。气隙中磁场分布是稳恒的,可以用来分离铝熔体中的夹杂颗粒。
     实验表明:熔体温度显著影响电磁净化效果。当熔体温度过低时,粘度大,流动性差,不易于杂质颗粒流动分离;当熔体温度过高时,熔体的导电率降低,杂质颗粒受到的电磁力或电磁挤压力减小,分离效果则下降。
     增大磁场强度能够有效地提高铝熔体的净化效率。但过分增大磁场强度可能导致涡流的产生,分离的杂质颗粒又重新进入熔体,从而降低净化效率。
     通过增大外加直流电流和延长保温静置时间,可以提高电磁净化效率。实验结果表明,杂质粒径越大,其所受到的电磁力或电磁挤压力就越大,迁移速度也越大,也就越易于从铝熔体中分离出来。
With the good property of lightweight, higher intensity, resisting corrosion, resisting fatigue, the aluminum alloy material is widely used in the field of aircraft manufacturing, car product, mechanical manufacturing and IT product. However the metallic and nonmetallic inclusions in the aluminum alloy will affect the property of quality and safety. Tradition separation methods have low removal efficiency to the time and can't remove the small dimension inclusions. The new method of electromagnetic separation can overcome the faults. Its basic theory, the inclusions and aluminum melt have different electric conductivity, so different force will be exerted on them. The force exerted on inclusions will remove them from the aluminum melt. In this paper we will study the different processing parameters of electromagnetic separation from aluminum melt according to experiments and give the study results.
    In this paper mathematics model of electromagnetic field for separator gap was built by integral equation according to the theory of electromagnetic hydrodynamics. The distributing of electromagnetic field in separator gap was calculated and the results were discussed. The calculating results and measuring results are almost same. The electromagnetic field in separator gap is steady and can remove the inclusions in the aluminum melt.
    The temperature of aluminum melts remarkably affects the efficiency of electromagnetic separation. From the experiments we know that under the low temperature the viscosity of aluminum melts was high and the melts flow difficultly. Thus the inclusions in aluminum melts are difficult to be separated. If the temperature of aluminum melts was high, the conductivity of aluminum melts will reduce and the electromagnetic force or the electromagnetic repulsive force exerted on inclusions will reduce. Thus it will also reduce the efficiency of electromagnetic separation.
    
    
    
    The efficiency of electromagnetic separation will be improved by increasing the intensity of magnetic field influence. In fact it is difficult to get strong electromagnetic field. In the meantime if the magnetic field is a variable, there will be a agitation in the aluminum melt. The separated inclusions will go into the aluminum melt again. It will lead to low efficiency of separation.
    From the experiments, we know that increasing the value of DC current and long processing time can make for higher separation efficiency in the same condition. With the increasing volume of inclusion, the electromagnetic force or the electromagnetic repulsive force exerted on inclusion and the velocity of inclusion will also increase. The inclusions can be easily separated from the aluminum melt.
引文
[1] 张君尧.铝合金材料的新进展(1).轻合金加工技术,1998,26(5):1~6
    [2] 李升,潘丽红等.浅析铝合金熔体的净化方法.内燃机配件,2003(3):22~24
    [3] 董志敏.铝合金熔液净化技术.铸造技术,2000(06):13~16
    [4] 景晓燕,蒋海霞.铝合金熔体净化工艺概述.化学工程师,2003(10):25~27
    [5] 周昆.铝合金熔体净化技术及发展趋势.世界有色金属,1997(11):4~8
    [6] JOHN E·HATCH箸,刘静安等译.铝的性能及物理冶金.重庆:科学技术文献出版社重庆分社,1990.9
    [7] Leenov D, Kolin A. Theory of electro magneto phoresis. I. magneto hydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles[J] J Chem Phys, 1954, 22(4): 683~689
    [8] Marty P. Alemany A. Theoretical and experimented aspects of electromagnetic separation[A]. The Processing Symposium of IUTAM. Cambridge: 1982: 245~249
    [9] 钟云波等.金属净化技术的一种革命性方法—电磁净化法.包头钢铁学院学报,1999(S1):363~368
    [10] 陈德斌.电磁净化技术理论及工艺研究:[硕士学位论文].昆明:昆明理工大学冶金材料学院,2002
    [11] 钟云波等.行波磁场净化液态金属时磁场分布对净化效果的影响.有色金属(冶炼部分),1999(01):32~34,37
    [12] 钟云波等.金属电磁净化技术金属液流动的成因分析.上海有色金属,1999(01):5~9
    [13] 张国志等.关于液态金属电磁净化的探讨.材料与冶金学报,2002(01):31~35
    [14] 王晓秋,丁伟中.铝合金熔体中气体的行为研究.中国稀土学报,2002(12):241~245
    [15] 姚若琼,王义海等.铝合金电磁净化的现状及前景.铸造,2003(4):227~229
    
    
    [16] 傅高升,康积行,陈文哲.提高铝熔体净化效果的理论基础及途径.轻合金加工技术,2002(06):17~23
    [17] 王东,何礼君,刘美霞.电磁方法净化乳化液理论及试验的研究.钢铁研究,2002(01):44~49
    [18] El-kaddah Tuscaloos, Al. Apparatus andamethod for improved filtration of inclusions from molten metals[P]. US patent 4909836, 1990, Mar.20
    [19] 王世洪.铝及铝合金热处理.北京:机械工业出版社,1986.2
    [20] 罗启全编著.铝合金熔炼与铸造.广州:广东科技出版社,2002
    [21] 许振明,李天晓,周尧和.电磁过滤钢液中非金属夹杂物的运动速度和去除效率的理论分析.金属学报,2001(37):423~428
    [22] Park J P, Sassa K, Asai S. Improvement of wear resistance e in hypereutectic Al-Si alloy by surface concentration of primary silicon using electromagnetic force[J]. J Japan Inst Metels, 1995, 59(7): 733~739
    [23] Yamao F, Sassa K, Iwai K, etal. Separation of inclusions in liquid metal using fixed alternating magnetic field[J]. Tetsu to Hagane,1997, 83(1): 30~35
    [24] Taniguchi S, Brimacombe J K. Application of pinch force to the separation of inclusions particles from liquid steel[J]. Iron Steel Inst Jpn Int, 1994, 34(9): 722~731
    [25] 钟云波,任忠鸣,邓康等.行波磁场净化液体金属的电磁力参数[J].中国有色金属学报,1999,9(3):482~487
    [26] Tanaka Y, Sassa K, Iwai K, et al. Separation of nonmetallic inclusions from molten melt using traveling magnetic field[J]. Zetsu to Hagane, 1995, 81(12): 12~17
    [27] 李克等.利用高频磁场分离Al熔体中的非金属夹杂.金属学报,2001(04):405~410
    [28] Beatrice P, Pascale G, et al. Electromagnetic particles separation from conducting liquid flows using high static magnetic field[A]. The Seventh Symposium of EPM[C]. Paris: 1997. 97~102
    [29] Wang D, Li Z, ZHU Y, Etal. Research on purifying inclusions using electromagnetic technique and its control system[J]. Industrial Lubrication and Tribology, 2001, 52(4): 155~160
    [30] 闫照文.李朗如等.电磁场数值分析的新进展.微电机,2000(04):33~
    
    35
    [31] 倪光正,钱秀英,周佩白.电磁场的计算机辅助分析.西安:西安交通大学出版社,1985.30~44
    [32] 李明军等.电磁分离铝熔体中夹杂的电磁场数值模拟.东北大学学报(自然科学版),2001(01):67~70
    [33] 金俊泽,孙义海,李廷举.圆锭电磁铸造中电磁场及液柱形状的计算机模拟.材料研究学报,2000(03):249~254
    [34] Michael Halvorson著,张钟军等译.visual Basic 6.北京:机械工业出版社,1999.4~56
    [35] (美)Charles Parly著,梁念蓉等译.Visual Basic 3.0程序设计大全.北京:电子工业出版社,1994.9
    [36] 熊艳才.铸造合金现状及未来发展.特种铸造及有色合金,1998(04):
    [37] 李天晓,许振明,张雪萍,孙宝德,周尧和.电磁分离降低铝硅合金中铁含量.上海交通大学学报,2001(5):664~667
    [38] [美]L.F.蒙多尔福箸.铝合金的组织和性能.北京:冶金出版社,1988.4
    [39] [苏]多巴特金等主编.铝合金半成品的组织和性能.北京:冶金出版社,1984.12
    [40] 严珩志,钟掘等.电磁场作用下铝及其合金的凝固结晶行为.中国有色金属学报,1996(03):158~159
    [41] 曹志强,张秋明,贾非,金俊泽.铝熔体中非金属夹杂物电磁分离效率研究.大连理工大学学报,2002(04):441~445
    [42] 毛大恒,肖立隆.电磁场对铸轧带坯质量的影响.轻合金加工技术,26(03),1998:11~16
    [43] 钟云波等.交变磁场净化金属液时金属紊流的形成及其控制.中国有色金属学报,2001(04):541~546
    [44] 钟云波等.行波磁场净化液态金属时金属液化流动控制的初步探讨.上海大学学报(自然科学版),1999(01):42~45
    [45] 翟秀静,李明军等.铝熔体中夹杂物的电磁分离.中国有色金属学报,2001(02):294~297
    [46] 科瓦索夫,弗里德良捷尔主编.工业铝合金.北京:冶金出版社.1981.5
    [47] 邢淑仪,王世洪.铝和金和钛合金.北京:机械工业出版社,1987.10
    [48] 高云震,任继嘉编译.铝合金表面处理.北京:冶金工业出版社,1991.8
    
    
    [49] 吴扣根,洪新,蒋国昌.电磁场作用下液态金属流速的测量技术.传感器技术,2001(20):44~47
    [50] 孙锋山.熔体处理对提高高性能铝材冶金质量和力学性能的作用研究:[硕士学位论文] .福州:福州大学,2001.12
    [51] 葛丰德.脉动磁场铸造.机械工程学报,1989,25(1):1~6
    [52] 下地光雄著,顾淦钦译.液态金属.北京:北京科学出版社,1987
    [53] 翟秀静等.电磁分离铝熔体中不同粒径夹杂颗粒的研究.分子科学学报,2001(01):23~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700