脂肪酸诱导鹅肝细胞差异表达基因的筛选和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在动物肝细胞内,甘油三酯(TG)的异常沉积导致肝脂肪变性。将游离脂肪酸(FFAs)添加到肝细胞中可导致肝脂肪变性,但是关于FFAs与TG的异常沉积之间联系和脂肪沉积相关基因的差异表达的机制目前还不清楚。本研究以四川白鹅(Ansercygnoides)为研究对象,利用抑制消减杂交技术构建了FFAs诱导的肝脂肪变性细胞和正常肝细胞差异cDNA文库,对文库中序列进行了功能注释和分类,初步揭示了FFAs诱导后肝细胞差异表达基因的种类和数量,这为从分子水平探讨肥肝的机理奠定了基础。本研究取得的主要结果如下:
     1.采用添加1mM游离脂肪酸混合物FFAs到鹅原代肝细胞中培养36h,成功建立肝细胞脂肪变性的细胞模
     2.应用抑制性消减杂交技术成功构建了正常肝细胞与脂肪变性肝细胞正反向SSH文库。正向文库(SSH-1)扩增后获得1344个克隆,反向文库(SSH-2)扩增后获得1152个克隆。应用斑点杂交筛选阳性克隆测序,SSH-1文库有30个测序成功,SSH-2文库有23个测序成功。
     3.对去除载体序列和接头序列后的EST通过BLASTn进行在线DNA序列同源性比较分析得到:SSH-1获得23个已知基因,占克隆测序的76.7%;已知EST有6个占20%;全新EST有1个占3.3%。其中SSH-2文库已知基因有18个占克隆测序的78.3%;已知EST有1个占4.3%,全新EST有4个占17.4%。
     4.SSH文库共获得已知基因41个,对EST功能分类发现,细胞结构和运动占已知基因的2%,细胞信号和传导占12%,翻译核糖体结构和功能占25%,细胞转录占5%,细胞凋亡占2%,物质转运占17%,物质代谢占22%,未知基因占15%。
     5.ALDOB、TGM3、RPL家族(RPL22、RPL23、RPL39、RPL5)、APoH等这些差异表达的EST序列与新基因片断在肝细胞的生长或脂肪代谢等过程中起了重要作用,为进一步研究肝脂肪变性提供了线索。
Hepatic steatosis results from the excessive accumulation of triglyerides(TG) in the animal liver.FFAs cultured with Hepatocytes could induce Hepatoeytes steatosis, but it has been not clear about the relation between FFAs and TG abnormal deposition,and the mechanism of differentialy expressed genes in fat deposition.In this study,using the Sichuan White geese as material,we construct two forward and reverse SSH cDNA libraries between the normal hepatocytes and the steatosis hepatocytes.By homology alignment and function annotation,we discoverd the sorts and quantity of differentialy expressed genes in FFAs induced hepatocytes,which would provide a bias for elucidating the mechanism of fatty liver in the molecular level.The Results were shown as follows:
     1.The hepatocyte steatosis models were established successfully induced by 1mmol/ml FFAs for 36d.
     2.Differentially expressed cDNA library were constructed using suppression subtractive hybridization.1344 positive clones were obtained in SSH-1,1152 positive clones were obtained inSSH-2.SSH-1 library had 30 successful sequences,and SSH-2 library has 23 successful sequences.
     3.A search for sequence homology in the GenBank and EST database by BLASTn revealed that the distribution of SSH-1 EST clusters for high homology genes.The high homology genes,high homology ESTs and novel ESTs were23,6 and 1,and the proportion were 76.7%,20%and 3.3%.In SSH-2,the high homology genes and novel ESTs were 19,land 4,and the proportion were 78.3%,4.3%and 17.4%.
     4.the proportions of the high homology genes was 41 in SSH library.Categories of functions ESTs:the proportions of cell structure/movement was 2%,the cell signal/conduction was 12%,slation/expression regulation was 25%,transporters was 5%cell apoptosis was 2%, material conveying was17%,metabolismd and unknow gene were 22%and15%.Of course, the genes involved in metabolism and transporters were rich expressed.
     5.Roles of different character feature of partial diferentially expreesed genes in two geese breeds were presumed based on references and our research results.RP (RPL22,RPL23,RPL39,RPL5),TGM3,FABP,THBS1,and APOH were considered playing an important role in different character feature in different geese.They are the biological function of providing the material and they provide a clue in searching the important genes related to the hepatic steatosis and the foie gras.
引文
[1] Ijaz S, Yang W, Winslet M C,et al.Impairment of hepatic microcirculation in Fatty live[J].Microcirculation,2003,10(6):447-456.
    
    [2] Yasuhara M,Ohama T,Mastsuki N, et al. Induction of fatty liver by fasting in suncus [J].The Journal of Lipids Research,1991,32:887-891.
    [3] Pearce J.Some differences between avian and mammalian biochemistry[J]. Int J Biochem, 1977,8: 269-279.
    [4] Mourot J,Guy G. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser Anser)[J].Comp Biochem Physiol,2000,B130:227-235.
    [5] Picaid F,Richard D, Huang Q, et al. Effects of leptin adipose tissuelipase in the obese ob/ob mouse[J]. Int J Obes Relat Metab Disord,1998,22(11): 1088-1095.
    [6] Gibbons G F, Bartlett S M, Sparks C E ,et al. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochena[J],1992,287:749-753.
    [7] Bensadoun A, Rothfield A. The form of absorption of lipids in the chicken,Gallus domesticus[J]. Proc Soc Exp Biol Med,1972,141(3):814-817.
    [8] Camps L, Reina M, Llobera M, et al.Lipoprotein lipase: cellular origin and functional distribution[J]. Am J Physiol. 1990 ,258 (4): 673-681.
    
    [9] Yeaan S J. Hormone-sensitive lipase-new roles for an old enzyme [J].Biochem J,2004,379:11-22.
    [10]Gauthier M S,Couturier K,Latour J G,et al.Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis[J]. J Appl Physiol, 2003,94:2127-2134.
    
    [11] Pan M, Liang J, Fisher E A, et al.Inhibition of translocation of nascent endoplasmic apolipoprotein B across the endoplasmic reticulum membrane is associated with selective inhibition of the the synthesis of apolipoprotein B[J]. J Biol Chem ,2000,275:27399-27405.
    
    [12] Guerre-Millo M. Adipose tissue hormones. J Endocrinol Invest,2002,25:855-861.
    
    [13] Voshol P J, Haemmerle G, Ouwens D M, et al. Increased hepatic insulin sensitivity together with decreased hepatic TG stores in hormonesensitive lipase-deficient mice[J]. Endocrinology,2003, 144:3456-3462.
    [14] Voshol P J, Jong M C, Dahhnans V E,et al. In muscle-specific lipoprotein lipase over expressing mice, muscle TG content is increased without inhibition of insulin-stimulated whole-body and muscle-specific glucose uptake[J]. Diabetes,2001,50:2585-2590.
    [15] Coburn C T, Knapp FFJ, Febbraio M, et al.Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice[J]. J Biol Chem,2000,275:32523-32529.
    [16] Goudriaan J R, Dahlmans V E, Teusink B, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice[J]. J Lipid Res,2003,44:2270-2277.
    [17] Jacques M, Gerard G, Sandrine L, et al. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser)[J]. Comparative Biochemistry and Physiology Part B,2000,126:81-87.
    [18] Fabienne F,Pascal F. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose:a role for the transcription factor sterol regulatory element binding protein-lc[J].Biochem,2000,366:377-391.
    [19] Bandsma R H, Wiegman C H, Herling A W, et al. Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats[J]. Diabetes, 2001,50( 11 ):2591 -2597.
    [20] Dominique H, Gerard G. Solange G, et al.Differential channelling of liver lipids in relation to susceptibility to hepatic steatosis in two species of ducks. Comparative Biochemistry and Physiology Part B[M], 2003,135:663-675.
    [21] Hermier D, Rousselot-Pailley D, Peresson R, et al.Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis[J]. Biochem Biophys Acta, 1994,1211:97-106.
    [22] Fournier E,Peresson R,Guy G, et al.Relationships Between Storage and Secretion of Hepatic Lipids in Two Breeds of Geese with Different Susceptibility to Liver Steatosis[J]. Poultry Science,1997,76:599-607.
    
    [23] Davail S, Guy G,Andre JM,et al. Metabolism in two breeds of Geese with moderate or large overfeeding induced liver-steatosis[J] .Biochem Physiol, 2000,126:91-99.
    [24] Assaf S, Hazard D.Cloning of cDNA Encoding the Nuclear Form of Chicken Sterol Response Element Binding Protein-2 (SREBP-2), Chromosomal Localizationand Tissue Expression of Chicken SREBP-1 and -2 Genes[J]. Poultry Science, 2003, 82:54-61.
    [25] Horton J D, Shah N A, Warrington J A, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes[J]. Proc Natl Acad Sci U S A, 2003,100:12027-12032.
    [26] Abu-Elheiga L, Oh W, Kordari P, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets[J]. Proc Natl Acad Sci USA, 2003,100:10207-10212.
    [27] Hasegawa J I, Osatomi K, Wu R F, et al. A novel factor binding to the glucose response elements of liver pyruvate kinase and fatty acid synthase genes[J]. J Biol Chem, 1999,274(2): 1100-1107
    [28] Matsusue K,Haluzik M,Lambert G,et al.Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes[J]. J Clin Invest, 2003, 111:737-747.
    [29] Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferators -activatedreceptors (PPARs):tissue distribution of PPAR-alpha-betaand-gamma in the adult rat[J] .Endocrinology, 1996,137-354
    [30] Matsusue K, Haluzik M, Lambert G,et al.Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes[J]. J Clin Invest, 2003, 111:737-747.
    [31] Gavrilova O, Haluzik M, Matsusue K, et al.Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation ofbody fat mass[J]. J Biol Chem,2003,278:34268-34276.
    [32] Hardie D G.The AMP-activated protein kinase cascade: the key sensor of cellular energy status[J]. Endocrinology, 2003, 144:5179-5183.
    [33]Dobrzyn P, Dobrzyn A, Miyazaki M, et al.Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver[J]. Proc Natl Acad Sci USA, 2004, 101:6409-6414.
    [34] Hardie D G,Scott J W,Pan D A, et al. Management of cellular energy by the AMP-activated protein kinase system[J]. FEBS Lett, 2003,546:113-120.
    [35] Kawaguchi T, Takenoshita M, Kabashima T, et al. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/ dephosphorylation of the carbohydrate response element binding protein[J]. Proc Natl Acad Sci U S A,2001, 98:13710-13715.
    
    [36] Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action[l].J Clin Invest,2001,108:1167-1174.
    [37]Lin H Z,Yang S Q,Chuckaree C,et al.Metformin reverses fatty liver disease in obese,leptin-deficient mice[J].Nat Med,2000,6:998-1003.
    [38]刘祥友,何瑞国,熊远著.日粮粗纤维水平对6-10周龄肥肝鹅生长性能的影响和朗德鹅与溆浦鹅肥肝脂肪沉积规律的比较研究.[博士学位论文].武汉,华中农业大学,2005.
    [39]Stephane D,Nicole R,Gerard G,et al.Hormonal and metabolic responses to overfeeding in three genotypes of ducks[M].Comparative Biochemistry and Physiology Part A,2003,134:707-715.
    [40]许恒勇.脂蛋白脂酶(LPL)在填饲鹅脂肪组织中的表达研究.[硕士学位论文].四川雅安,四川农业大学,2005.
    [41]叶建强.鹅微粒体甘油三酯转运蛋白(MTP)的表达研究.[硕士学位论文].四川雅安,四川农业大学文,2005.
    [42]蒋立.填饲诱导鹅肥肝形成差异及调控肝极低密度脂蛋白-甘油三酯组装与分泌相关基因的表达研究.[博士学位论文].四川雅安,四川农业大学,2005.
    [43]兰英.甘油二酯酰基转移酶2(DGAT2)与鹅肥肝TAG合成和分泌的关系研究.[硕士学位论文].四川雅安,四川农业大学,2006.
    [44]Venter J C,Adams M D,Eugene W M,et al.The sequence of the human genome[J].Science,2001,291:1304-1352.
    [45]Van de Loo FJ,Broun P,Tumer S,et al.An oleate 12-hydroxylase from Ricinus communis L is a fatty acyl desaturase homolog[J].Natl Acad Sci,1995,38:45-59.
    [46]Buanne P B,Incerti D,Guardavaccaro V,et al.Cloning of the human interferon-related developmental regulator(IFRD1)gene coding for the PC4 protein,a membei of a novel family of development regulated fenes[J].Genomics,1998,51:233-242.
    [47]Luo Meng,Jia ji Zeng.Progress in Expressed Sequence Tags(EST) Project of Plant genome[J].Prog Biochem Biophys,2001,28(4):4942-4971.
    [48]Harushima Y,Yano M,Shomura A,et al.A high-density rice genetic likage map with 2275markers using a single F2 population[J].Genetic,1998,148(1):12-61.
    [49]Gilpin B J,Mccallum T A,Frew T J.A Linkage map of the pea(pisum stativum L) genome containing cloned sequences of known function and expressed sequence tags(ESTs)[J].Theor Appl Genet,1997,95(8):1289-1299.
    [50]Hatey F,Tosser-klopp G,Clouscard-martinato C.Expressed sequenced tags for genes:review[J].Genet Sel Evol,1998,30(5):521-541.
    [51]Seglen P O.Preparation of isolated rat liver cells[J].Methods Cell Bid,1976,13:29-83
    [52]Feldstein A E,Canbay A,Guicciardi M E,et al.Diet associated hepatic steatosis sensitises to Fas mediated liver injury in mice[J].J Hepatol,2003,39:978-98
    [53]Schwerin M,Czernek S D,Goldammer T,et al.Application of diease-associated differentially expressed genes-Mining for functional candidate genes for mastitis resistance in cattle.Genet[J]Sel Evol,2003,35(11):519-534.
    [54]良港.应用激光捕获显微切割技术进行人和大鼠不同阶段生精细胞差异表达基因的研究.[博士学位论文].北京,中国协和医科大学,2003.
    [55]Davoli R,Zambonelli P,Bigi D,et aL.Analysis of expressed sequence tags of porcine skeletal muscle[J].Gene,1999,233:181-188.
    [56]Li A P,Gorycki P D,Hengstler J G,et al.Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics:consensus of an international expert panel[J].Chem Biol Interact,1999,121(1):117-123.
    [57]韩聚强,刘树贤,胡大荣.体外肝细胞培养技术新进展[J].河北医科大学学报,2002,23(3):184-186.
    [58]Vajta,Divald.Fatty degeneration in cultured hepatocytes.A new experimental model[J].Virchows Arch B:Cell Pathol Incl Mol Pathol,1986,52(2):177-184.
    [59]Helena C P,Huizhi L.Lipids up-regulate uncoupling protein 2 expression in rathepatocytes[J].Gastroenterology,1999;116:1184-1193.
    [60]Yasuyuki O,Shinobu T.Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model[J].Hepatology research,2002,23:138-144.
    [61]Ariel E F,Nathan W W.Free fatty acids promote hepatic lipotoxicity by stimulating TNF-αexpression via a lysosomal pathway[J].Hepatology,2004,40:185-194.
    [62]张红锋,杨慧萍.乙醇和软脂酸诱导的脂肪肝离体细胞模[J].华东师范大学学报(自然科学版),2002,4:88-95
    [63]李世清,陈压西.肝细胞脂肪变性模的建立及TNF-α和胰岛素对该模的影响机制初探-[硕士学位论文].重庆,重庆医科大学,2006
    [64]Teresa M D,Agustin L,Nuria J,et al.Potential impact of steatosis on P450 enzymes of human hepatocytes isolated from fatty liver grafts[N].Drug Metabolism and Disposition Fast Forward,2006,1-36
    [65]Peter G M,Helmut V A,John J G,et al.Hepatic free fatty acids in Alcoholic liver disease and morbidobesity[J].Hepatology,1983,3(2):226-231.
    [66]Lavergne J P,Conquet F,Reboud JP,et al.Role of acidic phosphoproteins in the partial reconstitution of the active 60 S ribosomal subunit[J].FEBS Lett,1987,216,83-88.
    [67]Shu-Nu C,Lin CH,Lin,A.An acidic amino acid cluster regulates the nucleolar localization and ribosome assembly of human ribosomal protein L22[J].FEBS Lett,2000,484,22-28.
    [68]Toczyski D P,Matera A G.,Ward DC,et al.The Epstein-Barr virus(EBV) small RNA EBER1binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes[J].Proc Natl Acad Sci USA,1994,91,3463-3467.
    [69]Dobbelstein M.,Shenk T.In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virusexpressed RNA by using randomized and cDNA-derived RNA libraries[J].Virol,1995,69,8027-8034.
    [70]Toczyski D P,Steitz J A.EAP,a highly conserved cellular protein associated with Epstein-Barr virus small RNAs(EBERs)[J].EMBOJ,1991,10,459-466.
    [71]Wood J,Frederickson R M,Fields S et al.Hepatitis C virus 30X region interacts with human ribosomal proteins[J].J Virol,2001,75,1348-1358.
    [72]Le S,Sternglanz R,Greider CW.Identification of two RNA-binding proteins associated with human telomerase RNA[J].Mol Biol Cell,2000,11,999-1010.
    [73]Leopardi R,Ward P L,Ogle W O,et al.Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP,ICP4,RNA polymerase Ⅱ,and viral requires posttranslational modification by the U(L)13 proteinkinase American Society for Microbiology[M].American Society for Microbiology,1997,1133-1139.
    [74]翟惠虹,时永全,郭新宁等.RPL23编码基因的克隆及其正反义核酸转染胃癌细胞[J].第四军医大学学报,2002,23(16):1507-1510.
    [75]Zimmermann R A.Protein synthesis[J].Ins and outs of the ribosome.Nature,1995,376,391-392.
    [76]Gonzalez I L,Schmickel R D,The human 18S ribosomal RNA gene:evolution and stability[J].American Journal of Human Genetics,1986,38,419-427.
    [77]Wool I G.,Chan Y L.Gluck A.Structure and evolution of mammalian ribosomal proteins[J].Biochemistry and Cell Biology,1995,73,933-947.
    [78]Mears J A,Sharma M R,Gutell R R,et al.A structural model for the large subunit of the mammalian mitochondrial ribosome[J].Journal of Molecular Biology,2006,358,193-212.
    [79]Dresios J,Derkatch I L,Liebman S W,et al.Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy,while mutants lacking both remain viable[J].Biochemistry,2000,39,7236-7244.
    [80]Nadano D,Notsu T,Matsuda T,et al.A human gene encoding a protein homologous to ribosomal protein L39 is normally expressed in the testis and derepressed in multiple cancer cells[J].Biochimica et Biophysica Acta,2002,1577,430-436.
    [81]刘骥,李纪鹏,陈冬利等.核糖体蛋白L5在胃癌中的表达及功能[J].世界华人消化杂志,2005,13(23):2731-2735.
    [82]Grenard P,Bates M K,Aeschlimann D.Evolution of transglutaminase genes:identification of a transglutaminase gene cluster on human chromosome 15q15,Structure of the gene encoding transglutaminase X and a novel gene family member,transglutaminase Z[J].J Biol Chem,2001,276(35):33066-33078.
    [83]Wang M,Kim I G,Steinert P M,et al.Assignment of the human transglutaminase 2(TGM2)and transglutaminase 3(TGM3)genes to chromosome 2%[J].Genomics,1994,23(3):721-722.
    [84]Kim I G,Lee S C,Lee J H,et al.Structure and organization of the human transglutaminase 3 gene:evolutionary relationshipto the transglutaminase family[J].J Invest Dermatol,1994,103(2):137-142.
    [85]Ahvazi B,Kim H C,Kee S H,et al.Three dimentional structure of the human transglutaminase 3enzyme:binding of calcium ions changes structure for activation[J].EMBO,2002,21(9):2055-2067.
    [86]Kim H C,Nemes Z,Idler W W,et al.Crystallization and preliminary X-Ray analysis of human transglutaminase 3 from zymogen to active form[J].J Struct Biol,2001,135(1):73-77.
    [87]Hitomi K,Kanehiro S,Ikura K,et al.Characterization of recombinant mouse epidermal-type transglutaminase(TGase 3):regulation of its activity by proteolysis and guanine nucleotides[J].J.Biochem(Tokyo),1999,125(6):1048-1054
    [88]Bijan A,Karen B,Peter S.Crystal Structure of Transglutmninase 3 in Complex with GMP[J].Biol Chem,2004,279:26716-26725.
    [89]Naganuma H,Satoh E,Kawataki T,et al.Cell density regulates thrombospondin-1 production in malignant glioma cells[J].J Neurooncol,2003,63:147-153.
    [90]Rice A J,Steward M A,Quinn C M.Thrombospondin-1 protein expreion relates to good prognostic indices in ductal carcinoma insitu of the breast[J].J Clin Pathol,2002,55:921-925.
    [91]Hawighorst T,Oura H,Streit M,et al.Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but nottumor lymphangiogenesis and lymphatic metastasis in transgenicmice[J].Oncogene,2002,21:7945-7956.
    [92]Maeda K,Nishiguchi Y,Yashiro M,et al.Expression of vascular endothelial growth factor and thrombospondin-1 in colorectal carcinoma[J].1nt J Mol Med,2000,5:373-378.
    [93]Maeda K,Nishiguchi Y,Kang S M,et al.Expression of throm-bospondin-1 inversdy correlated with tumor vascularity and hematogenous metastasis in colon cancer[J].Oncol Rep,2001,8:763-766.
    [94]Lim T Y,PM S J,Hwang H Y,et aI.TGF-β1 induces cardiac hypertrophic responses via PKC-dependent ATF-2activation[J].J Mol Cell Cardiol,2005,39:627-663
    [95]Schousboe I.β2-Gilycopratein 1:A plasma inhibitor of the contact Act ibation of the inerinsic blood coagulation pathway[J].Blood,1986,66(5):1086-1091.
    [96]Johannes N,Edouard M,paul H.Prothrombinase activity of human platelets is inhibited by β_2-Gilycopratein [J].Biochim Biophys Acts,1986,884:142-149.
    [97]Johamess N,Helmut W,Gerhard M.Interaction of β_2-Gily copratein with Human Blood platolets[J].Thrombosis and Haemo stasis,1985,54:397-401.
    [98]Maria L H,Barala E,Ascar D,et al.Inhibition of the activation of Hageman factor by β_2-Gilycopratein [J].J Lab Clin Med,1988,111:519-523.
    [99]Yoko N,Ernst J,Brgan H,et al.Activation of Hunan post Heprin Lipoprotein Lipase by ApulipoprateinH[J].Biochem Biophys Res Comm,1980,95:1168-1179.
    [100]Grifin J H,Masher D F,Zimmerman T S,et al.Low β_2-Gilyco-pratein levels in Patients with Disseminated intravascular Congulaton[J].Am J Haematol,1993,42:234-240.
    [101]Beringhelli T.Interaction of chicken liver basic fatty acid binding protein with fattya cids:a~(13) C NMR and fluorescence study[J].Biochemistry,2001,40(42):12601-12604
    [102]罗永富,王云霞.脂肪酸结合蛋白的结构和功能特性[J].生命的化学,1992,12(6):22-25.
    [103]Peeters R A.Are fattyacid-binding proteins involved in fatty acid transfer?[J].Biochem Biophys Acta,1989,1002,8-13
    [104]Cameron N D.Fatty acid composition of lipid in longissimus dorsi muscle of Duroc and British landrace pigs and its relationship with eating quality[J].Meat Sci,1991,29,295-307.
    [105]黄俊军,周新.脂肪酸结合蛋白的研究[J].国外医学分子生物学分册,1998,20(5):235-237.
    [106]Bass N M.Turnover and short-term regulation of fatty acid binding protein in liver[J].J Biol Chem,1984,260,9603-9607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700