在线社会网络中个性化信任评价基础与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机网络技术的普及和发展,在线社会网络已成为人们结交朋友、日常通信、产品推荐等社交活动最为流行的平台和工具。在大规模动态、开放的在线社会网络应用中,评估用户之间的个性化信任程度,在鼓励和促进用户的良性行为、指导用户选择合适的交互对象、提高用户的体验质量、确保整个系统的安全可靠运行等方面,具有不可忽视的作用。个性化信任评价研究具有重要的学术研究价值和应用前景。
     相关领域中的信任模型在面向在线社会网络应用时,存在四个主要问题:1)信任算法通常假设存在一个小规模信任图,而如何基于大规模社会网络生成小规模信任图却鲜有研究;所用信任信息由于主观性、动态性而难于获取或维护。2)信任模型未充分考虑在线社会网络中的用户行为特征及其相互影响。在现实生活中,用户被信任的程度与其影响力是密不可分的。研究用户影响力构成和影响的发生规律,对构建完善的信任模型意义重大。3)信任信息整合面临路径依赖和信任衰减两个挑战:当多条信任路径相互交叉时,如何有效进行信任信息的取舍?如何模拟信任信息随路径传播的衰减?4)信任模型的重要应用场景—基于信任的推荐系统不能灵活处理用户观点形成的时间演变性和反映用户的行为特征。
     为解决上述问题,本论文结合社会网络分析和信任评价研究前沿,探寻网络结构、用户行为、和信任机制之间的内在联系、规律和动态特性,围绕在线社会网络个性化信任评价问题,在信任图生成、用户社会影响力评估、信任传播与整合、基于信任的推荐等多个方面提出了创新性理论与方法:
     (1)提出了基于小世界网络理论的信任图生成框架SWTrust。为解决信任图生成和信任信息通常主观多变而难于获取或维护的问题,借助复杂网络中的小世界网络理论和弱连接理论,提出一种高效的信任图生成框架,利用相对客观的用户活动域信息来构造信任图。在真实信任网络数据集Epinions上进行了大量实验,验证了SWTrust在保证高覆盖率的同时提高了信任路径搜索的效率,并且生成的信任图能够有效地帮助预测信任。
     (2)提出了基于特征的细粒度用户社会影响力评估模型FBI。影响力与信任具有不可忽视的交互关系:影响力大的人通常容易被人信任,受信任的人更有可能去影响其他人。以社会网络结构及特征集为输入,结合用户之间影响的可能性以及每个用户自身的重要性来构造初始影响力;通过识别朋友的影响力贡献来进行影响力更新,最后输出每个用户的影响力及其对其他用户影响的可能性。在三个科研合作网络HEPTH、DBLP和AmetMiner上进行了实验和案例分析。结果表明所提FBI模型能够更好的区分用户影响力(重复率低)、所选出的top-k用户的影响范围大、top-k用户的质量高。
     (3)设计了基于广义网络流的信任评价方法GFTrust。利用网络流解决信任路径依赖问题,设计节点漏流函数来模拟信任的衰减;通过合理设置初始流量,节约普通网络流模型的结果正则化问题。从算法效率、模型基本性质和恶意行为鲁棒性等多个方面进行了深入细致的分析。在两个真实的信任网络数据集Epinions和Advogato中做了大量实验。结果表明,网络流的使用提高了信任预测的精度,漏流函数的设置降低了信任预测的误差。
     (4)设计了信任推荐系统里基于流体动力学的时间演变评分机制FluidRating。现实生活中,人们观点相互影响并随时间变化。创造性地引入流体动力学模型来刻画观点(评分)形成过程。每个用户被映射为一个容器,信任/影响关系被映射为管子来连接用户容器。用户观点是容器中的液体(温度代表评分,高度代表用户对该评分的坚持度),液体可在容器之间流动,代表影响的发生。采用离散模型对多轮液体流动和混合进行计算。目标节点容器的液体温度被采样搜集,并整合为最终评分。在真实信任推荐系统数据集中的实验结果表明FluidRating具有更高的评分预测精度。
With the rapid development of networking techniques and the prevalence of network applications, online social networks (OSNs) have become the most popular tools and platforms for people's social activities, including making new friends, conducting daily communication or product recommendation, and so on. In the dynamic, open and large scale online social applications, in order to encourage users'good behavior, help users choose proper partners and decide whether to conduct further interactions (e.g., information exchange or product recommendation), improve their service using experience, and guarantee the normal function of the whole system, it is very necessary to estimate the trust levels among users. Personalized trust evaluation is proposed exactly for this aim, which has an important value of both theory and practice.
     Existing trust models in other related fields (e.g., P2P network, multi agent system, or semantic network) cannot be directly applied into online social networks, due to the following issues:1) Existing algorithms usually assume that there is an existing small trusted graph, for which little work has been done; moreover, information used for constructing trust is usually subjective and dynamically changing, which make it difficult to collect or maintain.2) Trust models usually overlook the features of user behavior and the mutual influence between users. Actually, the degree that a user is being trusted is closely related with his social influence. Therefore, studying how to differentiate users' social influence is meaningful to the construction of a comprehensive trust model.3) Graph-based trust models cannot well address the two challenges of path dependence and trust decay. That is, when multiple trusted paths are overlapped with each other, how will the model choose trust information on those paths? And how will the trust decay through the propagation process?4) One of the most important application scenarios of trust evaluation is trust-based recommendation system. In those systems, predicting users'ratings is usually being taken as a static process, which is inconsistent with real life.
     To address those issues, we study the frontier researches in social network analysis and trust evaluation techniques, and we try to discover the latent rules and dynamic features among trust mechanism, network structure, and user behaviors. In this dissertation, we focus on the trust evaluation models and algorithms in online social networks.
     Specifically, the contributions of this dissertation are fourfold:
     (1) We propose a small world network theory-based trusted graph generation framework, SWTrust. Existing trust algorithms take the base of a small trusted graph, and the information used to construct trust is usually too complicated to get or maintain, and usually subjective and changeable, which make it vulnerable to vicious nodes. With those problems in mind, we use the small-world network characteristics of online social networks and taking advantage of "weak ties", to divide users'neighbors into three categories based on their active domains: local neighbors, longer contacts, and the longest contacts. When conducting breadth-first search algorithms, we select the next hop neighbors uniformly among the above three categories. In this way, the coverage can be guaranteed and the efficiency can be improved. In addition, comparing to other subjective information, user domain is relatively objective and cannot be changed at will, which makes SWTrust more robust.
     (2) We propose a fine-grained feature-based social influence evaluation model, FBI. In real life, trust and influence can impact each other:influential people are likely to be trusted by others, while trusted friends have more chance and strength to influence a person. First, we construct a user's initial social influence by exploring two essential factors, that is, the possibility of impacting others, and the importance of the user himself. Second, we design the social influence adjustment model based on the PageRank algorithm by identifying the influence contributions of friends. For the aim of fine-grained evaluation, based on a feature set which includes the related topics and user profiles, we differentiate the feature strength of users and the tie strength of user relations. We also emphasize the effects of common neighbors in conducting influence between two users. Through experimental analysis, our FBI model shows remarkable performance, which can identify all users'social influences with much less duplication (it is less than7%with our model, while more than80%with other degree-based models), while having a larger influence spread with top-k influential users. A case study validates that our model can identify influential users with higher quality.
     (3) We design a generalized flow based trust evaluation algorithm, GFTrust. In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust information in the trusted paths (i.e., paths built through intermediate trustful users) should be carefully treated. Some paths may overlap with each other, which lead to a unique challenge of path dependence, i.e., how to aggregate the trust values of multiple dependent trusted paths. OSNs bear the characteristic of high clustering, which makes the path dependence phenomenon usually happen. Another challenge is trust decay through propagation, i.e., how to propagate trust along a trusted path, considering the possible decay in each node. We analyze the similarity between trust propagation and network flow, and convert a trust evaluation task (with path dependence and trust decay) into a generalized network flow problem. We propose a modified flow-based trust evaluation scheme GFTrust, in which we address path dependence using network flow, and model trust decay with the leakage associated with each node. Experimental results, with the real social network data sets of Epinions and Advogato, demonstrate that GFTrust can predict trust in OSNs with a high accuracy, and verify its preferable properties.
     (4) We also design a Fluid dynamics theory based time-evolving rating prediction scheme, FluidRating. The goal of a trust-based recommendation system is to predict unknown ratings based on the ratings expressed by trusted friends. However, most of the existing work only considers the ratings at the current time slot. In real life, a user receives the influence of different opinions sequentially; accordingly, his opinion evolves over time. We propose a novel rating prediction scheme, FluidRating, which uses fluid dynamics theory to reveal the time-evolving formulation process of human opinions. The recommendation is modeled as fluid with two dimensions:the temperature is taken as the "opinion/rating," and its volume is deemed as the "persistency," representing how much one insists on his opinion. When new opinions come, each user refines his opinion through a round of fluid exchange with his neighbors. Opinions from multiple rounds are aggregated to gain a final prediction; both uniform and non-uniform aggregations are tested. Moreover, three sampling approaches are proposed and examined. The experimental evaluation of a real data set validates the feasibility of the proposed model, and also demonstrates its effectiveness.
引文
1 目前已有新的Epinions数据集包含了“类别”信息,详见http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm。
    [1]J. A. Barnes. Class and Committees in a Norwegian Island Parish [J]. Human Relations,1954,7(1):39-58.
    [2]崔斌.社会网络综述-CCF YOCSEF学术报告会[J].中国计算机学会通讯,2011,7(10):74-75.
    [3]刘晓东.互联网的未来是社交网络还是搜索引擎http://www.cnnic.cn/hlwfzyj/fxszl/fxswz/201208/t20120813_33219.htm.
    [4]D. Good. Individuals, Interpersonal Relations and Trust [J]. Making and Breaking Cooperative Relations, electronic edition, Department of Sociology, University of Oxford,1988,3:31-48.
    [5]王小峰.信任管理的策略表示与量化模型研究[博士论文].长沙:国防科技大学,2009.
    [6]F. Huang. Building Social Trust:A Human-Capital Approach [J]. Journal of Institutional and Theoretical Economics (JITE),2007,163(4):552-573.
    [7]G. M O Llering. The Nature of Trust:From Georg Simmel to a Theory of Expectation, Interpretation and Suspension [J]. Sociology,2001,35(2):403-420.
    [8]J. B. Rotter. A New Scale for the Measurement of Interpersonal Trust [J]. Journal of Personality,1967,35(4):651-665.
    [9]K. S. Cook, T. Yamagishi, C. Cheshire, et al. Trust Building Via Risk Taking:A Cross-Societal Experiment [J]. Social psychology quarterly,2005,68(2): 121-142.
    [10]S. P. Marsh. Formalising Trust as a Computational Concept [D]. Stirling, UK:University of Stirling,1994.
    [11]J. Golbeck. Computing and Applying Trust in Web-Based Social Networks [D]. Maryland, USA:University of Maryland,2005.
    [12]A. Josang, R. Hayward, S. Pope. Trust Network Analysis with Subjective Logic [C]. Proceedings of the 29th Australasian Computer Science Conference (ACSC),2006:85-94.
    [13]C. Ziegler, G. Lausen. Propagation Models for Trust and Distrust in Social Networks [J]. Information Systems Frontiers,2005,7(4-5):337-358.
    [14]A. Josang, R. Ismail, C. Boyd. A Survey of Trust and Reputation Systems for Online Service Provision [J]. Decision Support Systems,2007,43(2):618-644.
    [15]D. Gefen. Reflections on the Dimensions of Trust and Trustworthiness Among Online Consumers [J]. SIGMIS Database,2002,33(3):38-53.
    [16]G. Wang, J. Wu. Multi-Dimensional Evidence-Based Trust Management with Multi-Trusted Paths [J]. Future Generation Computer Systems (Elsevier),2011, 27(5):529-538.
    [17]Y. Yao, H. Tong, X. Yan, et al. MATRI:A Multi-Aspect and Transitive Trust Inference Model [C]. Proceedings of the 22nd ACM International Conference on World Wide Web (WWW),2013:1467-1476.
    [18]W. Sherchan, S. Nepal, C. Paris. A Survey of Trust in Social Networks [J]. ACM Computing Surveys,2013,45(4):41-47.
    [19]G. Wang, W. Jiang, J. Wu, et al. Fine-Grained Feature-Based Social Influence Evaluation in Online Social Networks [J]. IEEE Transactions on Parallel and Distributed Systems,2013,99(PrePrints):1.
    [20]A. Srinivasan, J. Teitelbaum, H. Liang, et al. Reputation and Trust-Based Systems for Ad Hoc and Sensor Networks [J]. Algorithms and Protocols for Wireless, Mobile Ad Hoc Networks, A. Boukerche (ed.), Wiley,2008, ISBN: 978-0-470-38358-2.
    [21]乔秀全,杨春,李晓峰,等.社交网络服务中一种基于用户上下文的信任度计算方法[J].计算机学报,2011,34(12):2403-2413.
    [22]张波,向阳,黄震华.一种社交网络中的个体间推荐信任度计算方法[J].南京航空航天大学学报,2013,45(4):563-569.
    [23]甘早斌,丁倩,李开,等.基于声誉的多维度信任计算算法[J].软件学报,2011,22(10):2401-2411.
    [24]王刚,桂小林.社会网络中交易节点的选取及其信任关系计算[J].计算机学报,2013,36(2):368-383.
    [25]陈贞翔,葛连升,王海洋,等.普适环境中基于信任的服务评价和选择模型[J].软件学报,2006,17(增刊):200-210.
    [26]谢晓兰,刘亮,赵鹏.面向云计算基于双层激励和欺骗检测的信任模型[J].电子与信息学报,2012,34(4):812-817.
    [27]林军,姜文君,王国军.P2P环境中基于信誉与云理论的信任模型[J].计算机工程,2012,38(2):141-143.
    [28]林闯,胡杰,孔详震.用户体验质量(QoE)的模型与评价方法综述[J].计算机学报,2012,35(1):1-15.
    [29]D. Kempe, J. Kleinberg, E. V. Tardos. Maximizing the Spread of Influence through a Social Network [C]. Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2003:137-146.
    [30]W. Chen, C. Wang, Y. Wang. Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks [C]. Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2010: 1029-1038.
    [31]N. Koenigstein, G. Dror, Y. Koren. Yahoo! Music Recommendations: Modeling Music Ratings with Temporal Dynamics and Item Taxonomy [C]. Proceedings of the ACM Conference on Recommender Systems (RecSys),2011: 165-172.
    [32]D. J. Watts. Small Worlds:The Dynamics of Networks Between Order and Randomness [J]. Princeton University Press,1999.
    [33]六度分隔.http://en. wikipedia. org/wiki/Six_degrees_of_separation.
    [34]M. Granovetter. The Strength of Weak Ties:A Network Theory Revisited [J]. Sociological Theory,1983,-1:201-233.
    [35]J. Goldenberg, B. Libai, E. Muller. Using Complex Systems Analysis to Advance Marketing Theory Development [J]. Academy of Marketing Science Review,2001.
    [36]P. Massa, P. Avesani. Trust Metrics on Controversial Users:Balancing Between Tyranny of the Majority and Echo Chambers [J]. International Journal on Semantic Web and Information Systems,2007,3:39-64.
    [37]K. Won, J. Ok-Ran, L. Sang-Won. On Social Web Sites [J]. Information Systems,2010,35(2):215-236.
    [38]Y. A. Kim, H. S. Song. Strategies for Predicting Local Trust Based On Trust Propagation in Social Networks [J]. Knowledge-Based Systems,2011,24(8): 1360-1371.
    [39]A. JOSang, E. Gray, M. Kinateder. Simplification and Analysis of Transitive Trust Networks [J]. Web Intelligence and Agent System,2006,4(2):139-161.
    [40]M. Lesani, N. Montazeri. Fuzzy Trust Aggregation and Personalized Trust Inference in Virtual Social Networks [J]. Computational Intelligence,2009,25 (2): 51-83.
    [41]J. H. Cho, A. Swami, I. R. Chen. Modeling and Analysis of Trust Management with Trust Chain Optimization in Mobile Ad Hoc Networks [J]. Journal of Network and Computer Applications,2012,35(3):1001-1012.
    [42]Y. L. Sun, W. Yu, Z. Han, et al. Information Theoretic Framework of Trust Modeling and Evaluation for Ad Hoc Networks [J]. IEEE Journal on Selected Areas in Communications,2006,24(2):305-317.
    [43]李小勇,桂小林.动态信任预测的认知模型[J].软件学报,2010,21(1):163-176.
    [44]H. Li, M. Singhal. Trust Management in Distributed Systems [J]. IEEE Computer,2007,40(2):45-53.
    [45]J. Ma, M. A. Orgun. Trust Management and Trust Theory Revision [J]. IEEE Transaction on Systems, Man, and Cybernetics, Part A:Systems and Humans,2006, 36(3):451-460.
    [46]朱峻茂,杨寿保,樊建平,等.Grid与P2P混合计算环境下基于推荐证据推理的信任模型[J].计算机研究与发展,2005,42(5):797-803.
    [47]A. Josang, S. Pope. Dempster's Rule as Seen by Little Colored Balls [J]. Computational Intelligence,2012,28(4):453-474.
    [48]G. Shafer. A Mathematical Theory of Evidence. Princeton:Princeton University Press,1976.
    [49]A. Josang, T. Bhuiyan. Optimal Trust Network Analysis with Subjective Logic [C]. Proceedings of the 2nd International Conference on Emerging Security Information, Systems and Technologies (SECURWARE),2008:179-184.
    [50]王进,孙怀江.一种用于信任管理的新主观逻辑[J].计算机研究与发展,2010,47(1):140-146.
    [51]吴鹏,吴国新,方群.一种基于概率统计方法的P2P系统信任评价模型[J].计算机研究与发展,2008,45(3):408-416.
    [52]张琳,王汝传,张永平.一种基于模糊集合的可用于网格环境的信任评估模型[J].电子学报,2008,36(5):862-868.
    [53]唐文,胡建斌,陈钟.基于模糊逻辑的主观信任管理模型研究[J].计算机研究与发展,2005,42(10):1654-1659.
    [54]孙玉星,黄松华,陈力军,等.基于贝叶斯决策的自组网推荐信任度修正模型[J].软件学报,2009,20(9):2574-2586.
    [55]J. Pearl. Reasoning with Cause and Effect [C]. Proceedings of International Joint Conference in Artifical Intelligence (IJCAI),1999:1437-1449.
    [56]张仕斌,许春香.基于云模型的信任评估方法研究[J].计算机学报,36(2):422-431.
    [57]李德毅,杜鹢.不确定性人工智能.北京:国防工业出版,2005.
    [58]S. Peng, W. Jia, G. Wang, et al. Trusted Routing Based on Dynamic Trust Mechanism in Mobile Ad-Hoc Networks [J]. IEICE Transactions,2010,93-D(3): 510-517.
    [59]陈菲菲,桂小林.基于机器学习的动态信誉评估模型研究[J].计算机研究与发展,2007,44(2):223-229.
    [60]李小勇,桂小林.可信网络中基于多维决策属性的信任量化模型[J].计算机学报,2009,32(3):405-416.
    [61]T. D. Huynh. A Personalized Framework for Trust Assessment [C]. Proceedings of the 2009 ACM symposium on Applied Computing (SAC),2009: 1302-1307.
    [62]Y. Zuo, W. Hu, T. O'Keefe. Trust Computing for Social Networking [C]. Proceedings of the 6th International Conference on Information Technology:New Generations (ITNG),2009:1534-1539.
    [63]M. Taherian, M. Amini, R. Jalili. Trust Inference in Web-Based Social Networks Using Resistive Networks [C]. Proceedings of the 3rd International Conference on Internet and Web Applications and Services (ICIW),2008:233-238.
    [64]G. Mahoney, W. J. Myrvold, G. C. Shoja. Generic Reliability Trust Model [C]. Proceedings of the 3rd Annual Conference on Privacy, Security and Trust (PST), 2005:113-120.
    [65]R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network Flows:Theory, Algorithms, and Applications. Englewood Cliffs, NJ:Prentice Hall,1993.
    [66]S. Shekarpour, S. D. Katebi. Modeling and Evaluation of Trust with an Extension in Semantic Web [J]. Web Semantics:Science, Services and Agents on the World Wide Web,2010,8(1):26-36.
    [67]K. Chen, K. Hwang, G. Chen. Heuristic Discovery of Role-Based Trust Chains in Peer-To-Peer Networks [J]. IEEE Transactions on Parallel and distributed systems,2009,20(1):83-96.
    [68]G. Wang, J. Wu. FlowTrust:Trust Inference with Network Flows [J]. Frontiers of Computer Science in China,2011,5(2):181-194.
    [69]F. G. O. M. Rmol, G. M. I. N. Rez. Towards Pre-Standardization of Trust and Reputation Models for Distributed and Heterogeneous Systems [J]. Computer Standards and Interfaces,2010,32(4):185-196.
    [70]J. Caverleea, L. Liu, S. Web. The SocialTrust Framework for Trusted Social Information Management:Architecture and Algorithms [J]. Information Sciences, 2010,180(1):95-112.
    [71]F. Skopik, D. Schall, S. Dustdar. Modeling and Mining of Dynamic Trust in Complex Service-Oriented Systems [J]. Information Systems,2010,35(7):735-757.
    [72]P. De Meo, A. Nocera, G. Terracina, et al. Recommendation of Similar Users, Resources and Social Networks in a Social Internetworking Scenario [J]. Information Sciences,2011,181:1285-1305.
    [73]Y. A. Kim, R. Phalak. A Trust Prediction Framework in Rating-Based Experience Sharing Social Networks without a Web of Trust [J]. Information Sciences,2012,191:128-145.
    [74]J. Breese, D. Heckerman, C. Kadie. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [C]. Proceedings of the 14th Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI),1998:43-52.
    [75]R. Baeza-Yates, B. Ribeiro-Neto. Modern Information Retrieval [J]. Addison-Wesley,1999.
    [76]G. Salton. Automatic Text Processing [J]. Addison-Wesley,1989.
    [77]B. Sarwar, G. Karypis, J. Konstan, et al. Item-Based Collaborative Filtering Recommendation Algorithms [C]. Proceedings of the 10th International Conference on World Wide Web (WWWW),2001:285-295.
    [78]张宇.在线社会网络信任计算与挖掘分析中若干模型与算法研究[D][博士论文].杭州:浙江大学,2009.
    [79]W. W. Yuan, D. H. Guan, Y. K. Lee. Improved Trust-Aware Recommender System Using Small-Worldness of Trust Networks [J]. Knowledge-Based Systems, 2010,23:232-238.
    [80]M. Richardson, R. Agrawal, P. Domingos. Trust Management for the Semantic Web [C]. Proceedings of the 2nd International semantic web conference, 2003:351-368.
    [81]X. Song, Y. Chi, K. Hino, et al. Information Flow Modeling Based On Diffusion Rate for Prediction and Ranking [C]. Proceedings of the 16th ACM International Conference on World Wide Web (WWW),2007:191-200.
    [82]J. Goldenberg, B. Libai, E. Muller. Talk of the Network:A Complex Systems Look at the Underlying Process of Word-of-Mouth [J]. Marketing Letters, 2001,12(3):211-223.
    [83]J. Davitz, J. Yu, S. Basu, et al. Ilink:Search and Routing in Social Networks [C]. Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2007:931-940.
    [84]J. Tang, J. Sun, C. Wang, et al. Social Influence Analysis in Large-Scale Networks [C]. Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2009:807-816.
    [85]E. Gilbert, K. Karahalios. Predicting Tie Strength with Social Media [C]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2009:211-220.
    [86]F. Hao, Z. Pei, C. Zhu, et al. User Attractor:An Operator for the Evaluation of Social Influence [J]. Future Generation Computer Systems,2012, doi: org/10.1016/j.future.2012.04.005.
    [87]D. Crandall, D. Cosley, D. Huttenlocher, et al. Feedback Effects Between Similarity and Social Influence in Online Communities [C]. Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (KDD), 2008:160-168.
    [88]T. Opsahl, F. Agneessens, J. Skvoretz. Node Centrality in Weighted Networks:Generalizing Degree and Shortest Paths [J]. Social Networks (Elsevier), 2010,32:245-251.
    [89]T. Opsahl, V. Colizza, P. Panzarasa, et al. Prominence and Control:The Weighted Rich-Club Effect [J]. Physical Review Letters,2008,101(16):168702.
    [90]Z. Katona, P. P. Zubcsek, M. Sarvary. Network Effects and Personal Influences:Diffusion of an Online Social Network [J]. Journal of Marketing Research, 2011,48(3):425-443.
    [91]M. E. J. Newman. Scientific Collaboration Networks.{Ⅱ}. Shortest Paths, Weighted Networks, and Centrality. [J]. PHYSICAL REVIEW E,2001,64:16132.
    [92]E. Bakshy, I. Rosenn, C. Marlow, et al. The Role of Social Networks in Information Diffusion [C]. Proceedings of the 21st ACM International Conference on World Wide Web (WWW),2012:519-528.
    [93]Z. Xiong, W. Jiang, G. Wang. Evaluating User Community Influence in Online Social Networks [C]. Proceedings of the 11th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),2012: 640-647.
    [94]L. Page, S. Brin, R. Motwani, et al. The PageRank Citation Ranking: Bringing Order to the Web.Stanford InfoLab,1999.
    [95]A. Gionis, T. Lappas, E. Terzi. Estimating Entity Importance Via Counting Set Covers [C]. Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2012:687-695.
    [96]J. Gehrke, P. Ginsparg, J. M. Kleinberg. Overview of the 2003 KDD Cup [J]. SIGKDD Explorations,2003,5(2):149-151.
    [97]J. Yang, J. Leskovec. Defining and Evaluating Network Communities Based On Ground-truth [C]. Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,2012:3.
    [98]J. Tang, J. Zhang, L. Yao, et al. ArnetMiner:Extraction and Mining of Academic Social Networks [C]. Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2008:990-998.
    [99]G. Wang, Q. Hu, P. S. Yu. Influence and Similarity On Heterogeneous Networks [C]. Proceedings of the 21st ACM international conference on Information and knowledge management (CIKM),2012:1462-1466.
    [100]S. Tang, J. Yuan, X. Mao, et al. Relationship Classification in Large Scale Online Social Networks and its Impact On Information Propagation [C]. Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM),2011:2291-2299.
    [101]W. Jiang, G. Wang, J. Wu. Generating Trusted Graphs for Trust Evaluation in Online Social Networks [J]. Future Generation Computer Systems,2014,31: 48-58.
    [102]C. Lin, N. Cao, S. L. S. Papadimitriou, et al. Smallblue:Social Network Analysis for Expertise Search and Collective Intelligence [C]. Proceedings of the 25th International Conference on Data Engineering (ICDE),2009:1483-1486.
    [103]L. Paninski. Estimation of Entropy and Mutual Information [J]. Neural Computation,2003,15(6):1191-1253.
    [104]T. Bailey, S. Julier, G. Agamennoni. On Conservative Fusion of Information with Unknown non-Gaussian Dependence [J].2012:1876-1883.
    [105]B. Chen, P. K. Varshney. A Bayesian Sampling Approach to Decision Fusion Using Hierarchical Models [J]. IEEE Transactions on Signal Processing,2002, 50(8):1809-1818.
    [106]B. Friedland. Control System Design:An Introduction to State-Space Methods [J]. Dover Publications,2005.
    [107]R. Levien. Attack Resistant Trust Metrics [D]. Berkeley:UC Berkeley, USA, 2003.
    [108]A. Abdul-Rahman, S. Hailes. A Distributed Trust Model [J].1997:48-60.
    [109]L. R. F. D. Ford. Maximal Flow through a Network [J]. Canadian Journal of Mathematics,1954,8:399-404.
    [110]M. A. Nowak. Five Rules for the Evolution of Cooperation [J]. Science, 2006,314(5805):1560-1563.
    [111]M. L. Manapat, M. A. Nowak, D. G. Rand. Information, Irrationality, and the Evolution of Trust [J]. Journal of Economic Behavior & Organization,2012,90: S57-S75.
    [112]D. G. Rand, J. D. Greene, M. A. Nowak. Spontaneous Giving and Calculated Greed [J]. Nature,2012,489(7416):427-430.
    [113]K. D. Wayne. Generalized Maximum Flow Algorithms [D]. Ithaca, USA: Cornell University,1999.
    [114]M. A. Perillo, W. B. Heinzelman. Optimal Sensor Management Under Energy and Reliability Constraints [J].2003,3:1621-1626.
    [115]T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al. Introduction to Algorithms (3Rd Edition). The MIT Press,2009.
    [116]J. R. Douceur. The Sybil Attack [J]. Revised Papers from the First International Workshop on Peer-to-Peer Systems,2002:251-260.
    [117]Y. L. Sun, Z. Han, W. Yu, et al. A Trust Evaluation Framework in Distributed Networks:Vulnerability Analysis and Defense Against Attacks [C]. Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM),2006:1-13.
    [118]G. Stringhini, C. Kruegel, G. Vigna. Detecting Spammers On Social Networks [C]. Proceedings of the 26th Annual Computer Security Applications Conference (ACSAC),2010:1-9.
    [119]J. R. Douceur, T. Moscibroda. Lottery Trees:Motivational Deployment of Networked Systems [J]. ACM SIGCOMM Computer Communication Review,2007, 37(4):121-132.
    [120]B. Viswanath, A. Post, K. P. Gummadi, et al. An Analysis of Social Network-Based Sybil Defenses [J]. ACM SIGCOMM Computer Communication Review,2010,40(4):363-374.
    [121]信任网络数据集.http://www.trustlet.org/wiki/Trust_network_datasets.
    [122]R. Andersen, C. Borgs, J. Chayes, et al. Trust-Based Recommendation Systems:An Axiomatic Approach [C]. Proceedings of the 17th ACM International Conference on World Wide Web (WWW),2008:199-208.
    [123]X. Amatriain. Mining Large Streams of User Data for Personalized Recommendations [J]. SIGKDD Explorations,2012,14(2):37-48.
    [124]P. Massa, P. Avesani. Trust-Aware Recommender Systems [C]. Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys),2007:17-24.
    [125]M. Jamali, M. Ester. TrustWalker:A Random Walk Model for Combining Trust-Based and Item-Based Recommendation [C]. Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2009: 397-406.
    [126]X. Yang, H. Steck, Y. Liu. Circle-Based Recommendation in Online Social Networks [C]. Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2012:1267-1275.
    [127]H. Zhu, B. A. Huberman, Y. Luon. To Switch Or Not to Switch: Understanding Social Influence in Online Choices [C]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,2012:2257-2266.
    [128]E. R. Smith, D. M. Mackie. Social Psychology. Psychology Press,2007.
    [129]质量守恒.http://en.wikipedia.org/wiki/Conservation_of_mass.
    [130]S. A. Myers, C. Zhu, J. Leskovec. Information Diffusion and External Influence in Networks [C]. Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining (KDD),2012:33-41.
    [131]托里拆利定律.Http://En.Wikipedia.org/wiki/Torricelli's_Law.
    [132]Netflix Prize. Http://Www.Netflixprize.Com/.
    [133]T. Erickson. Social Computing [J]. in Soegaard, Mads and Dam, Rikke Friis (eds.). "The Encyclopedia of Human-Computer Interaction,2nd Ed." Aarhus, Denmark:The Interaction Design Foundation. Available online at http://www.interaction-design.org/encyclopedia/social_computing.html,2013.
    [134]M. J. Franklin, B. Trushkowsky, P. Sarkar, et al. Crowdsourced Enumeration Queries [C]. Proceedings of the 2013 IEEE International Conference on Data Engineering (ICDE),2013:673-684.
    [135]M. J. Franklin, D. Kossmann, T. Kraska, et al. CrowdDB:Answering Queries with Crowdsourcing [C]. Proceedings of the 2011 ACM SIGMOD International Conference on Management of data,2011:61-72.
    [136]S. Guo, A. Parameswaran, H. Garcia-Molina. So Who Won?:Dynamic Max Discovery with the Crowd [C]. Proceedings of the 2012 ACM SIGMOD International Conference on Management of data,2012:385-396.
    [137]J. Wang, G. Li, T. Kraska, et al. Leveraging Transitive Relations for Crowdsourced Joins [C]. Proceedings of the 2013 ACM SIGMOD International Conference on Management of data,2013:229-240.
    [138]M. S. Bernstein, G. Little, R. C. Miller, et al. Soylent:A Word Processor with a Crowd Inside [C]. Proceedings of the 23rd annual ACM symposium on User interface software and technology (UIST),2010:313-322.
    [139]J. Gao, X. Liu, B. Ooi, et al. An Online Cost Sensitive Decision-Making Method in Crowdsourcing Systems [C]. Proceedings of the 2013 ACM SIGMOD International Conference on Management of data,2013:217-228.
    [140]D. Yang, G. Xue, X. Fang, et al. Crowdsourcing to Smartphones:Incentive Mechanism Design for Mobile Phone Sensing [C]. Proceedings of the 18th annual international conference on Mobile computing and networking (MobiCom),2012: 173-184.
    [141]M. Venanzi, A. Rogers, N. R. Jennings. Trust-Based Fusion of Untrustworthy Information in Crowdsourcing Applications [C]. Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems
    (AAMAS),2013:829-836.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700