Notch信号途径转录因子RBP-J在小鼠心脏移植急性排斥反应中对受体T细胞亚群的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.建立易行可靠的小鼠颈部异位心脏移植模型,改进小鼠颈部异位心脏移植模型和手术方式。
     2.培育鉴定T细胞中特异性剔除RBP-J转基因小鼠,通过建立小鼠颈部异位心脏移植模型,探讨Notch信号途径中转录因子RBP-J对小鼠同种异体心脏移植受体T细胞亚群的影响
     方法:
     1.在显微镜下对受体手术,游离受体右侧静外静脉和颈总动脉,对供体,经下腔静脉注射肝素钠全身肝素化后,于低温下切取供心;采用供心无名动脉与受体颈总动脉端端间断吻合,供心肺动脉与受体颈外静脉端端吻合,进行小鼠颈部异位心脏移植。
     2.交配Lck-Cre x RBP-Jflox/+杂合子转基因小鼠,提取其子代小鼠尾巴DNA,通过凝胶电泳,鉴定小鼠基因型,确定基因敲除小鼠。
     3.选用三种小鼠,即C57BL/6,Balb/c以及RBP-J基因条件性剔除小鼠,采用颈部异位小鼠心脏移植模型,将32只小鼠按随机原则分为2组:A组(n=8)BALB/c→C57BL/6;B组(n=8)BALB/c→RBP-J基因剔除小鼠,移植术后1、3、5、7天留取移植物,观察大体情况及组织病理学变化。
     4.提取小鼠外周血,行血常规检查。获取受体小鼠胸腺、淋巴结、脾脏,分离T淋巴细胞,抗-CD4-PE、抗-CD8-APC和抗-CD25-FITC染色,行流式细胞仪检测。
     结果:
     1.供心总缺血时间40 min,术后复跳率90%,改进后的术式手术成功率有所提高,模型的建立为下一步实验提供了技术基础。
     2.通过培育繁殖,我们得到转基因小鼠并通过DNA PCR扩增,凝胶电泳鉴定转基因小鼠,为下一步实验提供实验材料。
     3.建立小鼠颈部异位心脏移植术后, C57小鼠对照组(n=7)移植术后移植心平均存活时间为(6±1.21)d,基因敲除小鼠实验组移植术后移植心平均存活时间为(4±1.8)d,与对照组相比,存活时间明显缩短,(P<0.05)。脾脏细胞的增加主要是Mac1阳性的细胞的绝对数量的增加(P<0.01),以及CD8阳性细胞的增加(P<0.01)。而淋巴结的细胞数的增加主要是T细胞(P<0.01),尤其是CD8阳性的T细胞的增加(P<0.01),以上结果初步提示RBP-J KO受体小鼠相比control受体小鼠,CD8阳性的T细胞对于移植物的反应增强。而脾脏中天然发生的调节性T细胞的绝对数也有所降低(P<0.01)。
     结论:
     1.改进后的术式手术成功率高,术中暴露充分、血管处理简单、手术创伤小,污染机率小等,是简单、实用、可靠的手术方式。
     2.我们培育并鉴定出T细胞中特异性剔除RBP-J转录因子的转基因小鼠,从而为进一步研究转录因子RBP-J在小鼠心脏移植急性排斥反应中对受体T细胞亚群的影响奠定了基础。
     3.通过建立小鼠颈部异位心脏移植,我们发现基因敲除小鼠的免疫排斥反应有所加强,反应性T细胞增殖加强,调节性T细胞增殖有所减弱,这为研究移植免疫提供新思路。
Aim:
     1. To develop and master the operation methods of heterotopic cervical heart transplantation in mice.
     2.Select C57BL/6 , Balb/c and treditional gene-knockout mice as the object,and heterotopic transverse part cardiac transplantation was performed to investigate the effect of the transcription factor RBP-J in the Notch/ RBP-J pathway on subgroup T cells after allogene heart transplantation in mice.
     Mathods:
     1.Under microscopy , the right external jugular vein and the common carotid artery of the recipient were liberated . After heparinization all over the body of the donor ,the heart was obtained in low temperature. The innominate artery of the donor heart and the right common carotid artery of the recipient were anastomosed using the end-to-end interrupted suture technique.The same method was used in the connection between the pulmonary artery of the donor heart and the right external jugular vein of the recipient.
     2. Generated Lck-Cre x RBP-J flox/flox mouse in which RBP-J, the key transcription factor of Notch pathway,can be specifically inactivated in T cells.Identified lck-cre mouse lines in which RBP-J can be completely inactivated in T cells by PCR.And select gene-knockou mice as the object.
     3. A total of 32mice of 3 inbred lines(C57BL/6, Balb/c and conditional knockout C57BL/6) were randomly divided into 2 groups. Group A(n=8)had aniso-strain operation(BALB/c→C57BL/6); group B(n=8)got the same operation (BALB/c→conditional knockout RBP-J C57BL/6). Samples of grafts were taken 6 days after transplantation, then allograft were detected by pathology.
     4. Peripheral blood was stringed blood routine examination. Lymphoid nodes and spleens were taken after graft stopped work,and the T cells were isolated from spleens,then marked with anti-mouse CD4-PE,anti-mouse CD8-APC, anti-mouse CD25-FITC ,and other colored immune fluorescence antibodies to detect the quantity of sub-T cell with flow cytometer
     Result:
     1. We developed the operation methods,the result showed that the the total ischemic time of the graft was 40 min, the rate of the heart re-beat was increased to 90%.
     2.The mice of conditional knockout transcriptional factor RBP-J is got and identified successfully,the mice is available which lays the foundation for the study of the effect of the transcription factor RBP-J in the Notch/ RBP-J pathway on sub-T cells after allogene heart transplantation in mice.
     3. Conditional Knockout RBP-J in mice shorted survival time to 4±1.8 days compared to 6±1.21 days in group C57 (p<0.01).Acute rejection pathologically was observed in group A and B.The proliferation of RBP-J deficient T cells,epecially in CD8+ T cells, increased a lot in response to the allograft compared with group C57 (P<0.01),but the Treg cell decreased.
     Conclusions:
     1. The advantage of this model lies in easy exposition, short duration of the operation, easy treatment of the blood vessel, low probability of contaminate and high rate of success,so deserves to use in experimental study widely.
     2. We get the mice in which conditional knockout transcriptional factor RBP-J in T cell, We identified thelck-cre mouse line in which RBP-J can be completely inactivated in T cells by PCR.
     3.Through established the heterotopic cervical heart transplantation,we found that the the transcription factor RBP-J influenced the acute rejection. The proliferation of RBP-J deficient T cells,epecially in CD8+ T cells, increased a lot,and the Treg cell decreased.These results convinced us to make a deep research on the relationship between the Notch pathway and the transplantation rejection.
引文
1. Alegre1 Maria-Luisa, Florquin Sandrine and Goldman Michel. Cellular mechanisms underlying acute graft rejection:time for reassessment. Current Opinion in Immunology 2007, 19:563–568.
    2. 章爱斌,郑树森。 移植物急性排斥反应的发生机制。 国外医学:免疫学分册.2004,27(1).4-7。
    3. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H. Both CD4(+) CD25(+) and CD4(+) CD25(-) regulatory cells mediate dominant transplantation tolerance. J Immunol 2002; 168:5558–65.
    4. Game DS, Hernandez-Fuentes MP, Chaudhry AN, Lechler RI. CD4+CD25+ regulatory T cells do not significantly contribute to direct pathway hyporesponsiveness in stable renal transplant patients. J Am Soc Nephrol 2003; 14:1652–61.
    5. Maillard I, Fang T, Pear WS. Regulation of lymphoid development,
    6. differentiation, and function by the Notch pathway. Annu Rev Immunol.
    7. 2005,23: 945-974.
    8. Rothenberg EV, Taghon T. Molecular genetics of T cell development.Annu Rev Immunol. 2005,23:601-49.
    9. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1.Immunity, 1999,10(5):547-58.
    10. Han H, Tanigaki K, Yamamoto N, et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision.Int Immunol,2002,14(6):637-645.
    11. Pui JC, Allman D, Xu L, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination .Immunity,1999 ,11(3):299-308.
    12. De Smedt M, Reynvoet K, Kerre T, et al. Active form of Notch imposes T cell fate in human progenitor cells.J Immunol, 2002,169(6):3021-3029.
    13. Washburn T, Schweighoffer E, Gridley T, et al. Notch activity influences the alphabeta versus γδ T cell lineage decision.Cell,1997,88(6):833-843.
    14. Wolfer A, Bakker T, Wilson A, et al. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8T cell development. Nat Immunol, 2001,235-241.
    15. Wolfer A, Wilson A, Nemir M, et al. Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity,2002,16(6):869-879.
    16. Laky K, Fleischacker C, Fowlkes BJ. TCR and Notch signaling in CD4 and CD8 T-cell development.Immunol Rev. 2006, 209:274-283.
    17. Robey E, Chang D, Itano A, et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell,1996, 87(3):483-492.
    18. Deftos ML, Huang E, Ojala EW,et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity,2000 ,13(1):73-84.
    19. Fowlkes BJ, Robey EA. A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. J Immunol,2002,169(4):1817-1821.
    20. Osborne BA, Minter LM. Notch signalling during peripheral T-cell activation and differentiation. Nat Rev Immunol. 2007,7(1):64-75.
    21. Adler SH,Chifoleau E,Xu L,et a1.Notch signaling augments T cell responsiveness by enhancing CD25 expression.J lmmunol.,2003,l71(6):2896-2903.
    22. Maekawa Y,Tsukumll S,Chiba S,et a1.Delta l-Notch3 interactions has thefunctional differentiation of activated CD4 T cells.2003, J Immunol.19(4):549-559.
    23. Eagar TN, Tang Q,Wolfe M,et a1.Notch1 signaling regulates peripheral T cell activation J.Immunity,2004,20(4):407-415.
    24. Artavanis S., M. Rand and R. J. Lake. 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770-776.
    25. Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol. 2005,23: 945-974.
    26. Kuroda K, Han H, Tani S, Tanigaki K, Tun T, Furukawa T, Taniguchi Y, Kurooka H, Hamada Y, Toyokuni S, Honjo T. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway.Immunity. 2003 Feb;18(2):301-12.
    27. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision.Int Immunol. 2002Jun;14(6):637-45.
    28. Tanigaki K,Tsuji M,Yanlalnnto N,et nf.Regulation of alphabeta/gammadeha T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling [J].immunity),2004,20(5):611-622
    29. Maekawa Y,Tsukumo S,Chiba S,et a1.Deltal-Notch3 interactions bias the functional differentiation of activated CD4+ T cells [J],Immunity,2003,19(4):549-559.
    30. Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H, Kubo M, Honjo T. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity. 2004 May;20(5):611-22.
    31. Amsen D,Blander JM,Lee GR,et a1.Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells [J].Cell,2004,117(4):515—526
    32. Tu LL,. Fang TC, Artis D, et al. Pear Notch signaling is an important regulator of type 2 immunity.J Exp Med. 2005 Oct 17;202(8):1037-42.
    33. Sakaguchi S , Sakaguchi N , Asano M , et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-toleranc cause various autoimmune diseases [ J ] .J Exp Med,1996,184(2):387-396
    34. Takahashi T,Tagami T, Yamazaki S, et a1.Immunologic self—tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen4[J].J Exp Med,2000,192(2):303-310
    35. Hoyne GF, Le Roux I, Corsin- Jimenez M,et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells.Int Immunol, 2000,12:177- 185.
    36. Anderson AC,Kitchens EA,Chart SW ,et a1. The Notch regulator Numb links the Notch and TCR signaling pathways.J Immunol,2005,174:890-897
    37. Benson RA, Adamson K, Corsin-J imenez M. Notch1 co-localizes with CD4 on activated T cells and Notch signaling is required for IL-10 production[ J ]. Eur J Imm unol, 2005, 35 (3) : 859 -869
    38. Wan YY, Flavell RA.Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter[J].Proc Natl Acad Sci USA,2005,102(14):5126-5131.
    39. Fontenot JD, Gavin MA,Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J].Nat Immunol,2003,4(4):330-336.
    40. Anastasi E,Campese AF,Bellavia D,et a1.Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimlmune diabetes. J. Immunol. 2003,171(9):4504-4511.
    41. Vigouroux S,Yvon ES, Wagner HJ,et al. Induction of antigen specific regulatory T cells following overexpression of a Notch ligand by human B lymphotes . J Immunol. 2003,77(20):10872-10880.
    42. Yvon ES, Vigoureux S,Rousseau RF,et a1.Overexpression of theNotch ligand Jagged-1 induces alloantigen-specific human regulatory T cells. Blood,2003,102(10):3815-3821.
    43. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A.Interleukin-10 and the interleukin-10 receptor. Ann Rev Immunol 2001;19:683–765.
    44. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W.Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993;75:263–74.
    45. Tanaka S, Tsukada J, Suzuki W, et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4+ T cells. Immunity. 2006 Jun;24(6):689-701.
    46. Wong KK, Carpenter MJ, Young LL, et al. J Clin Invest. 2003 Dec;112(11):1741-50. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. [J].J Clin Invest,2003,112(11):1741-1750.
    47. Hai-Feng Ou-Yang, Hong-Wei Zhang, Ping Zhang, Chang-Gui Wu, Lei Feng, Hao-Wen , and Hua Han. Notch signaling regulates the FOXP3 promoter through RBP-J- and Hes1-dependent mechanisms, Molecular and Cellular Biochemisry,Under Revision.
    48. Corry R J,W inn H J,Russell P S.Primarily vascularized allografts of hearts in mice.The role of H-2D,H-2K ,and non-H-2 antigens in rejection. Transplantation,1973,16(4):343-50
    49. Blanchard J,Massad M ,Sekosan M ,et a1. A new rat model to study the correlation of cardiac and skeletal muscle allograftrejection. Microsurgery, 1998,18(7):406-9
    50. Chen ZH,A new technique of cervical heterotopic heart transplantation in mice. Transplantation,1991,52(6):1099-101
    51. 朱晓峰.小鼠心脏移植模型 IL-l2 抗体排斥反应作用初步观察.中华微外科杂志,1999;22(1):55-55.
    52. 严胜,郑树森,章荣华,等.小鼠第二次心脏移植的研究.中华实验外科杂志,2001;l8(5):475-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700