大爆破采场开采数值模拟分析及回采指标可视化计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对凡口铅锌矿大爆破采场的生产实际,运用数值分析方法、采空区三维探测技术和计算机三维建模技术,采用数值分析软件FLAC3D、空场精密探测系统CMS和大型三维建模软件SURPAC等数字化研究工具,结合“凡口铅锌矿采场空区三维探测及回采指标可视化计算”科研课题,开展了大爆破采场开采数值分析及回采指标可视化计算研究,主要研究内容如下:
     (1)采用SURPAC和FLAC3D组合建模技术,构建了矿柱采场回采数值分析模型。对采场回采过程进行三维数值模拟研究,分析了回采过程中采场周边充填体的破坏情况,实现了回采过程对周边充填体破坏情况的预测,为进一步改进大爆破工艺、降低回采指标和提高回采质量提供技术支持。
     (2)采用CMS探测技术,完成了凡口铅锌矿十六个大爆破采场空区的三维探测,有效地突破了凡口矿运用传统测量手段难以实现对大爆破采场空区进行精确测量的瓶颈,建立了采空区三维模型,实现了大爆破采场空区三维可视化。以此基础,运用凡口铅锌矿采场地质和爆破设计资料构建出了回采指标可视化计算所需的相关模型,为后续回采指标可视化计算奠定基础。
     (3)针对凡口铅锌矿大爆破矿柱采场的开采特点,以采空区实测模型与采场相关三维模型为基础,计算得到矿柱采场的贫化率和损失率等回采指标,实现了凡口矿大爆破矿柱采场回采指标的可视化计算,通过对比矿柱回采指标计算结果与回采数值分析结果,表明开展矿柱采场回采过程数值分析研究,对周边充填体破坏情况进行预测的方法是可行的,这对改进矿柱采场回采工艺,提高采场开采质量具有现实意义。
     (4)针对凡口铅锌矿大爆破矿房采场的开采特点,以采空区实测模型与采场相关三维模型为基础,计算得到矿房采场贫化率和损失率等回采指标,实现了凡口矿大爆破矿房采场回采指标的可视化计算,对比分析了大爆破矿房采场和矿柱采场回采指标可视化计算的差异。
This paper aimed at actual production condition of large-scale blasting stope in Fankou Lead-Zinc Mine to carry out the research of stope mining numerical analysis and mining index visual calculation. It applied numerical analysis method, cavity 3D monitoring technology and 3D modeling technology method, took Cavity Monitoring System (CMS), mining 3D software SURPAC and numerical analysis software FLAC3D as research tool, coupled with the project——Cavity 3D Monitoring and Mining Index calculation in Fankou Lead-Zinc Mine, The main aspects were as follows:
     (1) Using the Compositional Modeling technology of SURPAC and FLAC3D, conduct pillar stope numerical analysis model. By the 3D numerical analysis research for stope mining, the author analyzed the impact of mining on surrounding backfill and predicted the destruction of the surrounding backfill, which further improved the blasting process, reduced mining index and provided the technology support for recovery quality.
     (2) Using CMS, the 3D monitoring of sixteen large scale blasting cavities has been completed in Fankou Lead-Zinc Mine, which broke though the bottle-neck of accurate measurement on large-scale blasting stope using traditional means and realized 3D visualization by building three-dimensional model. Based on it, utilizing mining geology and blasting design information in Fankou Lead-Zinc Mine, the relevant model for mining index visual calculation was built, which has laid the foundation for the follow-up mining calculation.
     (3) For the features of large-scale blasting stopes in Fankou mine, based on cavity measured model and stope relevant model, the mining index of pillar stope, like dilution rate and loss rate, can be calculated, which realized mining index visual calculation of large scale blasting pillar stope. By comparing the calculation result of mining index and mining numerical results, the method of carrying out numerical analysis to predict the destruction of the surrounding backfill in the process of mining in pillar stope was proved feasible, which had important practical significance for improving the mining quality and resources recovery rate.
     (4) For the features of large-scale blasting stopes in Fankou mine, based on cavity measured model and stope relevant model, the mining index of pillar stope, like dilution rate and loss rate, can be calculated, which achieved mining index visual calculation of large-scale blasting chamber stope and comparative analyed the differences of mining index visual calculation between large-scale blasting and pillar stope.
引文
[1]邹国良.我国有色金属危机矿山发展对策[J].金属矿山,2007,(12):22-23.
    [2]古德生.地下金属矿采矿科学技术的发展趋势[J].黄金,2004,25(1):18-22.
    [3]郭金峰.我国地下矿山采矿方法的进展及发展趋势[J].金属矿山,2000,284(2):4-7,25.
    [4]王运敏.冶金矿山采矿技术的发展趋势及科技发展战略[J].金属矿山,2006,355(1):19-25,60.
    [5]王晓秋,郭冬岩,吕广忠.我国地下金属矿山采矿技术的发展与展望[J].河北理工大学学报(自然科学版),2005,30(1):7-11.
    [6]Liu Xiao-ming, Luo Zhou-quan, Luo Zhen-yan, et al. Geology automatic plotting based on secondary development of SURPAC[C]. Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application,2009: 357-360.
    [7]Gong Jian-ya, Cheng Peng-gen, Wang Dong-yang. Three dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences,2004,30 (4):391-404.
    [8]Wu Qiang, Xu Hua. An approach to computer modeling and visualization of geological faults in 3D[J]. Computers & Geosciences,2003,29(4):507-513.
    [9]Gilbertson R J. The application of the cavity measurement system at olympic dam operations[C]. Proc. Underground Operators Conference, Kalgoorlie, Western Australia,1995:245-252.
    [10]郭忠平.放顶煤开采顶煤贫化率优化研究[J].煤炭学报,2000,25(2):137-140.
    [11]John G H, Hani S M. Numerical modelling of ore dilution in blasthole stoping [J]. International Journal of Rock Mechanics and Mining Sciences,2007,44 (5):692-703.
    [12]Revey, G. F. Effects and control of overbreak in underground mining[J]. Mining Engineering,1998, (8):67.
    [13]古德生,李夕兵,等.现代金属矿床开采科学金属[M].北京:冶金出版社,2006.
    [14]谭学军,吴天秋.关于采场测量方法及其准确率之研究[J].黄金科学技术, 2005,13(1,2):25-29.
    [15]王家吉,郭国亭,马彬.空区立体测量方法初探[J].黄金科学技术,2005,13(1,2):21-24.
    [16]地矿部物化探研究所情报室.日本工程物探技术译文集[M].北京:地矿部物化探研究所,1984.
    [17]孙宗弟.高等级公路下伏宝洞勘探、危害程度评价及处治研究报告集[R].北京:科学出版社,2000.
    [18]赵永贵,李勤,郭鸿,等.频率域地震吸收cT方法及其工程应用[J].中国科学,2002,30(1):107-112.
    [19]蒋卫东.应用浅层反射地震法探测采空区[J].江西铜业工程,1999,4(1):16-18.
    [20]张进国,徐新学.高密度电法在地下煤矿采空区探测中地应用[J].西部探矿工程,2004,99:65-66.
    [21]祁民,张宝林,梁光河,等.高分辨率预测地下复杂采空区的空间分布特征-高密度电法在山西阳泉某复杂采空区中的初步应用研究[J].地球物理学进展,2006,21(1):256-262.
    [22]黄仁东,刘敦文,徐国元,等.探地雷达在厂坝铅锌矿采空区探测中的试验与应用[J].有色矿山,2003,32(6):1-3.
    [23]刘敦文,徐国元,古德生,等.采空区充填物探地雷达识别技术研究及应用[J].北京科技大学学报,2005,27(1):13-16.
    [24]刘敦文,黄仁东,徐国元.高速公路路基下采空区探地雷达探测[J].勘察科学技术,2000,6:56-58.
    [25]Naesset E. Determination of mean tree height of forest stands using airborne laser scanner data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, (52):49-56.
    [26]蔡润彬.地面激光扫描数据后处理若干关键技术研究:[硕士学位论文].上海:同济大学,2008.
    [27]Axelsson P. Processing of laser scanner data methods and algorithms [J]. ISPRS Journal of Photogrammetry and Remote Sensing,1998,53:1-6.
    [28]Huising E J, Gomes Pereira L M. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing,1998,53:245-261.
    [29]丁清光.空间三维数据的实时获取与可视化建模:[硕士学位论文].郑州:解放军信息工程大学,2006.
    [30]过江,罗周全,邓建等.三维动态空区监测系统CMS在矿山的应用[J].地下空间与工程学报,2005,1(6):994-996.
    [31]Luo Zhou-quan, Liu Xiao-ming, Zhang Bao, et al. Cavity 3D modeling and correlative techniques based on cavity monitoring[J]. Journal of Central South University of Technology,2008,15 (5):639-644.
    [32]Liu Xiao-ming, Luo Zhou-quan, Yuan Wen-ni, et al. CMS applications in metal mines of China[C]. Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application,2009:353-356.
    [33]Liu Xiao-ming, Luo Zhou-quan, Chen Qing-fa, et al.3D dynamic monitoring of collapse area based on CMS-Surpac[C]. Proceedings of the International Conference on Computer Science and Information Technology,2009:637-641.
    [34]过江,古德生,罗周全.金属矿山采空区3D激光探测新技术[J].矿冶工程.2006,26(5):16-19.
    [35]罗周全,刘晓明,张木毅,等.一种新颖的大规模采场回采指标可视化计算方法[J].中南大学学报(自然科学版),2009,40(6):1722-1736.
    [36]吴亚斌.基于CMS实测的采空区群稳定性数值模拟研究[D]:硕士学位论文.长沙:中南大学,2007.
    [37]Liu Xi-ling, Li Xi-bing, Li Fa-ben, et al.3D cavity detection technique and its application based on cavity auto scanning laser system[J]. Journal of Central South University of Technology,2008,15 (4):285-288.
    [38]曾凌方,李夕兵,刘希灵,等.栾川三道庄钼矿地下采空区三维模型的建立与可视化研究[J].矿冶工程,2008,28(3):31-33.
    [39]王明华.工程岩体三维地质建模与可视化研究:[博士学位论文].武汉:中科院武汉岩土力学研究所,2004.
    [40]Liu Xiao-ming, Luo Zhou-quan, Luo Zhen-yan, et al. Geology automatic plotting based on secondary development of Surpac[C]. Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application,2009: 357-360.
    [41]Gong Jian-ya, Cheng Peng-gen, Wang Dong-yang. Three dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences,2004,30 (4):391-404.
    [42]Wu Qiang, Xu Hua. An approach to computer modeling and visualization of geological faults in 3D[J]. Computers & Geosciences,2003,29(4):507-513.
    [43]Gilbertson R J. The application of the cavity measurement system at olympic dam operations[C]. Proc. Underground Operators Conference, Kalgoorlie, Western Australia,1995:245-252.
    [44]Breuning M. An approach to the integration of spatial data and system for 3D geo-information system[J]. Computer & Geosciences,1999,25 (1):39-48.
    [45]Fang Yuan-min, Deng Jin-can, Mi Hong-yan. Construction and visualization of 3D vacant place model[J]. Journal of Central South University of Technology.2005,15 (S1):61-64.
    [46]Gemcom Software International Inc. Surpac vision software user manual [M]. Beijing:Surpac Software International,2004.
    [47]罗周全,朱青凌,刘晓明,等.钨矿床三维建模和储量可视化计算[J].科技导报,2009,27(19):65-68.
    [48]罗周全,刘晓明,等.基于Surpac的矿床三维模型构建[J].金属矿山,2006,4(9):33-36
    [49]Zhang Li-qiang, Tan Yu-min, Kang Zhi-zhong. A method logy for 3D modeling and visualization of geological objects[J]. Science in China Series D:Earth Sciences,2009,52 (7) 1022-1029.
    [50]Wang Yi-ming, Wu Ai-xiang, Chen Xue-song, et al. New mining technique with big panels and stopes in deep mine[J]. Transactions of Nonferrous Metals Society of China,2008,18 (1):183-189.
    [51]邹艳红,周胜,陈进,等.基于三维可视化环境的地质体空间形态分析[J].地理信息世界,2008,(5):33-38.
    [52]贾建红,周传波,张亚海,等.基于Datamine的三维采矿工程可视化建模技术研究[J].金属矿山,2009,(3):111-115.
    [53]刘云,盖俊鹏,刘颖.利用3DMine软件建立矿山地质三维模型[J].矿业工程,2009,7(5):58-60.
    [54]蒋京名,王李管.Dimine矿业软件推动我国数字化矿山发展[J].中国矿业,2009,(10):90-92.
    [55]房智恒,王李管.基亏Dimine软件的采矿方法真三维设计研究与实现[J].金属矿山,2009,(5):129-131,137.
    [56]陈尚文.矿床开采中矿石的损失与贫化[M].北京:冶金工业出版社,1988.
    [57]刘国栋.降低矿床开采损失与贫化的途径[J].有色金属(矿山部分),1995,47(5):21-25.
    [58]李纪玉,陈广宁,刘福安,等.采矿损失贫化管理的探讨[J].黄金,2006,27(6):24-26.
    [59]谢宝铨.金属矿山采用直接法计算损失贫化率的剖析[J].有色矿山,1983,1(8):27-30.
    [60]黄国青,熊海.VCR法矿石损失贫化计算方法的探讨[J].有色金属(矿山部分),1993,2(8):32-35.
    [61]王勖成.有限单元法基本原理和数值解法[M].北京:清华大学出版社,1997.
    [62]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [63]过兰博.边界元法及其岩体力学中的应用[M].徐州:中国矿业大学出版社,1991.
    [64]王涛,盛谦,熊将.基于颗粒流方法自然崩落法数值模拟研究[J].岩土工程学报,2007,26(2):4202-4207.
    [65]赵奎,蔡美峰,等.某金矿残留矿柱回采的稳定性研究[J].有色金属,2003,55(2):82-86.
    [66]刘欣.深部开采采场围岩稳定性研究[D]:硕士学位论文.重庆:重庆大学,2009.
    [67]井兰如.某矿区采场回采过程的有限元模拟分析[J].地下工程经验交流会论文选集,1982,229-231.
    [68]周先明,曹平.VCR法间柱采场回采稳定性的分析[J].长沙矿山研究院季刊,1985,5(1):49-54.
    [69]王春生,王建国.阶段矿柱分条回采采场稳定性数值模拟与参数优化[J].有色金属(矿山部分),2008,60(4):36-39.
    [70]王方汉,刘欣.南京银茂铅锌矿区采场开挖稳定性分析[J].地下空间与工程学报,2010,6(2):323-328.
    [71]胡斌.深切峡谷区大型地下洞室群围岩稳定性的动态数值仿真研究:[博士学位论文].成都:成都理工大学,2001.
    [72]杨彪,罗周全,刘晓明,等.凡口铅锌矿矿柱回采稳定性数值模拟研究[J].矿业研究与开发,2007,27(5):26-29.
    [73]刘晓明,罗周全,张保,等.上向分层回采采场稳定性数值模拟研究[J].矿矿冶工程,2009,29(4):10-14.
    [74]于学馥,于加,徐俊.岩石力学新概念与开挖结构优化设计[M].北京:科学出版社,1995.
    [75]于学馥,张玉卓,葛世高.采矿岩石力学新论[M].上海:上海知识出版社,1992.
    [76]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水 电出版社,2009.
    [77]戴碧波,王李管,贾明涛等.三维数字建模技术在某铜矿山中的应用[J].地质与勘探,2007,43(3):97-101.
    [78]罗周全,吴亚斌,刘晓明,等.基于SURPAC的复杂地质体Flac3D模型生成技术[J].岩土力学,2008,29(5):1334-1338.
    [79]罗周全,刘晓明,吴亚斌,等.基于SURPAC和Phase2耦合的采空区稳定性模拟分析[J].辽宁工程技术大学学报(自然科学版),2008,27(4):485-488.
    [80]吴亚斌.基于CMS实测的采空区群稳定性数值模拟研究:[硕士学位论文].长沙:中南大学,2007.
    [81]林杭,曹平,李江腾,等.基于SURPAC的Flac3D三维模型自动构建[J].中国矿业大学学报,2008,37(3):339-342.
    [82]刘晓明.金属矿隐患空区三维信息获取及其动力失稳数值分析技术研究:[博士学位论文].长沙:中南大学,2010.
    [83]Hoek, Brown E T. Practical Estimates of Rock Mass Strength[J]. International Journal of Rock Mechanics of Mining Science,1997,34 (8):1165-1186.
    [84]Yan Chang-bin. Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement[J]. Journal of Central South University of Technology,2007,14 (2):230-235.
    [85]王星文.岩体力学[M].长沙:中南大学出版社,2004.
    [86]Germain P, Hadjigeorgiou J. Influence of stope geometry and blasting patterns on recorded overbreak [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34 (3):115-126.
    [87]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [88]李学锋,谢长江.凡口矿深部高应力区岩爆防治研究[J].矿业研究与开发,2005,25(1):76-80.
    [89]李学锋,李向东,周爱民.凡口铅锌矿深部矿体开采顺序研究[J].金属矿山,2004,(12):12-18.
    [90]颜克俊,凡口深部采场结构参数优化研究[J].采矿技术,2007,7(4):1-9.
    [91]周智勇,陈建宏,周科平,SURPAC Vision软件在矿床建模中的应用[J].矿业工程,2004,2(4).
    [92]Optech System Corporation. Cavity Monitoring System wireless user manual [M]. Toronto:Optech System Corporaten,2004.
    [93]夏永华,方源敏,孙宏生,等.三维激光探测技术在采空区测量中的应用与实践[J].金属矿山,2009,(2):113-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700