耐盐砧木嫁接提高茄子耐硝酸钙的生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茄子(Solanum melongena L.)是一种重要的果菜类蔬菜,近年来其设施栽培面积不断扩大,在我国已成为农民增收的一条重要途径。一方面,由于长季节栽培的设施内长年得不到雨水的淋洗以及土壤水分的蒸发,使设施内土壤水分平衡受到破坏;另一方面,由于菜农粗放的肥水管理和过量化学肥料的施用,使得设施土壤次生盐渍化现象十分普遍,严重阻碍了蔬菜设施栽培的可持续发展。研究表明,设施次生盐渍化土壤的盐分组成中主要阳离子为Ca2+,主要阴离子为NO3-(占总阴离子的67-76%)。尽管在茄子嫁接栽培技术和耐盐生理方面已有少量报道,但主要集中在NaCl胁迫方面,而嫁接茄子对过量Ca(NO3)2胁迫响应的生理机制研究方面,国内外尚鲜有报道。国内外研究表明,利用耐盐砧木进行嫁接栽培是提高蔬菜耐盐性的一条有效途径。本研究以日本茄子设施栽培上专用耐盐砧木品种'Torvum Vigor'(Solanum torvum Swartz)为砧木,南京地区主栽品种‘苏崎茄’为接穗,在营养液栽培条件下,对80mmo1.L-1 Ca(N03)2胁迫下茄子嫁接苗和未嫁接苗生长和生理生化代谢进行了比较,主要试验结果如下:
     1.对Ca(NO3)2胁迫下茄子嫁接苗和未嫁接苗叶片光合色素含量、光合特性和渗透调节物质含量的变化进行比较。结果表明,Ca(NO3)2胁迫显著降低了茄子幼苗叶片光合色素含量,抑制了Ci和Gs,降低了Pn,幼苗通过积累渗透调节物质以减轻盐胁迫伤害。而嫁接苗株高和生物量积累显著高于未嫁接苗,叶片光合色素和渗透调节物质含量显著高于未嫁接苗,Pn、Tr、Ci和Gs显著高于未嫁接苗,Ls显著低于未嫁接苗,表明嫁接苗对Ca(N03)2胁迫的适应性更强。
     2.茄子嫁接苗和未嫁接苗碳同化和氮同化比较的结果表明,Ca(NO3)2胁迫下,茄子嫁接苗和未嫁接苗叶片NO3-N和NH4+-N含量呈先增加后下降趋势,而嫁接苗在胁迫后期均显著高于未嫁接苗;嫁接苗叶片硝酸还原酶(NR)活性在胁迫6 d后显著高于未嫁接苗;嫁接苗叶片可溶性蛋白含量在胁迫期间均显著高于未嫁接苗;嫁接苗和未嫁接苗叶片谷氨酰胺合成酶(GS)活性呈先上升后下降趋势,而嫁接苗GS活性在胁迫后期显著高于未嫁接苗;嫁接苗叶片可溶性糖含量呈先增加后下降趋势,而未嫁接苗叶片可溶性糖含量呈显著下降趋势,且嫁接苗在胁迫期间均显著高于未嫁接苗;嫁接苗叶片淀粉含量显著高于未嫁接苗,而a、p淀粉酶活性均显著低于未嫁接苗。综上所述,Ca(NO3)2胁迫下,嫁接苗氮同化和碳同化效率较高,且氮、碳代谢间相互抑制较小,表现出较强的胁迫适应性。
     3.离子吸收与分配特性方面,Ca(NO3)2胁迫下,茄子幼苗各器官中K+含量均有所下降,而嫁接苗除老叶和叶柄外其它器官中K+含量均显著高于未嫁接苗,且在根系、幼叶和功能叶中K(G2/N2)比值较高;除未嫁接苗幼叶外,嫁接苗和未嫁接苗其它器官中Ca2+含量均显著增加,而嫁接苗各器官中Ca2+含量均显著高于未嫁接苗,且幼叶中Ca(G2/N2)比值最高;嫁接苗和未嫁接苗各器官中Mg2+含量均有所下降,而嫁接苗除老叶外其它器官中Mg2+含量均显著高于未嫁接苗。因此,嫁接苗根系在Ca(N03)2胁迫后对离子的选择性吸收的能力更强,且嫁接苗将根系吸收的离子主要运输至分生组织代谢旺盛的器官(幼叶)和光合作用强烈的部位(功能叶),嫁接苗在胁迫环境中的离子吸收和分配优于未嫁接苗,从而对Ca(N03)2胁迫表现出较强的耐性。
     4.Ca(NO3)2胁迫下茄子嫁接苗叶片抗氧化酶活性显著高于未嫁接苗,叶片O2·-产生速率与H2O2含量显著低于未嫁接苗,叶片MDA含量与电解质渗透率显著低于未嫁接苗。因此,Ca(N03)2胁迫显著降低了幼苗叶片抗氧化酶活性,增加了O2·产生速率、H2O2与MDA含量及电解质渗透率,但嫁接苗受Ca(NO3)2胁迫的抑制程度显著小于未嫁接苗,良好的活性氧清除机制保护了植株细胞膜的完整性,使嫁接苗在Ca(N03)2胁迫下表现出较高忍耐力。
     5.对营养液栽培条件下,茄子嫁接苗和未嫁接苗叶片抗坏血酸-谷胱甘肽代谢进行比较。结果表明,Ca(NO3)2胁迫下嫁接苗叶片抗氧化酶(APX. DHAR和GR)活性显著高于未嫁接苗,AsA和GSH的再生率显著高于未嫁接苗,氧化还原力(AsA/DHA值和GSH/GSSG值)显著高于未嫁接苗。综上所述,Ca(N03)2胁迫下嫁接苗保持良好的AsA-GSH循环效率,清除H202效率较高,细胞受氧化损伤程度较轻,表现出较强的耐盐性。
     6.多胺代谢方面,Ca(NO3)2胁迫下茄子嫁接苗叶片游离态、结合态和束缚态多胺含量显著高于未嫁接苗;嫁接苗叶片Put、Spd和Spm总含量均显著高于未嫁接苗;嫁接苗叶片游离态Put/(Spd+Spm)值显著高于未嫁接苗,而结合态Put/(Spd+Spm)值显著低于未嫁接苗,束缚态Put/(Spd+Spm)值两者差异不显著;嫁接苗叶片多胺氧化酶和二胺氧化酶活性显著低于未嫁接苗。结果表明,Ca(NO3)2胁迫下嫁接苗体内三种形态多胺的积累与其耐盐性关系密切;而游离态Put的积累在嫁接苗耐盐性方面可能具有重要作用,且结合态Put向游离态Put的转化以及游离态Spd、Spm向结合态Spd、Spm的转化可能有利于提高Ca(N03)2胁迫下嫁接苗的耐盐性。
With the vegetable industry developing, the area of protected cultivation of eggplant (Solanum melongena L.) is developing rapidly in China. As an important kind of fruit vegetables, protected eggplant cultivation has become an important way to increase farmers'income. However, excessive chemical fertilizer was applied usually, to achieve more economic benefit with high yield. Soil secondary salinization of the plastic film protected cultivation has become a serious problem, which were resulted both from a lack of leaching by rainfall and from strong evaporation of soil water due to long-term covering together with high fertilizer application rates, and severely limited the sustainable development of facility vegetable cultivation. In soil salinity in these systems, the most cation was Ca2+, and the most anion present was NO3- (67-76% of total anions). In recent years, a few researches on grafting techniques and salinity tolerance physiology of grafted eggplant have been carried out, which were mainly focused on NaCl stress, and few studies on physiological mechanisms of grafted eggplant in response to calcium nitrate stress have been reported. It has been well documented that grafting on salt tolerant rootstock can improve salinity tolerance of vegetable. In this study, we use Torvum Vigor' (Solanum torvum Swartz) a salt tolerant cultivar introduced from Japan as rootstock, and'Suqi Qie' a major cultivar in Nanjing area as scion, grafting was made to compare the differences in growth and physiological and biochemical mechanisms between hydroponically-grown grafted and non-grafted eggplant seedlings under 80 mmol·L-1 Ca(NO3)2 stress. The main results were as follows:
     1. The differences in photosynthetic pigments contents, photosynthetic characteristics and osmoregulation substances contents between grafted and non-grafted eggplant seedlings were observed under Ca(NO3)2 stress. The result showed that, the photosynthetic pigments contents in leaves of eggplant seedlings were significantly decreased, CO2 concentration (Ci) and stomatal conductance (Gs) were inhibited, net photosynthetic rate (Pn) was decreased under Ca(NO3)2 stress. The seedlings accumulated osmoregulation substances to reduce damage caused by Ca(NO3)2 stress. However, under Ca(NO3)2 stress, the plant height and biomass accumulation of grafted eggplant seedlings were significantly higher than those of non-grafted seedlings, photosynthetic pigments and osmoregulation substances contents in leaves of grafted seedlings were significantly higher than those of non-grafted seedlings, and grafted seedlings had significantly higher Pn, Tr, Ci and Gs than non-grafted seedlings, with significantly lower Ls in leaves of grafted seedlings. These indicated that, the adaptability of grafted seedlings to Ca(NO3)2 stress was more stronger than that of non-grafted plants.
     2. The differences of nitrogen metabolism and carbon metabolism between grafted and non-grafted eggplant seedlings were observed. The result showed that, under Ca(NO3)2 stress, the contents of NO3-N and NH4+-N in leaves of eggplant seedlings increased significantly at the early stage of treatment, then decreased significantly, however, the contents of NO3--N and NH4+-N in grafted seedlings were significantly higher than those of non-grafted seedlings in prolonged stress time; nitrate reductase (NR) activity in leaves of grafted seedlings was significantly higher than that of non-grafted seedlings since the 9th day of treatment; soluble protein content in leaves of grafted seedlings was significantly higher than that of non-grafted seedlings in the whole stress time; glutamine synthetase (GS) activity in leaves of eggplant seedlings increased significantly at the early stage of treatment, then decreased significantly, however, GS activity in grafted seedlings were significantly higher than those of non-grafted seedlings in prolonged stress time; soluble sugar content in leaves of grafted seedlings increased significantly at the early stage of treatment, then decreased significantly, but soluble sugar content in non-grafted seedlings decreased and was significantly lower than that of grafted seedlings in whole stress time; starch content in leaves of grafted seedlings was significantly higher than that of non-grafted seedlings, but activities of a-amylase and P-amylase were both significantly lower than those of non-grafted seedlings. The results indicated that nitrogen metabolism and carbon metabolism in grafted seedlings were more efficient than non-grafted plants, grafted seedlings were more tolerant to Ca(NO3)2 stress.
     3. In the aspect of characteristics of ion absorption and distribution, K+ contents decreased in all organs in eggplant seedlings, but grafted seedlings had significantly higher K+ content than that of non-grafted seedlings except in aged leaves and petiole, and K(G2/N2) ratios in root, young and functional leaves of grafted seedlings were higher; Ca2+ content increased in all organs in eggplant seedlings except in young leaves of non-grafted seedlings, but grafted seedlings had significantly higher Ca2+content than non-grafted seedlings in all organs, and Ca(G2/N2) ratio in young leaves was the highest; Mg2+content decreased in all organs in eggplant seedling, but Mg2+content in grafted seedlings was significantly higher than that of non-grafted seedlings except in aged leaves. These results indicated that, under Ca(NO3)2 stress, the ability of ionic selective absorption was stronger in root of grafted seedlings than that of non-grafted seedlings, and ions in grafted seedlings were mainly transported to vigorous meristem (young leaves) and efficient photosynthetic organ (functional leaves). Ionic selective absorption and distribution in grafted seedlings excelled than that of non-grafted seedlings under environmental stresses, and grafted seedlings showed stronger tolerance to Ca(NO3)2 stress.
     4. Under Ca(NO3)2 stress, in leaves of grafted eggplant seedlings, the antioxidant enzymes activities were significantly higher while the superoxide anion radicals (O2·) producing rate, hydrogen peroxide (H2O2) content, malondiadehyde (MDA) content and the electrolyte leakage rate were significantly lower than those of non-grafted seedlings. Ca(NO3)2 stress reduced the antioxidant enzymes activities, but increased O2·producing rate, H2O2 content, MDA content and the electrolyte leakage rate both in grafted and in non-grafted seedlings. However, grafted seedlings were less inhibited than non-grafted seedlings under Ca(NO3)2 stress, and the former had a stronger tolerance to Ca(NO3)2 stress owing to effectively scavenging of reactive oxygen species and preserving the integrity of membranes.
     5. The response of ascorbate-glutathione metabolism system of grafted and non-grafted eggplant seedlings under hydroponically-grown to Ca(NO3)2 stress was studied. The results showed that, under Ca(NO3)2 stress, activities of antioxidant enzymes [ascorbate peroxidase (APX), dehydro-ascorbate reductase (DHAR) and glutathione reductase (GR)], regenerating rates of ascorbate (AsA) and glutathione (GSH) and redox statuses (ratios of AsA/DHA and GSH/GSSG) were significantly higher in leaves of grafted seedlings than those of non-grafted seedlings. We concluded that grafted eggplant seedlings had efficient metabolism of ascorbate-glutathione cycle, which scavenged the H2O2 rapidly to alleviate the oxidative damage of Ca(NO3)2 stress; therefore, grafted seedlings had a stronger tolerance to salt stress.
     6. In polyamines metabolisms, under Ca(NO3)2 stress, free, soluble conjugated and insoluble bound polyamines (PAs) in leaves of grafted seedlings were significantly higher than those of non-grafted seedlings; total contents of diamine putrescine (Put), triamine spermidine (Spd) and tetraamine spermine (Spm) in leaves of grafted seedlings were significantly higher than those of non-grafted seedlings; grafted seedlings had significantly higher ratio of free Put/(Spd+Spm) and significantly lower ratio of soluble conjugated Put/(Spd+Spm), with similar level of insoluble bound Put/(Spd+Spm); activities of diamine oxidase (DAO) and polyamine oxidase (PAO) in leaves of grafted seedlings were significantly lower than those of non-grafted seedlings. We concluded that accumulations of three kinds of PAs in grafted seedlings were closely related to salinity tolerance under Ca(NO3)2 stress; however, accumulation of free Put might be important to salinity tolerance, moreover, the conversions from soluble conjugated Spd and Spm might play fundamental roles to improve the tolerance of grafted seedlings under Ca(NO3)2 stress.
引文
1. 白丽萍,周宝利,李宁,等.嫁接茄子对NaCl胁迫的反应.植物生理学通讯,2005,41(1):31-33
    2. 蔡妙珍,罗安程,林咸永,等.Ca2+对过量Fe2+胁迫下水稻保护酶活性及膜脂过氧化的影响.作物学报,2003,29(3):447-451
    3. 曹仪植,吕忠恕.天然生长抑制物质的积累与植物对不良环境适应性的关系.植物学报,1983,25(2):123-130
    4. 柴小清,印莉萍,刘祥林,等.不同浓度的NO3和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响.植物学报,1996,38(10):803-808
    5. 陈贵林,乜兰春,赵丽丽.嫁接西瓜生长动态及伤流液营养元素含量的研究.河北农业大学学报,1999,22(3):38-49
    6. 陈坤明,宫海军,王锁民.植物谷胱甘肽代谢与环境胁迫.西北植物学报,2004a,24(6):1119-1130
    7. 陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004b,24(2):329-336
    8. 陈利平,宋增军,马兴庄,等.嫁接对日光温室黄瓜产品品质的影响.西北农业学报,2004,13(2):170-171
    9. 陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596
    10.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613
    11.陈相波,袁卫红,潘节保,等.苦瓜与丝瓜嫁接试验简报.江西农业学报,1997,9(4):87-90
    12.陈新平,张福锁.北京地区蔬菜施肥的问题与对策.中国农业大学学报,1996,1(5):63-66
    13.陈因.氨态氮和硝态氮的测定.见:中国科学院上海植物生理研究所,上海市生理学会编.现代植物生理学指南.北京:科学出版社,1999,138-140
    14.程美廷.温室土壤盐分积累盐害及其防治.土壤肥料,1990,(1):1-7
    15.崔秀敏,王秀峰.基质供水状况对番茄穴盘苗碳氮代谢及生长发育的影响.园艺学报,2004,31(4):477-481
    16.戴高兴,彭克勤,皮籼辉.钙对植物耐盐性的影响.中国农学通报,2003,19(3):97-101
    17.董道峰,曹志平,王秀徽,等.抗根结线虫砧木对番茄生长及产量的影响.园艺学报,2007,34(5):1305-1308
    18.董园园,董彩霞,卢颍林,等.NH4+-N部分代替NO3-N对番茄生育中后期氮代谢相关酶活性的影响.土壤学报,2006,43(2):261-266
    19.樊怀福,郭世荣,杜长霞,等.外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响.西北植物学报,2006a,26(10):2063-2068
    20.樊怀福,郭世荣,张润花,等.嫁接对低氧胁迫下黄瓜生长和生理代谢的影响.园艺学报,2006b,33(6):1225-1230
    21.范双喜,王绍辉.高温逆境下嫁接番茄耐热特性研究.农业工程学报,2005,21(S):60-63
    22.房云波,孟春玲.保护地内土壤次生盐渍化对土壤性状的影响及对策.辽宁农业科学,2006,(6):40-41
    23.傅秀云,崔光泉,林恒.冬小麦耐盐力与脯氨酸含量的关系.山东农业科学,1988,(2):5-7
    24.傅志坚,罗安程.设施栽培蔬菜硝酸盐积累问题.浙江农业科学,2004,(2):80-82
    25.高军红,廖华俊.嫁接对西瓜果品品质的影响.中国瓜菜,2006,(5):12-14
    26.高丽红.保护地土壤次生盐渍化对主要蔬菜生长发育的影响.南京农业大学学报,1998,12(3):69-71
    27.高梅秀,李树和,刘玉芹,等.不同砧木对茄子抗病性、生理活性及产量的影响.园艺学报,2001,28(5):463-465
    28.高青海,吴燕,徐坤,等.茄子嫁接苗根系对低温环境胁迫的响应.应用生态学报,2006,17(3):390-394
    29.高砚芳,段增强,郇恒福.宜兴市温室土壤理化性质的调查和分析.土壤,2007,39(6):968-972
    30.龚家栋,Pasternak D, Demalach Y.马铃薯的耐盐性及干旱沙地盐水灌溉试验.土壤学报,1996,33(4):405-413
    31.龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    32.龚明,赵方杰,吴颂如,等.NaCl胁迫对大麦硝酸盐吸收和有关的酶活动影响.植物生理学通讯,1990,(2):13-16
    33.郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29
    34.郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461-466
    35.韩利芳,曹志平,董道峰,等.番茄砧木及品种对南方根结线虫的抗性鉴定.园艺学报,2006,33(5):1099-1102
    36.郝贵霞,朱祯,朱之悌.杨树基因工程进展.生物工程进展,2000,20(4):6-9
    37.郝虎林,魏幼璋,杨肖娥,等.供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响.中国水稻科学,2007,21(4):411-416
    38.何莉莉,侯丽霞,葛晓光,等.嫁接番茄抗叶霉病效果及其与体内几种抗性物质的关系.沈阳农业大学学报,2001,32(2):99-101
    39.何文寿.设施农业中存在的土壤障碍及其对策研究进展.土壤,2004,36(3):235-242
    40.侯云霞,钱光熹,王建明,等.上海蔬菜保护地的土壤盐分状况.上海农业学报,1987,3(4):31-38
    41.胡克伟,贾冬艳,王东升.保护地土壤次生盐渍化及其调控措施.北方园艺,2002,(1):12-13
    42.黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生理生态机制.植物营养与肥料学报,2001,7(3):293-297
    43.蒋廷惠,占新华,薛继澄.植物对土壤高量硝酸钙积累的反应与温室生理障碍机理浅析.土壤通报,2006,37(3):606-611
    44.江行玉,窦君霞,王正秋NaCl对玉米和棉花光合作用与渗透调节能力影响的比较.植物生理学通讯,2001,37(4):303-305
    45.朗漫.不同氮肥用量下镁对大豆碳氮代谢的影响.东北农业大学硕士论文,2006,16-22
    46.雷鸣.嫁接对西瓜枯萎病抗性的影响.安徽农业科学,2001,29(5):655-656
    47.李海云,王秀峰,邢禹贤.设施土壤盐分积累及防治措施的研究进展.山东农业大学学报,2001,32(4):535-538
    48.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000:118-122
    49.李怀方,刘凤权.园艺植物病理学.北京:中国农业大学出版社,2003,65-73
    50.李俊良,崔德杰,孟祥霞,等.山东寿光保护地蔬菜施肥现状及问题的研究.土壤通报,2002,33(2):126-128
    51.李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22(4):503-507
    52.李青云,葛会波,胡淑明,等.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报,2006,26(8):1713-1717
    53.李廷轩,张锡洲,王昌全,等.保护地土壤次生盐渍化的研究进展.西南农业学报,2001,14:103-107
    54.李卫欣,陈贵林,任良玉,等.氯化钠胁迫对不同品种南瓜幼苗阳离子含量的影响.应用生态学报,2008,19(3):569-574
    55.李文庆,刘家芬.大棚栽培后土壤盐分的变化.土壤,1995,27(4):203-205
    56.李延,刘星辉.缺镁胁迫对龙眼叶片衰老的影响.应用生态学报,2002,13(3):311-314
    57.李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量及品质影响.植物生态学报,2003,27(2):164-169
    58.李云鹏,周宝利,李之璞,等.嫁接茄的黄萎病抗性与根际土壤生物学活性的关系.生态学杂志,2007,26(6):831-834
    59.李植良,黎振兴,黄智文,等.我国茄子生产和育种现状及今后育种研究对策.广东农业科学,2006, (1):24-26
    60.梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31(1):1-8
    61.林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H2O2的积累与膜脂过氧化的关系.植物生理与分子生物学学报,1988,14(1):12-16
    62.刘凤华,郭岩,谷东梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24(1):54-58
    63.刘广明,杨劲松.地下水作用条件下土壤积盐规律研究.土壤学报,2003,40(1):65-69
    64.刘慧敏,朱月林,陈磊.组培条件下不同番茄品种及砧木自交系幼苗期硝酸盐耐性的比较.植物研究,2007,27(2):175-181
    65.刘慧英,朱祝军,吕国华,等.低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究.中国农业科学,2003,36(11):1325-1329
    66.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响.应用生态学报,2004,15(4):659-661
    67.刘善江.目前保护地蔬菜施肥存在的问题及对策.北京农业科学,1999,17(1):31-32
    68.刘宛,胡文玉,郝建军,等.NaCl胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系.植物生理学通讯,1997,33(6):423-425
    69.刘晓麒,曹恩华.脂质过氧化引起的DNA损伤研究进展.生物化学与生物物理进展,1994,21(3):218-222
    70.刘勋甲,郑世发.丝瓜作砧木嫁接西瓜的形态学及抗涝性初步研究.华中农业大学学报,1995,14(3):267-271
    71.刘友良,毛才良,汪良驹.植物耐盐性研究进展.植物生理学通讯,1987, (4):1-7
    72.刘贞琦,刘振业,马达鹏,等.水稻叶绿素含量及其光合速率关系的研究.作物学报,1984,10(1):57-62
    73.刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的 影响.应用生态学报,2007a,18(3):537-541
    74.刘正鲁,朱月林,魏国平,等.NaCl胁迫对茄子嫁接幼苗叶片抗坏血酸和谷胱甘肽代谢的影响.西北植物学报,2007b,27(9):1795-1800
    75.刘志媛,朱祝军,钱亚榕,等.等渗Ca(NO3)2和NaCl对番茄幼苗生长的影响.园艺学报,2001,28(1):31-35
    76.卢青.植物耐盐性的分子生物学研究进展.生物学杂志,2000,17(4):9-11
    77.吕庆,郑荣梁.干旱及活性氧引起的膜脂过氧化与脱酯化.中国科学(C辑),1996,26(1):26-30
    78.吕卫光,张春兰,袁飞,等.嫁接减轻设施黄瓜连作障碍机制初探.华北农学报,2000,15(S):153-156
    79.马翠兰,刘星辉,王湘平.盐胁迫下柚实生苗生长、矿质营养及离子吸收特性研究.植物营养与肥料学报,2004,10(3):319-323
    80.马焕成,陈绍良,王沙生.脱落酸与胡杨抗盐性的关系.西南林学院学报,1998,18(1):8-14
    81.马焕成,蒋东明.木本植物抗盐性研究进展.西南林学院学报,1998,18(1):52-59
    82.马淑英,赵明.钙对拟南芥耐盐性的调节.作物学报,2006,32(11):1706-1711
    83.毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展.中国生态农业学报,2004,12(1):43-46
    84.乜兰春,陈贵林,赵丽丽.西瓜嫁接苗生长发育特性的研究.中国西瓜甜瓜,1999,(1):7-10
    85.宁顺斌,宋运淳,王玲,等.盐胁迫诱导的植物细胞凋亡—植物抗盐的可能生理机制.实验生物学报,2000,33(3):245-253
    86.齐红岩,李天来,刘轶飞,等.嫁接对薄皮甜瓜光合特性、产量与含糖量的影响.沈阳农业大学学报,2006,37(2):155-158
    87.钱海丰,赵晓娟,赵心爱.α-淀粉酶基因表达的调控.西北农业学报,2003,12(4):87-90
    88.钱琼秋,宰文珊,朱祝军,等.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响.植物生理与分子生物学报,2006a,32(1):107-112
    89.钱琼秋,朱祝军,何勇.硅对盐胁迫下黄瓜根系线粒体呼吸作用及脂质过氧化的影响.植物营养与肥料学报,2006b,12(6):875-880
    90.郄丽娟,齐铁权,苏俊坡,等.冬季日光温室不同砧木嫁接黄瓜的光合性能比较.河北农业大学学报,2008,31(5):38-41
    91.任天应,张乃生,张金发.黄花菜耐盐能力的研究与应用.山西农业科学,1991,(9):13-
    15
    92.邵红雨,孔广超,齐军仓,等.植物耐盐生理生化特性的研究进展.安徽农学通报,2006,12(9):51-53
    93.史庆华,朱祝军,Khalida A,等.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响.植物营养与肥料学报,2004,10(2):188-191
    94.史跃林,刘佩瑛,罗庆熙,等.黑籽南瓜砧对黄瓜抗盐性的影响研究.西南农业大学学报,1995,17(3):232-236
    95.舒英杰,周玉丽.茄子嫁接苗与自根苗光合特性比较.西北植物学报,2005,25(9):1879-1883
    96.宋健民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节.植物生理学通讯,1998,34(3):230-238
    97.宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响.植物学通报,2007,24(4):477-483
    98.孙松发,陈剑中,盛正国,等.温室土壤次生盐渍化的研究.上海农学院学报,1992,10(2):132-140
    99.孙艳,高红春,周艳丽.不同砧木对小西瓜一些性状的影响.中国西瓜甜瓜,2003,(1):3-5
    100.孙志强,白玉玲.嫁接黄瓜的生理基础研究.河南农业科学,1996,(1):26-281
    101.唐中华,郭晓瑞,于景华,等.弱光对长春花(Catharanthus roseus)幼苗中可溶性糖、生物碱及激素含量的影响.生态学报,2007,27(11):4419-4424
    102.陶龙兴,王熹,谈惠娟,等.关于水稻穗芽的生理学研究.作物学报,2006,32(5):728-733
    103.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    104.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,(6):55-57
    105.王长泉,赵吉强,陈敏,等.过氧化氢参与了黑暗诱导的盐地碱蓬叶片甜菜红素积累.植物生态学报,2007,31(4):748-752
    106.王春霞.茄子嫁接栽培对黄萎病及其他土传病害防治的研究.安徽农业科学,2003,31(1):155
    107.王芳,刘鹏,史锋,等.镁对大豆叶片细胞膜透性和保护酶活性的影响.植物营养与肥料学报,2005,11(5):659-664
    108.王辉,董元华,安琼,等.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究.土壤,2005, 37(5):530-533
    109.王杰,张大伟.无子嫁接西瓜抗病毒病的生理生化机制研究.安徽农业大学学报,2002,29(4):336-339
    110.王丽萍,崔美香,孟艳玲.嫁接对日光温室西葫芦抗性和产量的影响.长江蔬菜,2007,(8):56-57
    111.汪良驹,王业遴,刘友良.盐逆境中无花果叶片蛋白质合成与脱落酸及脯氨酸积累的关系.江西农业学报,1991,7(1):38-44
    112.王明香,聂俊华.钾素营养研究及钾胁迫下植物应激蛋白研究进展.江西农业大学学报,2000,22(3):415-418
    113.汪沛洪.植物多胺代谢的酶类与胁迫反应.植物生理学通讯,1990, (1):1-7
    114.王茹华,周宝利,张启发,等.茄子/番茄嫁接植株的生理特性及其对黄萎病的抗性.植物生理学通讯,2003,39(4):330-332
    115.王喜庆.嫁接甜瓜防病增产效果初步研究.中国西瓜甜瓜,2002,(2):22-23
    116.王绪奎,陈光亚.设施农业中的土壤问题及对策.江苏农业科学,2001,(6):39-42
    117.王学军.日光温室土壤次生盐渍化分析.北方园艺,1998,(4):12-13
    118.王学征,韩文灏,高春艳,等.哈尔滨市郊设施土壤次生盐渍化状况分析.北方园艺,2004,(4):62-63
    119.魏爱丽,陈云昭.IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响.西北植物学报,2000,20(3):410-414
    120.魏国平,朱月林,刘正鲁,等NaCl胁迫对茄子嫁接苗生长和离子分布的影响.西北植物学报,2007,27(6):1172-1178
    121.吴雪霞,陈建林,查丁石,等.植物耐盐性研究进展.江西农业学报,2008,20(2):11-13
    122.吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响.西北植物学报,2006,26(6):1206-1211
    123.吴志行,石海仙,董明光,等.大棚蔬菜连作障碍及土壤次生盐渍化原因及防止.长江蔬菜,1994,(5):21-23
    124.项玉英,杨祥田,张光华.设施栽培土壤次生盐渍化的调查及防治对策.浙江农业科学,2006,(1):17-19
    125.邢宇,李文娆,刘生祥,等.我国甜瓜嫁接栽培技术研究进展.宁夏农学院学报,2004,25(1):81-84
    126.许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33(4):241-244
    127.徐敬华,黄丹枫,支月娥.PAL活性与嫁接西瓜枯萎病抗性传递的相关性.上海交通大学学报
    (农业科学版),2004,22(1):12-16
    128.徐胜利,陈青云,陈小青,等.嫁接栽培伽师甜瓜抗枯萎病能力及其增产效应.园艺学报,2005,32(3):521-523
    129.徐胜利,陈小青.新疆伽师厚皮甜瓜嫁接苗温室无土栽防病增产效果.北方园艺,1999,(3):22-24
    130.徐鲜钧,沈宝川,祁建民.植物耐盐性及其生理生化指标的研究进展.亚热带农业研究,2007,3(4):275-280
    131.徐云岭,余叔文.苜蓿盐适应愈伤组织中蛋白质性质和组分的变化.植物生理学报,1992,18(3):246-252
    132.薛继澄,毕德义,李家金,等.保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994,(1):4-9
    133.杨凤娟,王秀峰,魏珉,等.NO3-胁迫下K+、Ca2+对黄瓜幼苗膜质过氧化及活性氧清除酶系统的影响.农业工程学报,2005,21(S):155-158
    134.杨劲松,陈德明,沈其荣.作物抗盐机制研究Ⅰ小麦水分保持与质膜渗透性.土壤学报,2002,39(4):524-528
    135.杨立飞,朱月林,胡春梅,等.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18(4):439-443
    136.杨立飞,朱月林,胡春梅,等.NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响.西北植物学报,2006,26(12):2500-2505
    137.杨立飞,朱月林,胡春梅,等.氯化钠胁迫对嫁接黄瓜叶片多胺含量的影响.应用生态学报,2007,18(4):831-836
    138.杨利华,郭丽敏,博万鑫.玉米施镁对氮磷钾肥料利用率及产量的影响.中国生态农业学报,2003,11(1):78-80
    139.杨丽琴,夏小燕,汪晓丽,等.pH、氮素形态和ca2+对玉米幼苗根系发育的影响.扬州大学学报(农业与生命科学版),2007,28(4):47-51
    140.杨少辉,季静,王罡,等.盐胁迫对植物影响的研究进展.分子植物育种,2006,4(3):139-142
    141.杨勇,蒋德安,孙骏威,等不同供镁水平对水稻叶片叶绿素荧光特性和能量耗散的影响.植物营养与肥料学报,2005,11(1):79-86
    142.姚静,邹志荣,杨猛,等.设施栽培中土壤次生盐渍化问题及解决途径.陕西农业科学,2003,(4):39-41
    143.於丙军,吉晓佳,刘俊.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1223-1226
    144.余海英,李廷轩,周建民.设施土壤次生盐渍化及其对土壤性质的影响.土壤,2005,37(6): 581-586
    145.余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究.土壤学报,2006,43(4):571-576
    146.余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社,1998,752-769
    147.郁万文,曹帮华,吴丽云.盐胁迫下刺槐无性系生长和矿质营养平衡研究.西北植物学报,2005,25(10):2097-2102
    148.于贤昌,王立江.蔬菜嫁接的研究与利用.山东农业大学学报,1998,29(2):249-256
    149.于贤昌,邢禹贤,马红,等.黄瓜嫁接苗抗冷特性研究.园艺学报,1997,24(4):348-352
    150.于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31(2):41-47
    151.袁琳,克热木·伊力,张利权NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响.植物生态学报,2005,29(6):985-991
    152.曾希柏,谢德体,青长乐.氮肥施用量对莴笋光合特性影响的研究.植物营养与肥料学报,1997,3(4):323-327
    153.张昌爱,毕军,夏光利.大棚土壤的理化状况和微生物状况.安徽农业科学,2002,30(2):275-276
    154.张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,26(4):62-65
    155.张恩平,张淑红,司龙亭,等NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32(6):446-448
    156.张福墁.设施园艺学.北京:中国农业大学出版社,2001,321-327
    157.张古文,朱月林,刘正鲁,等.Ca(NO3)2胁迫对嫁接番茄生长、抗氧化酶活性和活性氧代谢的影响.植物营养与肥料学报,2008,14(3):527-532
    158.张古文,朱月林,杨立飞,等NaCl胁迫对番茄嫁接苗生物量及离子含量的影响.西北植物学报,2006,26(10):2069-2074
    159.张海燕,范哲峰.运城盐湖十种耐盐植物体内无机及有机溶质含量的比较研究.生态学报,2002,22(3):352-358
    160.张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-57
    161.张健,刘美艳,肖炜.丝瓜作砧木提高黄瓜耐涝性的研究.植物学通报,2003,20(1):85-89
    162.张立新,李生秀.水分胁迫下氮、钾对不同基因型夏玉米氮代谢的影响.植物营养与肥料学报,2007,13(4):554-560
    163.张圣平,顾兴芳,王烨,等.低温胁迫对以野生黄瓜(棘瓜)为砧木的黄瓜嫁接苗生理生化指标的影响.西北植物学报,2005,25(7):1428-1432
    164.张雅,何勇,朱祝军,等.低温弱光对茄子嫁接苗和自根苗抗氧化酶系统的影响.浙江农业学报,2008,20(6):428-431
    165.张衍鹏,于贤昌,张振贤,等.日光温室嫁接黄瓜的光合特性和保护膜活性.园艺学报,2004,31(1):94-96
    166.赵福庚,刘友良.高等植物体内特殊形态多胺的代谢及调节.植物生理学通讯,2000,36(1):1-6
    167.赵宏伟.不同氮素营养水平下春玉米碳氮代谢机理的研究.东北农业大学博士论文,2003,15-19
    168.赵可夫.植物抗性生理.北京:中国科学技术出版社,1993,135-141
    169.赵可夫,范海,Harris P J C.盐胁迫下外源ABA对玉米幼苗耐盐性的影响.植物学报,1995,37(4):295-300
    170.赵可夫,冯立田.中国盐生植物资源.北京:科学出版社,2001,32-43
    171.赵可夫,李法曾.中国盐生植物.北京:科学技术出版社,1999,48-62
    172.赵可夫,李军.盐浓度对3中单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响.植物学报,1999,41(12):1287-1292
    173.赵莉,罗建新,黄海龙,等.保护地土壤次生盐渍化的成因及防治措施.作物研究,2007,21(5):547-554
    174.赵青春,赵娜,张力,等.嫁接对茄子生长发育和黄萎病抗性的影响.中国蔬菜,1997,(6):7-9
    175.郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报,2001,27(4):325-330
    176.郑文菊,张承烈.盐生和中生环境中宁枸杞叶显微和超微结构的研究.草业科学,1998,7(3):72-76
    177.周宝利,高艳新,林桂荣,等.嫁接茄子抗病性与电导率、脯氨酸含量及丙氨酸活性的关系.园艺学报,1998,25(3):300-302
    178.朱建平.棚栽番茄幼苗耐盐能力模拟试验.土壤农化与肥料,1990, (3):40-41
    179.朱晓军,杨劲松,梁永超,等.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503
    180.朱新广,张其德.NaCl对光合作用影响的研究进展.植物学通报,1999,16(4):332-338
    181.朱祝军,喻景权.氮素形态和光照强度对烟草生长和H2O2清除酶活性的影响.植物营养与肥料学报,1998,4(4):379-385
    182. Ajdary K, Singh D K, Singh A K, et al. Modeling of nitrogen leaching from experimental onion field under drip fertigation. Agricultural Water Management,2007,89,15-28
    183. Allakhverdiev S I, Sakamoto A, Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology,2000,123:1047-1056
    184. Asada K. The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    185. Azevedo Neto A D, Prisco J T, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany,2006,56,87-94
    186. Basu R, Maitra N, Ghosh B. Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings. Australian Journal of Plant Physiology,1988,15,777-786
    187. Besford R T, Richardson C M, Campos J L, et al. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta,1993, 189,201-206
    188. Bletsos F A. Grafting and calcium cyanamide as alternatives to methyl bromide for greenhouse eggplant production. Scientia Horticulturae,2006,107,325-331
    189. Bohnert H J, Nelson D E, Jensen R G. Adaptations to environmental stresses. Plant Cell,1995, 7:1099-1111
    190. Borrell A, Carbonell L, Farras R, et al. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiologia Plantarum,1997,99:385-390
    191. Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges:recent development. Plant Science,1999,140,103-125
    192. Bowler C, Van M M, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    193. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    194. Burton G W, Ingold K U. (3-carotene:an unusual type of lipid antioxidant. Science,1984,224: 569-573
    195. Chang C J, Kao C H. Paraquat toxicity is reduced by polyamines in rice leaves. Plant Growth Regulation,1997,22,163-168
    196. Chartzoulakis K, Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae,2000,86:247-260
    197. Chattopadhyay M K, Gupta S, Sengupta D N, et al. Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Molecular Biology,1997,34:477-483
    198. Chattopadhayay M K, Tiwari B S, Chattopadhyay G, et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiologia Plantarum,2002,116,192-199
    199. Claussen W, Bruckner B, Krumbein A, et al. Long-term response of tomato plants to changing nutrient concentration in the root environment-the role of proline as an indicator of sensory fruit quality. Plant Science,2006,171,323-331
    200. Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell and Environment,2002,25:17-28
    201. Correia M J, Osorio M L, Osorio J, et al. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environmental and Experimental Botany,2006,58,75-84
    202. Cuartero J, Fernandez-Mnoz R. Tomato and salinity. Scientia Horticulturae,1999,78,83-125
    203. Das S, Bose A, Ghosh B. Effect of salt stress on polyamine metabolism in Brassica campestris. Phytochemistry,1995,39,283-285
    204. Delfine S, Alvino A, Villani C M, et al. Restriction to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiology,1999,119:1101-1106
    205. Drolet G. Radical scavenging properties of polyamine. Phytochemistry.1986,25:367-371
    206. Ericson M C, Alfinito S H. Proteins produced during salt stress in tobacco cell culture. Plant Physiology,1984,74:506-509
    207. Evans R J. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L). Plant Physiology,1983,72:297-302
    208. Farqfuhar G D, Sharkey T D. Stormatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology,1982,33:317-345
    209. Fisarakis I, Chartzoulakis K, Stavrakas D. Response of Sultana vines(Vitis vinifera L.) on six rootstocks to NaCI salinity exposure and recovery. Agricultural Water Management,2001,51:13-27
    210. Foolad M R. Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome,1999,42,727-734
    211. Foyer C H, Halliwell B. Presence of glutathione and glutathione reductase in chloroplasts:a proposed role on ascorbic acid metabolism. Planta,1976,133:21-25
    212. Friedman R, Altman A. Levin N. The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes. Physiologia Plantarum,1989,76:295-302
    213. Gao Z, Sagi M, Lips S H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Science,1998,135:149-159
    214. Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science,1994,34:706-714
    215. Grattan S R, Grieve C M. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae,1998,78:127-157
    216. Guan L M, Zhao J, Scandalios J G. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signaling molecule for the response. Plant Journal,2000,22:87-95
    217. Hall J L, Harvey Diana M R, Flowers T J, et al. Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima. Planta,1978,140:59-62
    218. Halliwell B, Aeschbach R, Loliger J, et al. The characterization of antioxidants. Food and Chemical Toxicology,1995,33:601-617
    219. Hanson P M, Yang R.-Y., Tsou Samson C S, et al. Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis,2006,19:594-600
    220. Hasegawa P M, Bresan R A, Zhu J.-K. et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499
    221. Hilda P, Graciela R, Sergio A, et al. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation,2003,41:149-158
    222. Hoekstra F A, Golovina E A, Buitink J. Mechanisms of plant desiccation tolerance. Trends in Plant Science,2001,6:431-438
    223. Ishitani M, Nakamura T, Handeung Y, et al. Expression of the betainaldehyde dehydrogenase gene in barley in response to osmotic stress Andabscisci acids. Plant Molecular Biology,1995,27:307-310
    224. Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica,2003,45:795-801
    225. Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution,2007,145,497-506
    226. Kantharajah A S, Golegaonkar P G. Somatic embryo genesis in eggplant. Scientia Horticulturae, 2004,99:107-117
    227. Karen A S, Yong Y, Zachary S, et al. The role of calcium in hypoxia-signal transduction and gene expression. Cell Calcium,2004,36:331-340
    228. Kashyap V, Kumar S V, Collonnier C, et al. Biotechnology of eggplant. Scientia Horticulturae, 2003,97:1-25
    229. Kato T, Lou H. Effect of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. Journal of the Japanese Society for Horticultural Science,1989,58:345-352
    230. Kaya C, Higgs D, Sakar E. Response of two leafy vegetables growth at high salinity to supplementary potassium and phosphorus during different growth stages. Journal of Plant Nutrition,2002,25:2663-2676
    231. Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science,2000,40:482-487
    232. Khatkar D, Kuhad M S. Short-term salinity induced changes in two wheat cultivars at different growth stages. Biologia Plantarum,2000,43:629-632
    233. Khavari-Nejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica,1998,35:151-154
    234. Kishor P B K, Hong Z, Miao G H, et al. Over expression of A'-pyrroline 3/5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 1995,108:1387-1394
    235. Kitamura Y, Yano T, Honna T, et al. Causes of farmland salinization and remedial measures in the Aral Sea basin:research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agricultural Water Management,2006,85:1-14
    236. Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant Journal,1997,12:1067-1078
    237. Krishnamurthy R. Ameloriation of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine. Plant and Cell Physiology,1991,32,699-703
    238. Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiology,1989,91,500-504
    239. Krivosheeva A, Tao D L, Ottander C, et al. Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta,1996,200:296-305
    240.KumarA, Altabella T, Taylor M A, et al. Recent advances in polyamine research. Trends in Plant Science,1997,2,124-130
    241. La Rosa P R, Hasegawa P M, Rhodes D, et al. Abscisic acid simulated osmotic adjustment and its involvement in adaptation of tobacco cell to NaCl. Plant Physiology,1987,85:174-185
    242. Lee J M. Cultivation of grafted vegetables I:current status, grafting methods and benefits. HortScience,1994,29,235-239
    243. Legocka J, Kluk A. Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. Journal of Plant Physiology,2005,162,662-668
    244. Lin K H, Weng C C,LoHF, et al. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science,2004,167:355-365
    245. Liu H P, Dong B H, Zhang Y Y, et al. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Science,2004,166,1261-1267
    246. Liu J, Zhu J K. Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiology,1997,114:591-596
    247. Lopez-Gomez E, San Juan M A, Diaz-Vivancos P, et al. Effect of rootstocks grafting and boron on the antioxidant systems and salinity tolerance of loquat plants (Eriobotrya japonica Lindl.). Environmental and Experimental Botany,2007,60,151-158
    248. Makela P, KarkKainen J, Somersalo S. Effects of glycinebetaine on chloroplast ultra structure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum,2000,43:471-475
    249. Malabike R, Ray W. Over expression of Sadenosyl methionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride stress tolerance. Plant Science,2002,163:987-992
    250. Manivannan P, Jaleel C A, Kishorekumar A, et al. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces,2007, 57:69-74
    251. Martin-Tanguy J. Conjugated polyamines and reproductive development:biochemical, molecular and physiological approaches. Physiologia Plantarum,1997,100,675-688
    252. Maslen Kova L T, Zanev Y, Popova L P. Adaptation to salinity as monitored by PS II oxygen evolving reactions in barley hyaloids. Plant Physiology,1993,142:629-634
    253. Masood A, Shah N A, Zeeshan M, et al. Differential response of antioxidant enzymes to salinity
    stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environmental and Experimental Botany,2006,58,216-222
    254. Mcainsh P R, Brownlee A M. Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum,1997,100:16-29
    255. Mckay H M, Mason W L. Physiologically indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Canadian Journal Forest Research,1991,21:890-901
    256. Michelet B, Boutry M. The Plasma Membrane H-ATPase:A highly regulated enzyme with multiple physiological functions. Plant Physiology,1995,108:1-6
    257. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7, 405-410
    258. Munns R. Physiological process limiting plant growth in saline soils:some dogmas and hypotheses. Plant Cell and Environment,1993,16:15-24
    259. Munns R, Termaat A. Whole-plant responses to salinity. Australia Journal of Plant Physiology, 1986,13:143-160
    260. Murillo-Amador B, Jones H G, Kaya C, et al. Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany,2006,58,188-196
    261. Murkowski A. Heat stress and spermidine:effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum,2001,44,53-57
    262. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate:specific peroxidase in spinach chloroplasts. Plant and Cell Physiology,1981,22:867-880
    263. Niu X. NaCl-induced alteration in both cell structure and tissue specific plasma membrane H+-ATPase gene expression. Plant Physiology,1996,111:679-689
    264. Ott J C, Birks K, Johnson C. Regulation of the photosynthetic electron transport chain. Planta, 1999,209:250-258
    265. Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental Safety,2005,60,324-349
    266. Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 2004,161:531-542
    267. Perez-Prat E, Narasimhan M L, Binzel M L, et al. Induction of a putative Ca2+-ATPase mRNA in NaCl-adapted cells. Plant Physiology,1992,100:1471-1478
    268. Petrusa L M, Winicov L. Proline status in salt tolerance and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiology and Biochemistry,1997,35:303-310
    269. Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. Plant Growth Regulation,1995,14:211-218
    270. Popova O V, Ismailov S F, Popova T N, et al. Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum. Planta,2002,215:906-913
    271. Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology, 2006,163:1259-1266
    272. Rodriguez H G, Boberts J K M, Jordan W R, et al. Growth, water relation, and accumulation of organic solutes in roots of Maize seedling during salt stress. Plant Physiology,1997,113:881-893
    273. Roussos P A, Pontikis C A. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. Journal of Plant Physiology,2007,164, 895-903
    274. Rout N P, Shaw B P. Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes. Plant Science,2001,160,415-423
    275. Ruiz J M, Belakbir A, Lopez-Cantarero I, et al. Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 1997,71:227-234
    276. Sanchez E, Ruiz J M, Romero L. Proline metabolism in response to nitrogen toxicity in fruit of French bean plants (Phaseolus vulgaris L. cv. Strike). Scientia Horticulturae,2002,93,225-233
    277. Santa-Cruz A, Acosta M, Perez-Alfocea F, et al. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiologia Plantarum,1997,101,341-346
    278. Santa-Cruz A, Perez-Alfocea F, Caro M, et al. Polyamines as short-term salt tolerance traits in tomato. Plant Science,1998,138,9-16
    279. Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system. Physiologia Plantarum,2001,112:487-494
    280. Shi D, Sheng Y. Effects of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany,2005,54,8-21
    281. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress
    response. Plant Physiology,1997,115:327-334
    282. Singh N K, Bracker C A, Hasegawa P M, et al. Characterization of osmotin:a thaumatin-like protein associated with osmotic adaptation in plant cell. Plant Physiology,1987,85:529-536
    283. Singh N K, Handa A K, Hasegawa P M, et al. Proteins associated with adaptation of cultured tobacco cell to NaCl. Plant Physiology,1985,79:126-137
    284. Song J J, Nada K, Tachibana S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant and Cell Physiology,2002,43:619-627
    285. Soriano A P, Soriano Martin M L, Piedra A P. Grafting olive cv. Cornicabra on rootstocks tolerant to Verticillium dahliae reduces their susceptibility. Crop Protection,2003,22,369-374
    286. Stadtmane R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Review of Biochemistry,1993,62:797-821
    287. Su G, An Z, Zhang W, et al. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. Journal of Plant Physiology,2005,162, 1297-1303
    288. Sun C, Liu Y L, Zhang W H. Mechanism of the effect of polyamines on the activity of tonoplasts of barley roots under salt stress. Acta Botanica Sinica,2002,44:1167-1172
    289. Tachibana S, Konishi N. Diuranl variation of in vivo and in vitro reductase activity in cucumber plants. Journal of the Japanese Society for Horticultural Science,1991,60:593-599
    290. Tassoni A, Franceschetti M, Bagni N. Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiology and Biochemistry,2008,46,607-613
    291. Tonon G, Kevers C, Faivre-Rampant O, et al. Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. Journal of Plant Physiology,2004,161,701-708
    292. Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Science,1999,140:21-30
    293.Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants:protective role of exogenous polyamines. Plant Science,2000,151,59-66
    294. Voikmar K M, Hu Y, Steppuhn H. Physiological responses of plant salinity. Canadian Journal of Plant Science,1998,78:19-27
    295. Walch-Liu P, Neumann G, Bangerth F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal ofExperimental Botany,2000,51:227-237
    296. Wang X, Shi G, Xu Q, et al. Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. Journal of Plant Physiology,2007,164,1062-1070
    297. Willekens H, Vancamp W, Lnze D. Ozone, sulfur dioxide and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotianaplum baginifolia L. Plant Physiology,1994,106:1007-1014
    298. Wu S J, Ding L, Zhu J K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell,1996,8:617-620
    299. Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14:165-183
    300. Xu D P, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant physiology, 1996,110:249-257
    301. Yamada S M, Karsuhara M W, Lelly W, et al. A family of transcripts encoding water channel protein:tissue specific expression in the common ice plant. Plant Cell.1995,7:1129-1142
    302. Yamaguchi-Shinozaki K, Takahashi Y, Berverich T, et al. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research Communications,2007,352,486-490
    303. Yamaguchi-Shinozaki K, Koizumi K, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana:sequence analysis of one cDNA clone encodes a putative trans-membrane channel protein. Plant and Cell Physiology, 1992,33:217-224
    304. Yoshbia Y, Kiyosue T, Nakashima K, et al. Regulation of levels of prolines and osmolyyte in plants under water stress. Plant and Cell Physiology,1997,38:1095-1102
    305. Zaiter H Z. Temperature, grafting methods and rootstock influence on iron deficiency chlorosis of bean. Journal of the American Society for Horticultural Science,1987,112:1023-1026
    306. Zhang G.-W., Liu Z.-L., Zhou J.-G, et al. Effects of Ca(NO3)2 stress on oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants. Plant Growth Regulation,2008,56,7-19
    307. Zhang J, Nguyer H T, Blim A. Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany,1999,50:291-302
    308. Zhao F G, Sun C, Liu Y L, et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Botanica Sinica,2003,45:295-300
    309. Zhu J H, Li X L, Christie P, et al. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agriculture Ecosystems and Environment,2005,111,70-80
    310. Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiology, 2000,124:941-948
    311. Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Physiology and Plant Molecular Biology,2002,53:247-273
    312. Zhu Y, Ito T. Effects of nutrient stress by split-root system on the growth and K, Ca, and Mg contents at different stages of hydroponically-grown tomato seedlings. Journal of the Japanese Society for Horticultural Science,2000,69,677-683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700