费氏中华根瘤菌内源质粒间的相互作用及其对共生固氮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用带有枯草芽胞杆菌蔗糖敏感基因sacB的Tn5-Mob转座子标记了费氏中华根瘤菌(Sinorhizobium fredii)HN01、YC4B和WWG18不同的内源质粒;在含有10%蔗糖的TY培养基上,除YC4的第二大质粒外,均获得了消除标记的质粒的突变株。深入的比较研究结果证明:
     1.在辅助质粒pRK2073的协助下,实现了费氏中华根瘤菌HN01、YC4B和WWG18中的6个标记内源质粒在种内不同菌株之间和费氏中华根瘤菌与农杆菌之间诱动转移。通过植物盆栽结瘤试验,从功能上证明HN01的第二大质粒pSymHN01b为共生质粒。将标记共生质粒pSymHN01转入大豆品种专一性结瘤菌株AB359后,可使后者成为能在黑农33等大豆品种上结瘤的广品种范围结瘤的菌株,从而证明费氏中华根瘤菌品种专一性结廇性状受共生质粒控制。
     2.将HN01共生质粒pSymHN01b分别转入WWG18SR和C361SR后的质粒快速检测、质粒消除和植物盆栽结瘤试验结果证明:HN01的共生质粒与WWG18SR的共生质粒具有不相容性,但能与其非共生质粒相容。相反,HN01的共生质粒可与C361SR的共生质粒相容,但与其中一个非共生质粒具有不相容性。利用费氏中华根瘤菌不同菌株质粒间的不相容性,本研究成功地消除了WWG18SR的共生质粒和C361SR的一个非共生质粒
     3.将YC4B的标记共生质粒pSymYC4b导入HN01的研究结果证明YC4B的共生质粒pSymYC4b与HN01的非共生质粒pHN01c具有不相容性,并同时与其共生质粒pSymHN01b出具有不相容性。将YC4B的pSymYC4b导入HN01后,通过质粒间的不相容性在含蔗糖的平板上获得了同时消除HN01菌株中的两个稳定的内源大质粒(pSymHN01b和pHN01c)的突变株HND100。
     4.从在大豆上正常结瘤和固氮的野生型菌株YC4中分离到两个结瘤性状改变的自发突变株YSC3和YC4B,其中YSC3在所有供试的大豆品种上只形成无效的根瘤,而YC4B则完全失去了在大豆上结瘤的能力。进一步研究证明,突变株YSC3的共生质粒发生了扩增,并引起结瘤因子(LCOs)组分的改变。突变株YC4B的质粒带未发生任何可见的变化。用TLC技术检测的LCOs结果还表明:YC4及其突变株YSC3产生的LCOs结构明显不同于其它4个野生型S.fredii菌株。培养温度对YC4及其突变株产生的LCOs量的影响不同。野生型菌株YC4在较低培养温度(23℃)和正常培养温度(28℃)下产生的LCOs的量变化不大,但突变株YSC3产生的LCOs的量在28℃下却大大增加。
     5.发现HN01的共生质粒pSymHN01b在转入WWG18SR的过程中发生缺失,并导致转移接合子WWG18SRN1在大豆上结瘤的品种范围缩小的现象。通过盆栽结瘤试验证明:pSymHN01b的缺失导致转移接合子WWG18SRN1由广品种结瘤菌株转变为品种专一性结瘤菌株,并失去了在所有供试大豆品种上固氮的能力。
     6.通过两亲本接合转侈,将豌豆根瘤菌(Rhizobium leguminosarum bv.viciae)1229的共生质粒pSym1229分别转入费氏中华根瘤菌HN01SR及其消除了共生质
    
    费氏中华根瘤菌内源质粒问的tI]互作用及J〔对共生固氮的影响
     粒的突变株!INI)l()()‘1,。实验结果表I梦」:转移接合子1 IND x 00(psyml229)厂白二’!二的l矛C()s
     组分与豌豆根瘤菌1229相同。IIND100(psyml229)能够在豌豆,{石种Nigra上形成
     白色球状的无效根瘤;但豌豆根瘤菌1229则形成正常的长圆柱状的有效根瘤。
     将psyml229转入}INolSR后,部分接合子表现出与}以D100(psyml229)珊·}11司的结
     瘤性状,而另一部分接合子的结瘤性状与11丫olSR相同,显示了IIN0lSR与1229
     r内异源共乙卜质粒之I司结瘤功能fl勺寺fl互扣J制作川。
    7.本研究采用发光酶丛因(ju川功标记技术,在无菌的砂培条件下测定了费氏【!,华
     根瘤菌内源质粒和大豆品种对菌株竞争结瘤能力的影响。结果表明:供试菌株的
     竞争结瘤能力主要取决于染色体携带的从因,内源质粒(包括共生质粒和非共生
     质粒)对竞争结瘤能力没有明显的影响。结瘤试验还证明,消除】IN01和wwG18的
     非共生质粒对它们的I司氮效率没有显著影响。将psymllNol卜转入AI3359后,转移
     接合子在黑农33等大豆品种上表现出卜与!!功!相同的固氮效率。
The indigenous plasmids of Sinorhizobium fredii HN01, YC4 and WWG18 were labelled with Tn5-Mob-sacB .Labelled plasmids were cured on TY medium containing 10% sucrose except the second larger plasmid of YC4 was identified the function of plasmids by pot plant experiment..
    The Labelled plasmids were transferred into Agrobacerium tumefaciens GMI9023 and S.fredii AB359 by tri-parental mating with the helper plasmid pRK2073 to identify the nodulation ability on soybean.The results indicated that the broad host characteristics of HN01 was determined by the symbiotic plasmid, pSymHNOl, since recepient strain AB359 recovered the ability to nodulate on Heinong33 by introduction of pSym HN01.
    The pSymHNOlb of HN01 was transferred into WWG18SR and C361SR. . The results of plasmid detection, curing and pot plant experiment revealed that the incompatibility was existed between pSymHNOlb and symbiotic plasmid of WWG18SR or the third plasmid of C361SR. But pSymHNOlb was compatible with the non-symbiotic plasmid of WWG18SR and symbiotic plasmid of C361SR. Using plasmid incompatibility, The symbiotic plasmid of WWG18SR and one nonsymbiotic plasmid of C361SR were eliminated successfully.
    A 270MD second larger plasmid named pSymYC4b of Sinorhizobium fredii YC4b, a spontaneous Nod~-_ mutant on soybean cultivar Heinong33, was mobilized into another S. fredii HN01SR which contained three indigenous large plasmids (pHN01a,pSymHN01b, and pHN01c).A new pattern of plasmid incompatibility was observed that two stable indigenous plasmids (pSymHNOlb and pHNOlc) of HN01SR were cured simultaneously by the introduction of pSymYC4b. Furthermore, an unstable plasmid named pHY4 whose molecule weight was larger than both pSymYC4b and pSymHN01b was detected together with pSymYC4b in one transconjuant.
    Two spontaneous nodulation mutants named YC4B and YSC3 were isolated from YC4.Mutant YSC3 formed ineffective nodules on all tested soybean cultivars and G.soja in the conditions of sand pot experiments and fewer bacteroid inside of nodules in comparison with the nodules formed by wild strain YC4. The results showed that the size of the second larger plasmid of YSC3 was larger than the pSymYC4b which indicated that pSymYC4b was amplified in YSC3. Mutant YC4B lost completely nodulation ability on all tested soybean cultivars and G.soja although its plasmid map was the same with YC4.
    YC4 producted the unique lipochitooligosaccharde Nod factors (LCOs) containing more hydrophobic substitution in comparison with LCOs from other four strains detected by Thin-layer chromatography (TLC). Mutant YSC3 producted more and different LCOs than that of its parental strain YC4. It was proved that incubation temperature has an important influence on the LCOs production of YSC3, LCOs production was greatly increased at 28℃ in comparison with at 23℃, but the LCOs production of YC4 and HN01 have no great change in two temperatures.
    WWG18SRN1 containing the deleted pSymHNOlb was obtained when pSymHN0lb was mobilized from HN01 into WWG18SR. It showed narrow host range on soybean
    
    
    cultivars comparing with WWG18SR, HN01 and another transconjugant WWG18SRN2 containing the complete pSymHN0lb. WWG18SRN1 formed only ineffective nodules on all G.soja and soybean cultivars tested.
    Reference strains were marked by luxAB genes and used for competitive nodulation tests in pot plant experiments. The results indicated that the competitive ability of strains tested was mainly determined by chormosomc genes. Both of symbiotic and non-symbiotic plasmids and soybean cultivars shown no significant influence on strain competitiveness.The effectiveness of mutants HN01 and WWG18 non-symbiotic plasmid cured showed no difference with their wild strains.
    The symbiotic plasmid of Rhizobium.leguminosarum bv.viciae 1229 was transferred into HN01SR and its pSym cured derivatives HND100. The transconjugant HND100(pSym1229) expressed the same LCOs as that of R.leguminosarum 1229 in free-living condition analysed by TLC method. The results of pot plant tests indicated that HND100(pSym1229
引文
王常霖 赫茨 1988.转座子 Tn5-Mob对菜豆根瘤菌共生基因的诱变、转移和初步定位.遗传学报,15:25-33.
    王常霖 1988.豌豆根瘤菌共生质粒的行为研究(博士论文),华中农业大学。
    孙淑荣 张桂芝 关勤智等 1993.五种主要土壤类型土著大豆根瘤菌的生态学特点及接种效应微生物学杂志,13:-36.
    刘墨青 李友国 周俊初 2000.提高大豆根瘤菌质粒稳定性的研究 微生物学学报,40:296-300.
    李阜棣 喻子牛 何绍江 农业微生物实验技术 北京:中国农业出版社,1996.
    杨江科 1999.占优势土著大豆根瘤菌的遗传多样性及pH对竞争结瘤的影响(硕士论文),华中农业大学。
    陈雯莉 1994.洪湖灰潮土中快生型大豆根瘤菌多样性的研究(博士论文),华中农业大学。
    陈雯莉 李阜棣 周俊初 1997.快生型大豆根瘤菌(Rhizobium fredii)内源质粒在培养及共生过程中的稳定性 应用与环境生物学报.3:55-62.
    周俊初 张忠明 黄诚金等 1987.紫云英根瘤菌经高温和吖啶橙处理后结瘤与固氮突变株的产生和质粒消除 华中农业大学学报,6:156-164.
    莫才清 覃雅丽 周俊初 应用发光酶基因对快生型大豆根瘤菌结瘤和固氮作用进行检测 微生物学报,1998,38(3):131-141.
    覃筱婷 1996.不同地域来源的快生型大豆根瘤菌和黑龙江三江平原慢生型大豆根瘤菌的遗传多样性研究(博士论文),华中农业大学。
    谢福莉 2000.费氏中华根瘤菌优良菌株的筛选和生物多样性的研究(硕士论文),华中农业大学。
    葛诚 徐玲玟 樊蕙等 1991 不同来源的快生型大豆根瘤菌质粒组成的多样性 微生物学报,31:325-328.
    缪礼鸿 1991.导入外源DNA的大豆基因工程根瘤菌株的构建及遗传分析(硕士论文),华中农业大学。
    Amargcr, N. 1981a. Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol. Biochem. 13:475-480.
    Amarger, N. 1981b. Selection of Rhizobium strains on their competitive ability for nodulation Soil Biol. Biochem. 13:481-486.
    Appclbaum, E. R., McLoughlin, T. J., O'Connell,M., and Chartrain, N. 1985. Expression of Symbiotic genes of Rhizobium japonicum USDA191 in other Rhizobium. J.Bacteriol. 163 385-388.
    Appcllbaum, E. R., D. V. Thompson, K. Idler, and N. Chartrain. 1988. 1988.Bradyrhizobium Japonicum. USDA 191 has two nodD genes that differ in primary structure and function. J. Bactcriol. 170;12-20.
    Araujo, R. S., Rrbleto, E. A, and Handelsman. J. 1994. A hydrophobic mutant of Rhizobium etli altered in nodulation competitivcness and growth in the rhizosphere. Appl. Environ. Microbiol. 60:1430-1436.
    Baldani, J. I., and Weaver, R..W. 1992. Survival of clover rhizobia and their plasmid-curcd derivatives in soil under heat and drought stress. Soil Biol Biochem. 24:737-742.
    Baldani, J. I., Weaver, R..W., Hynes, M. F., et al. 1992. Utilization of carbon substrates, clectrophoretic cnzyme patterns, and symbiotic performance of plasmid-curcd clover rhizobia. Appl. Environ. Microbiol. 58:2308-2314.
    Banfalvi, Z., Kondorosi, E., and Kondorosi. A. 1985. Rhizobium meliloti carries two megaplasmids.
    
    Plasmid 13:129-138.
    Banfalvi, Z., Sakanyan, V., Konez, C., Kiss, A., Dusha, L, et al. 1981 Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhuzobium meliloti. Mol. Gen. Genet.184:318-325.
    Barbour, W. M., Mathis, J. N., and Elkan, G. H. 1985. Evidence for plasmid-and chromosome-borne multiple nif genes in Rhizobium fredii. Appl. Environ. Microbiol. 50:41-44.
    Barbour, W. M., and Elkan, G. H. 1989. Relationship of the presence and copy number of plasmids to exopolysaccharide productin and symbiotic effectiveness in Rhizobium fredii USDA 206. Appl. Environ. Microbiol. 55:813-818.
    Barran, L. R., and Bromfield, E. S. P. 1988. Symbiotic gene probes hybridize to cryptic plasmids of indigenous Rhizobium meliloti. Can. J. Microbiol. 34:703-707.
    Bassam, B, J., M. A. Djordjevic, J, W. Redmond. M. Barley, and B. G. Rolfc, 1988. Identification of a nodD-dependent locus in the Rhizobium strain NGP234 activated by phenolic factors secrcted by soybeans and other legumes. Mol. Plant-Microbe Interact 1: 161-168.
    Bcattie, G. A., et al. 1989. Quantitative comparson of the laboratory and field compctitivcness of Rhizobium leguminosarum biovar phaseoli Appl. Environ. Microbiol. 55:2755-2761.
    Beattie, G. A., and Handelsman, J. 1993. Evaluation of a strategy for idcntifying nodulation competitiveness genes in Rhizobium legummosarum biovar phaseoli. J. Gen. Microbiol. 139:529-538.
    Bec-Fcrté, M. P., Krishnan, H. B., Promé, D., et al. 1994. Structures of nodulalion factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257. Biochemisty. 33, 11782-11788.
    Bec-Ferté, M. P., Krishnan, H. B., Savagnac, A., et al. 1996. Rhizobium fredii synthesizes an array of lipooligosaccharides,including a novel compound with glucose inserted into the backbone of molecule. FEBS Lett. 339:273-279.
    Bellato,C., Krishnan,H.B., Cubo,T., et al.1997. The soybean cultivar specificity gene nolX is present,expressed in a nod-dependent manner, and of symbiotic significance in cultivar-nonspecific strains of Rhizobium(Sinorhizobium) fredii. Microbiology. 143:1381-1388.
    Beringer, J. E. 1974. R factor transfer in Rhiobium legummosarum. J. Gen. Microbiol. 84: 188-198.
    Bcynon, J. L., Beringer, J. E., and Johnston. A. W. B. 1980. Plasmid and host ravage in Rhizoium leguminosariun and Phizobium phaseoh. J. Gen. Microbiol. 120:421-429.
    Bender, G. L., M. Nayudu, K. K. L. Strange, et al. 1988. The nodDl gene from Rhizobium strain NGR234 is a key determinant in the extension of host range to the nonlegume parasponia. Mol. Plant-Microbe. Interact 1;259-266.
    Berg, R. K., J., Loynachan, T. E., Zablotowiez, R. M., et al. 1988. Nodule occupancy by introduced Bradyrhizobium japonicum in Iowa soils. Agron. J. 80:876-881.
    Bbagwat, A. A., A. Mithofer, P. E Pfeffer, C Kraus. et al. 1999. Further studies of the role of cyclic B-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizcs cyclodccakis(1-3)-B-glucosyl. Plant Physiol. 119;1057-1064.
    Bhagwat, A. A., Tully, R. E, Keister. D. L., 1991. Isolation and characterization of a compctitiondefective Bradyrhizobium japonicum mutant. Appl. Environ. Microiol. 57:3479-3501.
    Bittinger, M.A., Milner, J.L., Saville, B.J., et al. 1997. rosR. a Deteminant of nodulatiln compctitivcness in Rhizobium ctli. Mol. Plant-Microbe Interact 10"180-186.
    Boivin, C., Malpica, C., Rosenbcrg. C.. Goldman. A.. et al. 1990. Catabolism of the plant secondary mctabolites calystegins and trigonclline by Rhizobu(?) mehloii Symbiosis 9:147-154
    
    
    Borthakur, D., C. E. Barbur, J. W. lamb, M J. Danicls, et al. 1986. A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of bcans by R phascoli and is corrected by clonef DNA from Rhizobium or the phytopathogen xanthomonas.Mol.Gen.Genet. 203:320-323.
    Borthakur, D., Lamb, J. W., and Johnston, A. W. B. 1987. Identification of two classes of Rhizobium phaseoli genes required for melanin synthesis, one of which is required for nitrogen fixation and activates the transcription of the othcr. Mol. Gen. Genet. 207:155-160.
    Brewin, N. J., DcJong, T. M., Phillips, D. A.,et al. 1980a. Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature. 288: 77-79.
    Brewin, N. J., Bcringer, J. E., Buchanen-Wollaston, A. V., et al. 1980b. Transfer of symbiotic genes with bacteriocinogcnic plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 116:261-270
    Brewin,N. J., Wood, E. A., Johnston, A. W. B., et al. 1982. Recombinant Nodulation Plasmids in Rhizobium legummosarum. J. Gen. Microbiol. 128: 1817-182
    Brewin N J et al. 1983. Contribution of the symbiotic plasmid to the competitivcness of Rhizobium leguminosarum. J.Gen. Microbiol. 129:2973-2977.
    Brom, S., A. Garcia de los Santos, M. L. Girard, G. Davila. R. Palacios, and D. Romero. 1991. lligh frequency rearrangements in Rhizobium leguminosarum by. phascoli plasmids. J. Bacterial. 173:1344-1346.
    Brom, S., Garcia de los Santos. A., Stcpkowsky. T., et al. 1992. Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J. Bactcriol. 174:5183-5189.
    Brom, S., Garcia-de los Santos, A., Ccrvantes, R. P., et al. 2000. In Rhizobium etli symbiotic plasmid transfer, nodulation compctitivity and cellular growth rcquire interaction among Different Rcplicons.Plasmid 44:34-43.
    Broughton, W. J., van Egeraat A.W.S.M, and Lie, T.A. 1980. Dynamics of Rhizobium competition for nodulation of Pisum cv. Afghanistan. Can. J. Microbiol. 26:562-565.
    Broughton, W. J., Kcycke, N., Mcyer, Z. A. et al. 1984. Plasmid-linked nif and nod gene in fast growing rhizobia that nodulate Glycoine m(?). Posphocarpus tetragonolobus, and Vigna unguiculata. Proc. Natl. Acad. Sci. USA 81:3093-3097.
    Bruncl, B., Cleyet-Marel, J.-C., Normand, P., et al. 1998. Stability of Bradyrhizobium Japonicum inoculants after introduction into soil. Appl. Environ. Microbiol. 54:2636-2642.
    Buendia-Claveria,A.M.,Chamber, M.,and Ruiz-Sainz, J.E,1989.A comparative study of physiological charactcristics,plasmid content and symbiotic properties of different Rhizobium fredii strains.Syst.Appl. Microbiol. 12:203-209.
    Buendia-Claveria, A. M., Romero,F., Cubo,T..et al.1989. Inter and intraspecific transfer of a Rhizobium fredii symbiotic plasmid:exprcssion and incompatibility of symbiotic plasmids. Syst.Appl.Microbiol. 12:210-215.
    Burkhardt, B., Schillik, D., and Phler, A. 1987. Physical characterization of Rhizobium meliloti megaplasmids. Plasmid 17:13-25.
    Bushby, H. V. A., 1993. Colonization of rhizospheres by Bradyrhizobium sp. in relation to strain persistence and nodulation of some pasture legumes. Soil Biol. Biochem. 25:597-605.
    Cardcnas, L, J. Dominguez, O. Santana, and C. Quinto. 1996. The role of nodl and nodl genes in the transport of Nod metabolites in Rhizobium etli. Gene 173:182-187.
    Cava, J. R., Elias, P. M., Turowski. D. A.. et al. 1989. Rhizobium leguminosarum CFN42 genetic region
    
    cncoding lipopolysaccharide structures essential for complete nodule development on bean plants J. Bactcriol. 171:8-15.
    Charlcs, T. C., and Finan, T. M. 1991. Analysis of a 1600-kilobasc Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5-20.
    Chen, W.L., Zhou, J.C., Hung, Q.Y., and Li, F.D. (1995). Diversity of Sym plasmid in Rhizobium fredii strain and plasmid stability und free-living and symbiotic condition, in Li,ED. et al(ed): Diversity and Taxonomy of Rhizobia. P116-125. China Agricultural Scientech Press.Beijing.
    Chen, H., M. Batley, J. Redmond. and B. G. Rolfe. 1985. Alteration of the effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis. J. Plant Physiol. 120;331-349.
    Chen, H., Gartner, E., and Rolfe, B. G. 1993. Involvement of genes on a megaplasmid in the acid tolerant phenotype of Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 59:1085-1064.
    Chen, W. L., Zhou J. C., and Li ,F. D. 1997. Stability of Smorhizobium fedii indigenous plasmid on the condition of cultural. China J. Appl. Environ Biol. 3: 55-62.
    Chen, W. X., Wang, E. T., Wang,S.Y., et al. 1988. Numerical taxonomic study of fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen.nov. Int.J. syst. Bacteriol 41.
    Cheng, H, P., and Walker, G. C. 1998. Succinoglycan is required for initiation and clongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180;5183-5191.
    Chun, J. Y., and Stacey, G.1994. A Bradyrhizobium Japonicum gene essential for nodulation competitiveness is differentially regulated from two promoters. Mol. Plant-Microbe Interact. 7:248-255.
    Crcn, M., A. Kondorosi, and E. Kondorosi. 1995. NolR controls cxprcssion of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol. Microbiol. 15:733-747
    Cubo, M.T., Bucndia-Clavcria, A.M., Beringer,J. E., and Ruiz-Sainz, J. E. (1988). Melanin production by Rhizobium strains. Appl. Environ. Microbiol. 54,1812-1817.
    Dayis, E. O., I. J. Evans. and A. W. B. Johnston. 1988. Identification of nodX, a gene that allows Rhizobiun leguminosarum biovar viciae strain TOM to nodulate Afghanistan peas. Mol. Genet. 212:531-535.
    Dcbcliè, F., C. Plazanct, P. Roche, C. Pujol, et al 1996. The NodA proteins of Rhizobilun mehloti and Rhizobiun tropici specify the N-acvlation of Nod factors by different fatty acids. Mol. Microbol. 22;303-314.
    DcJong, T. M., Brewin, N. J., and Phillips, D. A. 1981. Effects of plasmid content in Rhizobium leguminosarum on pea nodule activity and plant growth. J. Gen. Microbiol. 124:1-7.
    Diebold R, and K D Noel. 1989. Rhizobium leguminosarum exopolysaecharide mutants: biochcmical and genetic analyses and symbiotic behavior on three hosts. J. Bacteriol. 171:4821-4830.
    Dillewijn, V. P., Martinez, A. F., Toro, N., 1998. Multicopy vectors carrying the Klebsiella pneumoniae
    nifA gene do not enhance the nodulation competitiveness of Sinorizobium meliloti on alfalfa. Mol Plant Microbe Interact. 11(8):839-42.
    Dlebold, R., and K. D. Nocl. 1989. Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behavior on three hosts. J. Bacterial. 171: 4821-4830.
    Dobert, R. C. Breil, B. T., and Triplett. E. W. 1994 DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol.
    
    Plant-Microbe Interact. 7(5): 564-572.
    Dowdle, S. F., Bohlool, B, B. 1985. Predominance of Fast-Growing Rhizobium japonicum in a soybean field in the people's republie of china. Appl. Environ. Microbiol. 50:1171-1176.
    Dowling, D. N., and Broughton, W. J. 1986. Competition for nodulation of legumes. Ann. Rcv. Microbiol. 40:131-157.
    Drevon J J. 1983. To evaluate the nitrogenase activity of legume nodules using acetylene reducing activity,technical handbook on symbitic nitrogen fixation,Food and Agriculture Organization of the United Nation,Rome.
    Dunigan, E. P., Bollich, P. K., Jutchinson, R. L., et al. 1984. Introduction and survival of an inoculant strain of Rhizobium japonicum in soil. Agron. J. 76:463-466.
    Eckhardt, T. 1978. A rapid method for the identification of plasmids deoxyribonucleic acid in bacteria. Plasmid 1:584-588.
    Elkins, D. M., Hamilton, G., Chan, C. K. Y, et al. 1976. Effect of cropping history on soybean growth and nodulation and soil rhizobia. Agron. J. 68:513-517.
    Engwall,K.S.,and Atherly, A.G. 1986.The formation of R-prime deletion mutants and the identification of the symbiotic gene in Rhizobium fredii strain USDA191. Plant Mol. Biology. 6:41-51.
    Evans, I. J., and J. A. Downic. 1986. The NodI product of Rhizobium leguminosarum is closcly related to ATP-binding bacterial transport proteins: nuclcotide sequence of the nodl and nodJ genes. Gene 43:95-101.
    Faucher, C., H. Camut, J. Dénarié, et al. 1989. The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosurum by. viciae and determine changes in the productiou of plant-specific extracellular signals. Mol. Plant-Microbe Interact. 2:291-300.
    Fellay, R., X. Perret, V. Viprcy, et al. 1995. Organisation of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol. 16:657-667.
    Fellay, R., M., Hanin, G. Montorzi, et al. 1998. nodD2 of Rhizobium sp.NGR234. is involved in repression of the nodABC operon. Mol. Microbol.27:1039-1050.
    Fenton,M., and Jarvis, B. D. W. 1994. Expression of the symbium plasmid from Rhizobium leguminosarum biovar trifolii Sphingobacterium multivorum. Can. J. Microbiol. 40:873-879.
    Finan, T. M., Kunkel, B., de Vos, G.E, and Signer, E.R. 1986. Second symbiotic megaplasmid in Rhizobium meliloti carrying cxopolysaccharide and thiamine synthesis genes. J. Bacteriol. 167:66-72.
    Finan, T. M., Oresnik, I., and Bottacin, A. 1988. Mutants of Rhizobium meliloti defective in succinate metabolism. J. Bacteriol. 170:3396-3403.
    Fisher, R. F., and S. R. Long. 1933. Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J. Mol. Biol. 233:336-348.
    Freclbcrg,C.,Fellay, R.,Balroch,A.,et al. 1997. Molecular basis of symbiosis betwcen Rhizobium and legumes.Nature.387:394-401.
    Froiddard, D., Bromficld, E. S. P., Whitwill, S., et al. 1995. Construction and properties of cloning vectors based on a 7.2-kb Rhizobium meliloti cryptic plasmid. Plasmid.33:226-231.
    Gajendiran, N., and Mahadevan, A. 1990. Plasmid-borne catechol dissimilation in Rhizobium sp. FEMS Microbiol. Ecol. 73:125-130.
    Garcia. M., J. Dunlap. J. Lob, and S. Stacey. 1996. Phenotypic characterization and regulation of the noL4 gene of Bradvrhizobium japonicum. Mol. Plant-Microbe Interact. 9:625-635.
    Carcla-de, los Santos, A., And Brom, S. 1997. Characterization of two plasmid-borne lpsB loci of Rhizobium etli required for lipopolysaccharide synthesis and for optimal interaction with plants. Mol.
    
    Plant-Microbe Interact. 10:891-902.
    Geclen, Faucher, C., H. Camut. J. Denaric. 1989. The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosurum by. viciae and dctermine changes in the production of plant-specific cxtraccllutar signals. Mol. Plant-Microbe Interact. 2:291-300.
    Geclen, D., P. Mergacrt, R. A. Geremia, et al. 1993. Identification of nodSUIJ genes on Nod locus of Azorhizobium caulinodans:evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol. Microbiol. 9:145-154.
    Geniaux, E., and Amarger, N, 1993. Diversity and stability of plasmid transfer in isolates from a single field population of Rhizobium leguminosarum bv. viciae. FFMS Microbiol Ecol. 102:251-260.
    George, T., Bohlool, B. B., and Singleton, P. W. 1987. Bradyrhizobium japonicum-cnvironment interactions: nodulation and interstrain competition in soils along an elevational transect, Appl. Environ. Microbiol. 53:1113-1117.
    Geremia, R. A., P. Mergacrt, D. Geelen, et al 1994. The NodC protein of Azorhizobium caulinodans is an N-acctylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA 91:2669-2673.
    Gibson, A.H., 1968. Nodulation failure in Trifolium subterraneum L. cv. Woogcncllup (Syn. Marrar). Aust. J. Agric. Sci. 19:907-918.
    Gibson, A. H., Dcmczas, D. H., Gault, R. R., et al 1990. Genetic stability in rhizobia in the field. Plant Soil. 129:37-44.
    Goethals, K., M. Gao, K. Tomekpe, et al 1989. Common nodABC genes in nod locus 1 of Rhizobium caulinodans: nuclcotide sequence and plant-inducible expression. Mol. Gen. Genet. 219:289-298.
    Goethals, K., M. van Montagu. and M. Holsters. 1992. Conserved motfis in a divergent, nod box LysR-type proteins. Proc. Natl. Acad. Sci. USA 89:1646-1650.
    Corn, P. G., J.Anders, A.K.Takala, H. Kyhty, and S.K. Hoiseth. 1993. Genes involvedin Haemophilus influenzae type b capsule expression are frequently amplified J.Infect. Dis. 167:356-364.
    Gttfcrt. M., P. Grob, and H. Hennccke. 1990. Proposed regularory pathway encoded by the nodV and nodW geues, determinants of host specificity in Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA 87:2680-2.684.
    Gttfert, M., S. Hitz, and H. Hennecke. 1990. Identification of nodS and nodU, two inducible genes insctred between the Bradyrhizobium japonicum nodYABC and nodIJ genes. Mol. Plant-Micrbe Interact 3:308-316.
    Gttfcrt, M., D. Holzhuser, D. Bni, and H. Hennccke. 1992. Structural and functional analysis of two different nodD genes in Bradyrhizobium japonicum USDA110. Mol Plant-Microbe Interact. 5:257-265.
    Gray, K. M., Pearson, J. P., Downie, J. A., et al.1996. Cell-to-cell signaling in the symbiotic nitrogenfixing bacterium: Autoinduction of a stationary phase and rizosphercexprcssed genes. J. Bactcriol. 178:372-376.
    Cregan, P. B., and Keyser. H. H. 1988. Influence of Glycine spp. On competitiveness of Bradyrhizobium japonicwn and Rhizobium fredii. Appl. Environ Microbiol. 54:803-808.
    Crcn M, Kondorosi A, and Kondorosi E. 1995. NolR controls expression of the Rhizohium meliloti nodulation genes involved in the core Nod factor synthesis. Mol. Microbiol. 15:733-747.
    Gyrgypal, Z., E. Kondorosi, and A. Kondorosi. 1991. Diverse signal sensitivity of NodD protein homologs from narrow and broad host range rhizobia Mol Plant-Microbe lnteract. 4:356-364.
    Hahn, M., and Jennecke. H. 1987. Mapping of a Bradyrhuzobium japonicum DNA region carrying genes for symbiosis and an asymmetric accumulation of rciterated sequences. Appl Environ.
    
    Microbiol. 53:2247-2252.
    Hansen, J. B., and Olsen, R.H. 1978. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J. Bacteriol. 135:227-238.
    Hartwig, U, A., C, A, Maxwell, C, M, Joscph, et al. 1990. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD J. Bacteriol. 172:2769-2773.
    Hashcm, F. M., Anglc, J. S., Ristiano, P. A. 1986. Isolation and characterization of rhizobiophages specific for Bradvrhizobium japonicum USDA 117. Can. J. Bot. 32:326-329.
    Haugland, R. A., Cantrell, M. A., Beaty., J. S. et al. 1984. Characterization of Rhizobium japonicum hydrogcn uptake genes.. J. Bacteriol. 159:1006-1012.
    Haugland, R., and Verma, D. P. S. 1981. Interspecific plasmid and genomic DNA sequence homologies and localization of nif genes in effective and ineffective strains of Rhizobium japonicum J.Mol. Appl. Genet. 1:205-217.
    Hawkins, F. K. L., Kennedy, C., and Johnston, A. W. B. 1991. A Rhizobium leguminosarum gene required for symbiotic nitrogen fixation, melanin synthesis and normal growth on certain growth media. J. Gen. M icrobiol.. 137:1721-1728.
    Hcidstra, R., R. Geurts, H. Franssen, et al. 1994. Root hair deformation activity of nodulation factors and their fatc in vicia silva. Plant Physiol. 105:787-797.
    Heron, D. S. T., and S. G. Pucppke. 1984. Mode of infection, nodulation specificity, and indigenous plasmids of 11 fast-growing Rhizobium japonicum strains. J. Bacteriol. 160:1061-1066.
    Heron, D. S. T., and S. G. Pucppke. 1987. Regulation of nodulation in the soybean-rhizobium symbiosis.Strain and cultivar specificity. Plant Physiol 84:1391-1396.
    Hiltbold, A. E., Patterson, R, M., and Reed, R. B. 1985. Soil populations of Rhizobium japonicum in a cotton-corn-soybean rotation. Soil Sci. Soc. Am. J. 49:343-348.
    Kinkle, B. K., and Schmidt, E. L. (1991). Transfer of the Pea Symibiotic Plasmid pJB5JI in Nonstcrile Soil, Appl Environ. Microbiol. 57:3264-3269.
    Hirsch, P. R., van Montagu, M., Johnston, A. W. B., et al. 1980. Physical identificatin of bacteriocinogcnic, nodulation, and other plasmids in strains of Rhizobium leguminosarum. J. Gen. Microbiol. 120:403-412.
    Holloway, P., McCormick, W., Watson. R.J., and Chan. Y-K. 1996. Identification and analysis of the dissimilatory nitrous oxide reduction genes, nosRZDFT. of Rhuzobium mehloti. J. Bacteriol. 178:1505-1514.
    Honma, M. A., M. Asomaning, and F. M. Ausubcl. 1990. Rhizobium meliloti nodD genes mediate host-specific activation of nodABC. J. Bacteriol. 172:901-911.
    Hooykaas, P. J. J, van Brussel, A. A. N. Den Dulk-Ras. H., et al. 1981. Sym plasmid of Rhizobium trifolii expressed in different rhizobial spccies and Agrobacterium fumefaciers. Nature. 291:351-353.
    Hooykaas, P. J. J., den Dulk-Ras. H., Schilpcroort R. A. 1982. Method for the transfer of large cryptic, non-self-trasmissible plasmids: Ex planta trnsfer of the virulence plasmid of Agrobacterium rhizogenes. Plasmid 8:94-96.
    Hooykaas, P. J. J., Den Dulk-Ras, H., Regensburg-Tuink, A. J. G., et al. 1985. Expression of a Rhizobium phaseoli Sym plasmid in R. trifolii and Agrobacterium tumefaciers: Incompatibility with a R. trifolii Sym plasmid. Plasmid 14:47-52.
    Horvath, B., C. W. Bachem. J. Schell. et al. 1987. Host-specific regulation of nodulation genes in
    
    Rhizobiumn is mediated by a plant signal interacting with the nodD gene product. EMBO J. 6;841-848.
    Horvath, B. E. Kondorosi, M. John, J. et al. 1986. Organization, structure and symbiotic function of Rhizobium melilon nodulation genes determining host specificity for alfalfa. Cell 46:335-343.
    Hurse, L. S., and Date, R. A. 1992. Compctitivcness of indigenous strains of Bradyrhizobium on Desmodium intortum cv Greenleaf in three soils of south east Queensland. Soil Biol. Biochem. 24:41-50.
    Hynes, M. F., Simon, R., and Phler, A. 1985. The Development of plsmid-free strains of Agrobacterium.tumefaciers by Using Incompatibility with a Rhizobium meliloti plasmid to Eliminate patc58. Plasmid 13:99-105.
    Hynes, M. F., Jurgen, Q., O'Connell, M. P., et al., 1989. Direct selection for curing and deletion of Rhizobium plasmids using transposom carrying the Bacillus subtilis sacB gene. Gene, 78:111-120.
    Hynes, M. F., and Mcgregor, N. F. 1990. Two plasmids other than the nodulation plasmid are ncccssary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol. Microbiol. 4:567-574.
    Jiang, M. L., Zhang, X. J., and Hu, X. J. 1996. Dominant soybean rhizobia population and their nitrogen fixation cffectivcness in China. Diversity and tanxonomy of Rhizobia. China Agricultural Scicntcch, Beijing,263-269
    John, M., H. Rhrig, J, Schmidt, U. Wlcneke, et al. 1993. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharidc dcacctylase. Proc, Natl. Acad Sci. USA 90:625-629.
    Johnston, A. W. B., Benyon, J, L., Buchanan-Wollaston, A. V., et al. 1978. High frequency transfer of nodulating ability bctween strains and species of Rhizobium Nature. 6:635-636.
    Johnston, A. W. B., Hombrecher, G, Brewin, N, J., et al. 1982. Two transmissible plasmids in Rhizobium leguminosarum strain 300. J. Gen. Microbiol. 128:85-93.
    Joseph, M. V., Dcsai. J. D., Desai. A. J. 1983. Production of antimicrobial and bacteriocin-like substances by Rhizobium trifolii. Appl. Environ. Microbiol. 45:532-535.
    Joscphson, K. L., Bourquc, D. P., Bliss, E A., et al. 1991. Competitiveness of KIM 5 and VIKING I bean rhizobia: strain by cultivar interactions. Soil Biol. Biochem. 23:249-253.
    Kamst, E., K. M. van der Drift, J. E. Thomas-Oates. et al. 1995. Mass spectromctric analysis of chitin oligosaccharidcs produced by Rhizobium NodC protcinin Escherichia coli J.Bactcriol, 21:6282-6285.
    Kamst, E., J. Bakkers, N. E Quacdblicg, et al 1999. Chitin oligosaccharide synthesis by rhizobia and zcbrafish cmbryol starts by glycosyl transfer to O4 of the rcducing-terminal residue. Biochemistry 38:4045-4052.
    Kcnnedy, A. C., and Wollum, A. G., Ⅱ. 1988. Enumeration of Bradyrhizobium japonicum in soil subjected to high temperature: comparison of plate count, most probable number and fluorescent antibody techniques. Soil Biol. Biochem. 20:933-937.
    Keyscr, H. H., B. B. Bohlool, T. S. Hu. et al. 1982. Fast-growing rhizobia isolated from roots of soybcan. Science 215:1631-1632.
    Kim, C. H., R E Tull, and D. L. Keister. 1989. Exopolysaccharide-deficient mutants of Rhizobium fredii HH303 which are symbiotically effccitive. Appl. Environ.Microbiol, 55:1852-1854.
    Kinklc, B. K.,and Schmidt, E. L. 1991. Transfer of the pea symbiotic plasmid pJB5JI in nonstcrile soil. Appl. Environ. Microbiol. 57:3264-3269.
    Kiss, E.,P, Mcrgacrt, B. Olh, A. Hcreszt, et al. 1998. Conservation of nolR in the Sinorhizobium and
    
    Rhizobium egeera of the Rhizobiacac family. Mol. Plant-Microbc Interact. 11:I1186-1195.
    Kondorosi, E., Z. Banfalvi, and A. Kondorosi. 1984. Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: identication of nodulation genes. Mol. Gen. Genet. 193:445-452.
    Kondorosi, E., J. Gyuris, J. Schmidt, et al. 1989. Positive and negative control of nod gene exprission in Rhizobium meliloti is rcquired for optimal nodulation. EMBO J. 8:1331-1340.
    Kondorosi, E., M. Picrre, M. Crcn, et al. 1991. Identification of NolR. a ncgative transacting factor controlling the nod rcgulon in Rhizobium meliloti J. Mol. Bilol. 222:885-896.
    Kosslak, R. M., and Bohlool, B .B. 1985. Influence of environmental factors on intcrstrain compctition in Rhizobium japonicum. Appl. Environ. Microbiol. 49: 1128-1133.
    Krishnan, H. B., A. Lewin, R. Fellay, et al. 1992. Differential exprssion of nodS accounts for the varied abilities of Rhizobium fredii USDA257 and Rhzobium Sp. strain NGR234 to nodulate Leucaena spp. Mol. Microbiol. 6;3321-3330.
    Krishnan, H. B., and S. G. Pucppkc. 1992. Inactivation of nolC conditions developmental abnormalitics in nodulation of Peking soybean by Rhizobium fredii USDA257. Mol. Plant-Microbe Interact. 5:14-21.
    Krishnan, H. B., and S. G. Pucppke. 1994. Cultivar-spccificity genes of the nitrogen-fixing soybcan symbiont Rhizobium fredii USDA257,also regulate nodulation of Erythrina spp. Am. J. Bot.8:38-45.
    Krishnan, H. B., and S. G. Pucppke. 1998. Genetic characterization of a mutant of Sinorhizobium fredii strain USDA208 cnhanccd competitive ability for nodulation of soybcan, Glycine max(L.) Mcrr. FEMS Microbiol Lctt. 165(1):215-20.
    Lamb, J, W., Hombrcchcr, G., and Johnston, A. W. B. 1982. Plasmid determined nodulation and nitrogen fixation abilities in Rhizobium phaseoli. Mol. Gen. Genet. 186:449-452.
    Le strange, K. K., G. L. Bender, M. A. Djordjevic., et al. 1990. The Rhizobium strain NGR234 nodDI gene product responds to activation by simple phcnolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol. Plant-Microbe Interact. 3:214-220.
    Lcong, S. A., Ditta. G., and Hclinski. D. R. 1982. Heme biosynthesis in Rhizobium: Idctification of a cloned gene coding for amino levulinic acid synthetase form Rhizobium meliloti J. Biol. Chem. 257:8724-8730.
    Leyva, A., Palacios, J.M., and Ruiz-Argeso. T. 1987. Conserved plasmid hydrogen-uptake(hup)-specific sequences within Hup Rhizohium leguminosarum strains. Appl. Environ. Microbiol. 53:2539-2543.
    Lewin, A., E. Cervantès. C. H. Wong. And W. J. Broughton. 1990. nodSU. two new nod-genes of the broad host-range Rhizohiun strain NGR234. cncode host-specific nodulation of the tropical trcc lencena lencocephala.Mol. Plant-Microbc lntcract. 3:317-326. ]
    Lewis,A., Henderson, W. R.., and M. A. Djordjcvic. 1991. A. cultivar-spccific intcraction between Rhizobium leguminosarum by. trifolii and subterranean dover is controlied by nodM, other bacterial cultivar specificity genes and a single recessive host gene. J. Bactcriol. 173:2791-2799.
    Lic,T.A., Winarno, R., Timmermans, P.C.J.M. 1978. Rhizobium strains isolated from wild and cultivated legumes: suppression of nodulation by a non-nodulating Rhizobium strain. In MW Loutit.JAR Miles.cds.Microbial Ecology.Springer-Veriag. Berlin. Pp398-401.
    Lohrke, S. M., Day, B., Kumar, V. S., et al. 1998. The Bradyrhizobium japonicum noed gone: a negatively acting, genotype-specific nodulation gene for soybean. Mol. Plant-Microbe Interact. 11:476-488.
    Long, S. R. 1989. Rhizobium-lcgume nodulation: life together in the underground Cell 56:203-214.
    
    
    Mastcrson, R. V., and Athcrly, A. G. 1986. The presence of rcpcatcd DNA sequences and partical rcstrication map of the pSym of Rhizobium fredii USDA193. Plasmid. 16, 37-44.
    Machado, D., Pucppke,S. G., Vinardcl, J. M., et al. 1998. Exprcssion of nodDl and nodD2 in Sinorhizobium fredii, a nitrogcn-fixting symbiont of s oybcan and other legumes. Mol. Plant-Microbe Interact. 11:375-382.
    Margolin,W. and Long,S. 1993.Isolation and characterization of a DNA replication origin from the 1700-kilobase-pair symbiotic megaplasmid pSym-b of Rhizobium meliloti. J.Bacteriol. 175: 6553-6561.
    Martincz, E., Palacios, R., and Snchez, F. 1987. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harbouring Rhizobium phaseoli plasmids. J. Bacteriol. 169:2828-2834.
    Martinez, E., D. Romero, and R Palacios. 1990. The Rhizobium genome Crit. Rev. Plant Sci 9:59-93.
    Martincz-Romcro, E., and Roscnblucth, M. 1990. Increacd bean(Phascolus vularis L.) noulation competitiveness of genetically modified Rhizobium strains. Appl. Envion. Microbiol. 56:2384-2388.
    Martincz-Romcro, E., Scgovia, L., Marlins Mcrcantc. F., et al. 1991. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417-426.
    Mastcrson, R. V., Russell, P. R., and Atherly, A. G. 1982. Nitrogen fixation (nif) genes and large plasmids of Rhizobium japonicum. J.Bacteriol. 152:928-931.
    Mathis,J.N., Barbour,W. M., and Elkan,G. H. 1985. Effect of Sym plasmid curing on symbiotic effectiveness in Rhizobium fredii. Appl. Environ. Microbiol.49:1385-1388.
    Mayingui P, Laeremans T, Flores M. et al. 1998. Genes cssential for Nod factor production and nodulation are located on a symbiotic amplicon (AMPRtr CFN299pc60) in Rhizobium tropici. J.Bacteriol. 180:2866-2874.
    McDermott, T. R., Graham, P. H, and Fcrrey, M. L. 1991. Compctitivcness of indigenous popultions of Bradyrhizobium japonicum scrocluster 123 as determined using a root-tip marking proccdure in growth pouches. Plant Soil, 135:245-250.
    McLoughlin, T. J., Hcarn, S., and Alt, S. G. 1990. Competition for nodule occupancy of introduced Bradyrhizobium japonicum strains in a Wisconsin soil with a low indigcnous Bradyrhizobia poprlation. Can. J. Microbiol. 36:839-845.
    Mcrcado-Blanco,J., and Olivares, J. 1993. Stability, and transmissibility of the cryptic plasmid of Rhizobium meliloli GR4. Arch. Microbiol. 160:477-485.
    Mercado-Blanco, J., and Olivares, J. 1994.The Large nonsymbiotic plasmid pRmcGR4a of Rhizobium meliloti GR4 Encodes a protein involved in replication that has homology with the RcpC protein of Agrobacterium plasmid. Plasmid.32:75-79.
    Mcrcado-Blanco, J., and Toro, N. 1996. Plasmid in Rhizobia:the role of nonsymbiotic plasmids. Mol.Plant-Microbc Interact. 9,535-545.
    Mcrgacrt, P., W. D., Haezc, D. Geelcn. et al. 1995. Biosynthesis of Azorhizobium caulinodans Nod factor:study of the activity of the NodABC proteins by expression of the genes in Escherichia coli. J. Biol. Chem. 270:29217-29223.
    Mcrgaert, P., Montagu, M. V., and Holsters,M. 1997. Molecular mechanisms of Nod factor diversity. Mol. Microbiol. 25:811-817.
    Michiels, J., Pelcmans. H., Vlassak, K., Verreth. C., et al. 1995. Identification and characterization of a Rhizobium leguminosarum by phaseoli gene that is important for nodulation compctitircness and shows structural homology to a Rhizobium fredii host-inducible gene. Mol. Plant-Microbe. 8:468-472.
    
    
    Minami, E., Kouchi,Ⅱ.,Carison, R,.W.et al. 1996, Cooperative action of lipo-chitin notlulion signals on the induction of the early nodulin, ENOd2, in soybean roots. Mol. Plant-Microbe Interact9:574-583.
    Moawad, H. A., Ellis, W. R., and Schmidt, E. L. 1984. Rhizosphcre response as a factor in competition among tluee scrogroups of indigenous Rhizobium japonicum for nodulation of field-grown soybcans. Appl. Environ. Microbiol. 47:607-612.
    Mozo, M. T., Cabrcra, E., and Ruiz-Argucso, T. 1998. Diversity of plasmid profiles and conservation of symbiotic nitrogcn fixation gcncs in ncwly isolatcd Rhizobium strains nodulating Zulla (Hcdysarum coronarium L). Appl. Environ. Microbiol. 54:1262-1267.
    Mulligan, J, T., and S. R. Long. 1989. A family of activator gcncs rcgulatcs expression of Rhizobium mcliloti nodulation genes. Genetics 122:7-18.
    Murphy, P. J., and Saint, C. P. 1992. Rhizopincs in the lcgume-Rhizobium symbiosis. Pages 377-390 in: Molecular Signals in Plant-Microbe Communications, D. P. S. Vcrma, cd. CRC Press, Boca Raton, FL.
    Novick, R. P. 1987. Plasmid Incompatibility, Microbiol. Revicws. 51:381-395.
    Nicuwkoop, A. J., Z. Banfalvi, N. Dcshmanc., et al. 1987. A locus encoding host range is linkcd to the common nodulation genes of Bradyrhizobium japoicum. J. Bactcriol, 169:2631-2638.
    O'Conncll, M, Hyncs, M. F., and Puchler, A. 1987. Incompatibility between a Rhizobinm Sym plasmid and a Ri plasmid of Agrobacterium Plasmid. 18:156-163
    O'Conncll, M., Dowling, D., Ncilan, et al. 1984. Plasmid intcractions in Rhizobium: Incompatibility between symbiotic plasmids In "Advances in Nitrogen Fixation Rcscarch" (C. vccgcr and W. E. Newtor, Eds.). P. 713. Nijhoff Junk, The Hagnen.
    Olsthoorn, M. M. A., Stokvis, E., Havcrkamp, J., et al. 2000. Growth temperature rcgulation of hostspecific modifications of rhizobiai lipo-chintin oligosaccharidcs:the function of nodx is tcmperature regulated. Mol.Plant-Microbe Interact. 13:808-820.
    Orgambidc, G. G., J. I. Lcc, R. I. Hollingsworth, et al. 1995. Structurally diverse chitolipooligosaccharide Nod factors accumulate primarily in membranes of wild-type Rhizobium leguminosarum biovar trifolii. Biochernistry 34:3832-3840.
    Ovtsyns, A. O., G. J. Radcmaker, E. Esscr, et al. 1999.Comparison of charactcristics of the nodX genes from various Rhizobium leguminosarum strains. Mol. Plant-Microbe Interact. 12:252-258.
    Pankhurst, C., Macdonald, P., and Rccves, J. 1986. Enhanccd nitrogen fixation and competitivcncss for nodulation of Lotus pcdunculatus by a plasmid-cured derivative of Rhizobium loti J. Gen. Microbiol. 132:2321-2328.
    Pardo, M. A., Lagnez, J., Miranda, J., et al. 1994. Nodulating ability of Rhizobium tropici is conditioncd by a plasmid encoded citrate synthase. Mol. Microbiol. 11:315-321.
    Parniske, M., P. E. Schmidt, K. Kosch, et al. 1994. plant defense responses of host plants with determinate nodulcs induced by EPS-defcctive exoB mutants Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 7:631-638.
    Pedro,A.,Balatti and Pueppke,S.G. 1990. Nodulation of soybean by a transposon-mutant of Rhizobium fredii USDA257 is subject to competitive nodulation blocking by other Rhizobia. Plant Physiol. 94:1276-1281.
    Perret, X., W.J. Broughton, and S. Brenner. 1991. Canonical ordered cosmid library of the symbiotic plasmid of Rhizobium species NGR234. Proc. Natl. Acad. Sci. USA 88:1923-1927.
    Perret, X., C. Freiberg, A. Rosenthal, W. J. Broughton. et al. 1999. High resolution transcriptional analysis of the symbiotic replicon of Rhizobium sp. NGR234. Mol. Microbiol. 32:415-425.
    
    
    Perrct, X., Stachelin, C,, and W. J. Broughton. 2000, Molecular basis of symbiotic promiscuity. Microbiai. and Mol. Biol. Rcvicws. 64:180-201.
    Plazinski, J., and Rolfc, B. G 1985a. Sym plasmid genes of Rhizobium trifolii expressed in Lignobactcr and Pscudomonas strains J. Bactcriol. 162:1261-1269.
    Plazinski, J., and Rolfc, B. G. 1985b. Interaction of Azospirllium and Rhizobium strains leading to inhibition of nodulation. Appl. Environ.Microbiol. 49:990-993.
    Prakash, R. K., Schilpcroort, P. R., and Nuti, M. P. 1981. Lagre plasmids of fast-growing Rhizobia:homology studies and location of structural nitrogen fixation (nif) genes.J. Bacteriol. 145:1129-1136.
    Prakash, R. K. and Atherly, A. G. 1984. Reiteration of genes involved in symbiotic nitrogen fixation by fast-growing Rhizobium japonicum. J. Bacteriol. 160,785-787.
    Price, N. P. J., Relic, B., Talmont, F. et al. 1992. Broda-host-range Rhizobium spccics strains NGR234 secrets afamily of carbamoylatcd. and fucosylatcd. nodulation signals that are O-acetylated or sulphatcd. Mol.Microbial. 6:3575-3584.
    Pucppke, S. G., Bolanos-Vasquez,M.C., Werner,D., et al. 1998. Release of flavonoids by the soybean cultivars McCall and Pcking and thcir pcrcption as signals by the nitrogen-fixing symbiont Sinorhizobium fredii. Plant Physiol. 117:599-608.
    Pucppke, S.G.,Ruiz-Sainz,J.E,Spaink,H. P.,et al. 1999a. Mutation in GDP-Fucose synthesis gcncs of Sinorhizobium fredii altcrs nod factors and significanly decreases competitiveness to nodulate soybeans. Mol.Plant-Microbe Interact. 12:207-217.
    Pucppke, S. G., and W. J. Broughton. 1999b. Rhizobium sp. NGR234 and R.fredii USDA257 share exceptionally broad, nested host-ranges. Mol. Plant-Microbe Interact.. 12:293-318.
    Quinto, C., de la Vega, H., Flores, M., et al. 1982. Reiteration of nitrogen fixation gene sequences in Rhizobium phaseoli. Nature 299: 724-728.
    Ramircz-Romcro,M.A. et al. 2000. Structural elements rcquircd for rcplication and incompatibility of the Rhizohium elili symbiotic plasmid J. Bacteriol. 182:3117-3124.
    Rastogi, V. K., Bromficld. E. S. P., Whitwill. S. T.. et al. 1991. A cryptic plasmid of indigenos Rhizobium mcliloti posscsscs rcitcratcd nodC and nifE genes and undergoes DNA rearrangement. Can. J. Microbiol, 38:563-568.
    Relic, B., F. Talmont, J. Kopcinska, W. Golinowsky. et al. 1993. Biological activity of Rhizobium sp. NGR234 nod-factors on Macroptilium atropurpureum. Mol. Plant-Microbe Interact. 6:764-774.
    Rclic, B., C. Stachclin, R .Fcllay, S, Jabbouri, T. Boller, et al, 1994. Do Nod-factor levcls play a role in host-specificity? p. 69-75. In G. B. Kiss and G. Endre (cd.). Procecding of the first European Nitrogen Fixation conference.officina press, Szeged, Hungary.
    Reyes, V. G., and Schmidt, E. L. 1979. Population densities of Rhizobium japonicum strain 123 estimated dircctly in soil and rhizospheres. Appl. Environ. Microbiol. 37:854-858.
    Rigotticr-Gois, L., Turner, S. L., Yong, J. R W., et al. 1998. Distribution of repC plasmid rcplication sequence among plasmids and isolates of Rhizobium leguminosarum bvviciac from field populations. Microbiology. 144:771-780.
    Ritscma, T., A. H. M. Wijfjies, B. J. J. Lugtenbrg. et al. 1996, Rhizobium nodulation protein NodA is a host-specific dctcrminant of the transfcr of fatty acids in Nod factor biosynthesis. Mol. Gen. Genet. 251:44-51.
    Roblcto, E. A., A. J. Scupham, and E. W. Triplctt 1997. Trifolitoxin production in Rhizobium etli strain CE3 incrcascs compctitivencss for rhizosphcrc growth and root nodulation of Phalcolus
    
    vulgaris in soil. Mol. Plant-Microbe Interact. 10:228-233.
    Roblcto, E. A., Kmiccik, K., Oplingcr, E. S., et al. 1998. Appl. Environ. Microbiol. 64:2630-2633.
    Rochc, P., F. Maillct, C. plazanct, F. Dcbll. et al. 1996. The common nodABC genes of Rhizobium mcliloti are host-range determinants. Proc. Acad. Sci. USA 93:15301-15310.
    Rhrig, H., J. Schmidt, U. Wicneke. et al. 1994. Biosynthesis of lipooligosaccharidc nodulation factor-Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backone. Proc. Natl. Acad .Sci. USA 91:3122-3126.
    Romcro, D., Martinez-Salazar, J., Girard, L., et al. 1995. Discrete amplifiable regions (Amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J. Bactcriol. 177,973-980.
    Romcro,D., S.Brom, J. Martinez-Salazar, et al. 1991.Amplification and deletion of nod-nif region in symbiotic plasmid of Rhizobium phaseoli.J.Bactcriol. 173:2435-2441.
    Romcro, F.,Bucndid-Claveria,A., and Ruiz-Sainz.J.E 1993. Broad host-rang cffcctive mutants of Rhizobium fredii strains. J.Appl. Bactcriol. 74:610-619.
    Rosenbcrg, C., Boistard, P., Dnarié, J., et al. 1981. Genes controlling carly and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184:326-333.
    Ruvkun, G. B., Long, S. R., Meade, H, M., et al. 1982. ISRml: a Rhizobium meliloti insertion sequence that transposes prcfcrcntially into nitrogen fixation genes. J. Mol. Appl. Genet. 1:405-418.
    Sadowsky, M. J., P. B. Cregan, M. Gottfert. et al. 1991. The Bradyrhizobium japonicum noLA gene and its involvement in the gcnotyocspccific nodulation of soybeans, Proc. Natl. Acad. Sci. USA 88:637-641.
    Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Clonging,A laboratory Manual. 2nd ed.Cold Spring Harbour Laboratory Prcss.
    Sanjun. J., Olivares. J. 1989. Implicanon of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J. Bactcriol. 171:4154-4161.
    Sanjun. J., Olivarcs. J., 1991. NifA-NtrA rcgulatory system activates transcription of nfe a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch. Microbiol. 155:543-548.
    Schauscr, L., A. Roussis, J. Stiller, and J.Stougaard. 1999. A plant regulator controlling development of symbiotic root nodules. Nature 402:191-195.
    Schlaman, H. R., D. A. Phillips, and E. Kondorosi. 1998. Genetic organization and transcriptional regulation of rhizobial nodulation genes, p. 361-386 in H. P. Spaink, A. Kondorosi and P. J. J.
    Hooykaas(cd.). The Rhizobiaccae. Kluwcr Academic publishcrs. Dordrccht. The Ncthcrlands.
    Schlaman, H. R. M., R. J. H. Okker, and B. J, J, Lugtenberg. 1992. Rcgulation of nodulation gene expression by NodD in rhizobia. J. Bacteriol. 174:5177-5182.
    Schlaman. H. R. M., H. P. Spaink, R. J. H. Okker. et al. 1989, Subccllular Iocalization of the nodD gene product in Rhizobium leguninosarum. J. Bactcriol. 171:4684-4693.
    Schoficld, P. R., Gibson, A. H., Dudman, W. F., et al. 1987. Evidence for Genetic Exchange and
    Recombination of Rhizobium Symbiotic Plasmids in Soil Population. Appl. Environ. Microbiol. 53:2942-2947. Schultzc, M., C. Stachclin, F. Brunncr, 1. Genetet. et al. 1998. Plant chitinasc lysozyme isoforms show distinct substrate specificity and cleavage site prcfcrcncc to,yards lipochitooligosaccharide Nod signals. Plant J. 16:571-580. Scott, D. B., and Ronson, C. W. 1982. Identification and mobilization by cointegrate formation of a nodulation plasmid in Rhizobium trifolii. J. Bacteriol. 151:36-43.
    
    
    Segovia, L., Young, J. P. W., and Martinez-Romero, E. 1993. Reclassification of american Rhizobium leguminosarum biovar phaseoli type Ⅰstrains as Rhizobium etli sp. nov. Int J. Syst. Bactcriol. 43:374-377.
    Selbitschka, W., and Lotz, W. 1991. Instability of cryptic plasmids affccts the symbiotic effectivity of Rhizobium leguminosarum by, vicine strains. Mol. Plant-Microbe Interact. 4:608-616.
    Sen, D., Baldani, J. I., and Weaver, R. W. 1990. Expression of heat induced proteins in Wild type and plasmid-cured derivatives of Rhizobium leguminosarum by. Trifolii. Page 583 in: Nitrogen Fixation:Achievements and Objectives. P. M. Grcsshoff, L. E. Roth, G. Stacey, and W. E. Newton, ed. Chapman Hall, London.
    Sharma, P. K., and Laxminarayana, K. 1989. Effect of high temperature on plasmid curing of Rhizobium spp. in reation to nodulation of pigconca[Cajanus cajan(L.) Millsp.]. Boil. Fcrt. Solis 8:75-79.
    Simon, R. 1984. High frequency mobilization of gram negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol. Gen. Genet. 196:413-420.
    Simon, R., Htti, B., Klauke, B. et al. 1991. Isolation and characterization of insertion sequcnce elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J. Bacteriol. 173:1502-1508.
    Singleton, P. W., and Tavares, J. W. 1986. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl. Environ. Microbiol. 51:1013-1018.
    Sivakumaran, S., lockhart, P.L., and Jarvis, B.D.W. 1997. Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum by. trofolii. Can.J.Microbial.43:164-177.
    Sobern-Chavez, G., Najera, R., Olivora, H., and Segovia, L. 1996. Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. J. Bactcriol. 167:487-491.
    Soberon-chavez, G., and Najera R. 1989. Symbiotic Plasmid Rearrangement in a Hyper recombinant Matant of Rhizobium leguminosartun biovar phaseoli J. Gen. Microbiol. 135:47-54.
    Soto, M. J., Zorzano, A, Garcia-Rodriguez, F. M., et al. 1994. Identification of a novel Rhizobium meliloti nodulation efficicncy nfe gene homolog of Agrobacterium ornithine cyclodcaminasc. Mol. Plant-Microbe Interact. 7:703-707.
    Soto, M. J., Zorzano, A, Mercado-Blanco, J., Lcpek, V., et al. 1993. Nucleotide sequcnce and charactcrization of Rhizobium meliloti nodulation competitiveness genes nfe. J. Mol. Biol. 229:570-576.
    Soto, M. J., Zorzano, A., Olivares, J., et al. 1992a. Nuclcotide sequence of Rhizohium meliloti GR4 insertion sequence ISRm3 linked to the nodulation competitiveness locus nfe. Plant Mol. Biol. 20:307-309.
    Spaink, H. P., C. A. Wijffclman, E. Pees, et al. 1987. Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328:337-340.
    Spaink, H. P., R. J. H. Okker, C. A. Wijffclman et al 1989.Symbiotic properties of the rhizobia containing a favonoid-indcpendent hybrid nodD product. J. Bactcriol. 171:4045-4053.
    Spaink, H. P., J. Weinman, M. A. Djordevic. C. A. Wijfelman et al. 1989. Genetic analysis and cellular localization of the Rhizobium host specificity-detraining Node protein EMBO J. 8:2811-1818.
    Spaink, H. P., Aarts.A., Stacey, G.. et al. 1992 Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant-Microbc Interact.
    
    5,72-80.
    Spaink, H. R, A. H. M. Wijfics, and B. J. J. Lugtenberg 1995. Rhizobium NodI and NodJ protcin play a role in the efficiency of sccrtion of lipochitin oligosaccharides. J. Bacterial. 177:6276-6281.
    Spaink, H. P., G. V. Blocmberg, A. A. N. van Brussel. et al. 1995. Host specificity of Rhizobium leguminosarum is determined by the hydrophobicity of highly unsaturated fatty acyl moictics of the nodulation factors. Mol. Plant-Microbe Interact.. 8:155-164.
    Stacey, G. 1990. Workshop summary: compilation of the nod, fix and nif genes of rhizobia and information concerning their function, P.. 239-244. In P. M. Grcsshoff, L. E. Roth, G. Stacey, and W. E. Newton(ed), Nitrogen fixation: achicvcmcnis and objectives. Chapman Hall, New York.
    Stacey, G., S, Luka, J. Sanjuan, Z. Hanfalvi, et al. 1994. nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharidc signal of Bradyrhizobium japonicum. J. Bacteriol. 176:620-633.
    Staehclin,C., M. Schultze, E.,Kondorosi,et al. 1994. Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitnase. Plant J.5:319-330.
    Staehclin,C.,J.Granado,J.Muller, A.Wiemken. et al. 1994. Perccption of Rhizobium nodulation factors by tomato cells and inactivation by root chitinasc. Proc. Acad.Sci.USA 91:2196-2200.
    Strcetcr J G 1994. Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can.J.Microbiol. 40:513-522.
    Swanson,J.A.,J.T.Mulligan, and S.r.long 1993. Regulation of syrM and nodD3 in Rhizobinm meliloti. Genetics. 134:435-444.
    Tcpfcr, D., Goldman, A., Pamboukdjian, N., et al. 1988. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudates of Calystegium sepium. J. Bacteriol. 170: 1153-1161.
    Thics J.E., Singleton, P.W., and Bohlool, B.B. 1991. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl. Environ. Microbiol. 57: 19-28.
    Thurman, N.P., Lewis, D,M., and Jones, D.G. 1985. The relatioship of plasmid number to growth, acid tolerance, and symbiotic efficiency in isolates of Rhizobium trfolii. J. Appl. Bacteriol. 58:1-6.
    Triplett. E. W., Barta. T. M. 1987. Tritolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum by trifolii strain T24 on clover. Plant Physiol. 85:335-42.
    Triplctt, E. W. 1990. Construction of a symbiotically effective strain of Rhizobium leguminosarum by. trifolii with increased nodulation competitiveness. Appl. Environ Microbioi. 56:98-103.
    Triplett, E. W. 1992. Genetics of competition for nodulation of legumes. Ann.Rev.Microbiol. 46:399-428.
    Turner,S.L. and Yong, P. W. 1995. The replicator region of the Rhizobium leguminosarum cryptic plasmid pRL8JI. FEMS Microbiol Lett. 133: 53-58.
    Turner, S.L., Rigotticr-Gois.L., Power.R.S., et al. 1996. Diversity of rcpC plasmid-rcplication sequences in Rhizobium leguminosarum. Microbiology. 142: 1705-1713.
    Valencia-Morales, E., and Romero, D. 2000. Recombination enhancement by replication (RER) in Rhizonbium etli. Genetics. 154, 971-983.
    van Rcnsberb, H. J. and Strijdom, B. W. Competitive abilities of Rhizobium meliloti strains considered to have potential as inoculants. Appl.Environ. Microbiol. 1982,44: 98-106.
    Van dcr drift,K.M., H.P.Spaink, et al.1996. Rhizobium leguminosarum by. trifolii produces lipo-chitin
    
    oligosaccharidcs with node-dependent highly unsaturated fatty acyl moieties. An clctrosprayionization and collision-induced dissociation tandcm mass spectromctric study.J.Biol.Chem..271:22563-22569.
    Van Rhijn,P.J., B.Fcys,C.Vcrrcth, et al. 1993. Multiple copics of nod d in Rhizobium tropici C1AT899 and BR816. J.Bactcriol: 175:438-447.
    Van Workum,W.A.T, H.C.J.Cantcr-Crcmcrs, et al. 1997. Cloning and characterization of four genes of Rhizobium leguminosarum bv.trifolii involved in exopolysaccharide production and nodulation. Mol. Plant-Microbe Interact.. 10:290-301.
    Van Workum, w. A. T., S. van Slageren, A. A. N. van Brussel, 1998. Role of exopolysaccharides of Rhizobium legminosaium by. viciae as host plant-spccific molecules required for infection thread formation during nodulation of Vicia sativa. Mol. Plant-Microbe Interact. 11: 1233-1241.
    Vargas A A T, and Graham P H 1989. Cultivar and pH effects on competition for nodule sites between isolates of Rhizobium in beans. Plant and Soil. 117: 195-200.
    Vazquez, M., A. Davalos, A. delas Penas. 1991. Novel organization of the common nodulation genes in Rhizobium leguminosarum by. phaseoli strains. J Bacterol. 173:1250-1258.
    Vazquez, M., O. Santana, and C. Quinto. 1993. The Nodl and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccheride secretion proteins from Gram-negative bacteria. Mol. Microbiol, 8:369-377.
    Vclazqucz, E., Matcos, RE, Pcdrcro, P, ct al. 1995. Attenuation of symbiotic effectiveness by Rhicobium meliloti SAF22 related to the presence of a cryptic plasmid Appl. Environ:Microbiol. 61:2033-2036.
    Vidor. C., and, Miller. R.H. 1980. Relative saprophytic competence of Rhizobium japonicum strains in soils as determined by the quantilative fluorescent antibody technique(FA). Soil Biol. Biochem. 12:483-497.
    Vincent J M. A manual for practical study of root-nodule bacteria. International biological programme handbook No. 15,Blackwell Scientific publications Oxford.1970.
    Vinucsa, P., Reuhs, B. L., Brcton, C., et al. 1999. Idcntification of a plasmid-borne locus in Rhizobium etli KIM5s involved in lipopolysaccharide O-chain biosynthesis and nodulation of phaseolus vulgaris. J. Bacteriol. 181:5606-5614.
    Waelkens, F., T. Voets, K. Vlassak, J. et al. The modS gene of Rhizobium tropici strain CIAT899 is nccessary for nodulation on Phaseohts vulgaris and on Leucaena leucocephala. Mol. Plant-Microbe Interact. 1995.8:174-154.
    Wang, C. L., J, E. Beringer, and P. R. Hirsch. 1986. Host plant cffects on hybrids of Rhizobium leguminosarum biovars viceae and trifolii. J. Gen. Microbiol. 132:2063-2070.
    Watson, R.J., Chan, Y.-K., Wheatcroft. R, et al 1988. Rhizobium mehloii genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation arc located on a megaplasmid J. Bacteriol. 170:927-934.
    Weinstcin, M., Robcrts, R.C., and Hclinski, D.R. 1992. A region of the broad-host-range plasmid RK2 causes stable in planta inheritance of plasmids in Rhizobium mehloti cells isolated from alfalfa root nodulcs. J. Bacteriol. 174:7486-7489.
    Wheatcroft, R., and Labcrge. S. 1991. Identification and nuclcotide sequence of Rhizobium meliloti sequence ISRm3: Similarity between the putativc transposase encoded by ISRm3 and those encoded by Staphylococcus aureus IS256 and Thiobacillus fcrrooxidans IST2. J. Bacteriol. 173:2530-2538.
    Young, J.P.W., and Wexler, M. 1988. Sym plasmid and chromosomal genotypes are correlated in field
    
    populations of Rhizobium leguminosarum. J. Gen. Microbiol. 134:2731-2739.
    Zdor R E and Pucppke S G 1990. Compctition for nodulation of soybean by Bradyrhizobium japonicum 123 and 138 in soil containing indigenous rhizobia. Soil Biol. Biochem. 22:607-613.
    Zhang, F., Charles, T. C., Pan, B., et al. 1997. Inhiition of the expression of Bradyrhizobium. Japonicum nod genes at low temperatures. Soil. Biol. Biochem. 28:1579-1583.
    Zhang, X. X., Zhou, J. C., Zhang, Z. M., et al. 1995. Bchavior of plasmid pJB5JI in Rhizobium huakuii under free-living and symbiotic conditions.Current Microbiol. 31:97-101.
    Zhang, X. X., Turner, S., Guo, X. W., et al. 2000. The common nodulation genes of astragalus sinicus Rhizobia are conserved despite chromosomal diversity. Appl. Environ. Microbiol 66:2988-2995.
    Zhang, X. X., Kosier, B., Pricfer, U. B. Symbiotic plasmid rearrangement in Rhizobmm leguminosarum by. viciae VF39SM. J. Bactcriol 2001,183:2141-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700