森林精准计测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精准的森林资源调查数据对于国家制定林业政策、规划方案和林业局(场)作业设计有着重要的作用和意义。长期以来,森林资源调查不但具有耗时、费力、工作量大和精度不高等特点,且相关作业可能会给森林带来破坏。本文从森林资源调查理论基础入手,阐述了森林资源调查的最新方法(多边形样地法和精准立木材积测量法),研究了精准立木材积测量法的仪器要求、测量材积精度、一元和二元材积模型建立及精度分析;分析了多边形样地布设的原则、精度及适用的范围和条件。本文旨在阐明精准森林计测几项关键技术且对其精度进行分析。本文主要研究内容可归纳如下:
     1.无损自动精准测算立木材积原理及精度分析
     用解析几何、数学分析及概率论数理统计学等数学原理解释无损立木材积测量原理与技术方法,以己知真值的电杆作为研究对象,阐明了电子经纬仪立木材积量测方法,并分别以不同区分段、不同观测距离、不同观测方位、多方位取平均值、不同观测员观测、不同电子经纬仪观测等多角度来研究外界因数对该方法精度的影响,通过研究分析,得出了影响精度的因数,提出了最佳观测方案。结合内蒙古赤峰市喀喇沁旗旺业甸林场具体树木进行了立木材积测量,提出了最佳观测方位、距离范围和区分段长度标准。
     2.一元、二元材积模型的建立及精度分析
     根据旺业甸林场十个树种在林场的数量比例,规划出十个树种(白桦、黑桦、红松、落叶松、山杨、五角枫、油松、榆树、柞树、樟子松)各径阶树木应获取的数量,使用无损自动精准测算立木材积技术获取了旺业甸林场十个常见树种不同径阶(6cm-60cm)的1003棵树木的材积,将其中80%的立木材积数据用来建立模型,通过对相关系数及模型均方差等误差因数的分析,选出最优一元、二元材积模型;将另外20%的数据结合旺业甸林场的以前为了产材而进行砍伐的数据(十个树种的常见径阶(16cm、18cm、20cm、22cm、24cm、26cm、28cm)的数据各40株树,但因五角枫保存数据每个径阶不足40棵,则五角枫各径阶选择10组数据,共计2590棵砍伐树木,取其各径阶的树高和材积的平均值)将其与材积表估算的材积进行检验,用来验证模型的精度。结果表明建立的一元、二元材积模型平均精度都达到95%以上,符合材积表精度的要求;十个树种的二元材积模型的离散率都小于一元材积模型的离散率,表明二元材积模型较一元材积模型稳定性强,二元材积模型优于-元材积模型。
     3.多边形样地法的森林资源调查与监测研究
     用空间解析几何、抽样统计学、全站仪电磁波测距、及生物空间分布生态学原理诠释了多边形样地法的森林资源调查与监测的原理与技术方法。首先选择有代表性的四块林地(疏松的人工林、密集的人工林、疏松的天然林、密集的天然林),使用全站仪放样技术在这四块林地里建立(20m*30m)或(30m*30m)的矩形样地,使用全站仪、电子经纬仪、胸径尺精准量测出这四块样地里的每棵树木的树高、胸径、材积和坐标,进而可以得到四个矩形样地的林分平均高、林分密度、平均胸径值、材积总和即蓄积量,并将这些林分特征因子作为真值。在这四块样地中,建立5-10块多边形样地,把获取的多边形样地的林分平均高、林分密度、平均胸径值、蓄积量与真值进行比较,判别精度:再分别将各矩形样地的其中两个、三个、以此累加到所有的多边形样地林分特征因子的平均值与真值比较,分析精度。
     4.多边形样地法结合林相图求算林场蓄积量
     使用机械抽样的方法,在林相图上布设了203个多边形样地点,为了尽可能的使多边形样地在旺业甸林场布设均匀,对机械抽样布设林相图的样地点稍作调动,记录下每个样地点的三维坐标,使用北斗定位导航系统在林场工作人员带领下,在规划好的林地布设多边形样地。首先用油漆标示出样地每个树木,使用胸径尺、北斗定位导航系统和全站仪记录下多边形样地点每棵树的坐标、树高、胸径,使用专门编制的多边形程序求算出林分平均高、林分密度、蓄积量等林分特征因子。结合林相图中每个小班的面积数据,本着就近原则,求算出每个小班的蓄积,最终求算出内蒙古赤峰市喀喇沁旗旺业甸林场蓄积总量为3098005.056m3。
     5.多边形样地法结合资源三号卫星影像求算林场蓄积量
     将布设的203个多边形样地点作为资源三号卫星影像的地面观测数据,反演出旺业甸林场的蓄积求算模型,精度分析表明:针叶林和阔叶林两个模型的预估精度分别达到82.51%,80.12%。
     本文的创新点可归纳如下:1.提出了一种无损精准量测立木材积的新技术,通过使用电子经纬仪精准测量立木材积技术,研建了旺业甸实验林场的一元、二元材积模型,完全可以代替伐倒解析木的材积表;2.提出了多边形样地森林资源调查的新方法,该森林资源调查方法精度在85%以上,并可实现精准监测树木的生长量。
It has an important significance and role to get the accurate surveying data on forest resource for the country to develop the forest policy and the medium-term planning, and also for forestry bureau to design the field surveying. For a long time, the forest resource surveying has some shortcomings, such as time-consuming, hard sledding, heavy workload, little accuracy and destruction of the forest, etc. So the paper made the forest resource surveying theory as the foundation, firstly, elaborated the latest methods of surveying, including polygonal plot method and nondestructive standing tree volume measurement, and then studied the instruments requirement of nondestructive standing volume measurement, measurement accuracy, compilation of unitary volume table and duality volume table and their precision analysis, finally analyzed the layout principle of the polygonal plot, precision and conditions. The paper aimed to provide a theoretical basis for the national forest resource survey by using the easiest way to solve the complex survey questions. The main research contents can be summarized as follows:
     1The principle and accuracy analysis of nondestructive precision auto-measurement in standing tree volume
     The principle and technical methods of nondestructive standing tree volume can be explained with analytic geometry, mathematical analysis and probability statistics and other mathematical principles. Choosing a pole, known the true value, as the object of study, to clarify the standing tree volume measurement with instrument of the electronic theodolite, and studying the impact of the external factor, including different areas, different observation distance, different observation orientation, multi-faceted average, different observers and different electronic theodolite on this method's accuracy. After analysis, we get the factors affecting the accuracy and bring forward the best observing programs. On account of1003trees of ten common species, the trees volume are measured, like birch, dahurian birch, korean pine, larch, aspen, acer mono maxim, chinese pine, elm, oak, scotch pine planted in Wangyedian forest farm, located in Harqin Banner, Chifeng city, Inner Mongolia. In which, selecting representative87trees (four species, five diameter classes and four kinds of slope and aspect), and letting different observers observe the trees in different direction and distance to get the data to put forward the best observation azimuth and distance range.
     2The establishment of unitary volume model and duality volume model and their precision analysis
     Based on the proportion of ten species in the Wangyedian forest farm, the numbers of each diameter class were calculated and the1003trees volume of ten common species were measured in different diameter classes, from6cm to60cm, by using nondestructive auto-measurement technology, and the80%amount of trees volume data were selected to build the model and elect the optimal unitary and duality volume models through the analysis of the error factors of correlation coefficients and mean square deviation. The other20%amount data were combined with the data of trees felled before to get the tree height and the average volume, including ten species and seven common diameter classes (16cm,18cm,20cm,22cm,24cm,26cm and28cm),40trees of each class, while the data saved of acer mono maxim were less than40trees, so we change to10trees, and all the trees amount to2590trees. Though testing with the volume table to verify the accuracy of the model, the results showed that the average accuracy of unitary volume model and duality volume model all reached more than95%, and met the precision of volume table. Duality volume model's deviation rate in ten species was less than unitary volume model which showed that the stability of duality volume model was better than unitary volume model.
     3The forest resource surveying and monitoring research of polygonal plots
     The principles and technical methods of forest resource surveying of polygonal plots can be interpreted with space analytic geometry, sampling statistics, the total station electromagnetic ranging and biological spatial distribution and ecology principle. Firstly, selecting the representative four forest lands, including loose plantation, dense plantation, loose natural forest and dense natural forest, in which the rectangular plots,20m*30m or30m*30m were built, with total station lofting techniques. Secondly, measuring each tree's height, DBH, volume and coordinate with total station, electronic theodolite and DBH scale to get the average stand height, stand density, the average DBH, and the sum of volume, namely, stand volume of the four rectangular plots, and these stand characteristics were made as the true values. Thirdly, comparing the average stand height, stand density, the average DBH, and the stand volume of5-10polygonal plots built in the four forest lands with the true values to discriminate accuracy. At last, accumulating all the polygonal plots in each rectangular plot to get the average stand characteristics factors and comparing with the true values to discriminate accuracy and determine the suitable polygonal plots numbers in different forest farm.
     4Combination with polygonal plots method and forest map to calculate the stand volume
     Using the mechanical sampling method to lay out203polygonal plots location in the forest map with recording every location's coordinate, and laying out the polygonal plots in the forest land under leading by staff with the help of Beidou satellite navigation and positioning system. Firstly, recording the coordinate of each tree marked with paint in the plots, including height, DBH with the help of DBH scale, Beidou satellite navigation and positioning system and total station, secondly, inputting all these data into specially prepared polygon program to calculate the average stand height, stand density and stand volume and other stand characteristics factors. At last, gathering every sublot's area in the forest map and calculate each sublot's volume with the principle of proximity, and total forest stand volume of the Wangyedian forest farm is3098005.056m3.
     5Combination with polygonal plots method and resources satellite No.3images to calculate the forest stand volume
     The203polygonal plots location were selected as the ground-based observations by the resources satellite No.3images to inverse the model for volume accumulation, through estimating by the model. The accuracy of the analysis show that:coniferous and broadleaf forest model forecast accuracy reached 82.51%,80.12%, respectively.
     The innovation of the paper can be summarized as follows:1The new technology of the electronic theodolite measuring the standing tree was proposed and applied with non-felled in the Wangyedian forest farm to establish the unitary volume model and duality volume model.2The polygon method was combined with standing volume method to calculate the forest stand volume.
引文
1. 北京林业学院主编.数理统计[M].北京: 中国林业出版社,1980.
    2. 常柏林,卢静芳,李效羽.概率论与数理统计[M].北京:高等教育出版社,1993.
    3. 陈霖生.“六株木样地法”测定落叶松人工林蓄积量的实验[J].东林科技,1975,(002):48-55.
    4. 大隅真一等著.于璞和等译.《森林计测学》[M].北京:中国林业出版社,1984.
    5. 邓聚龙.灰色系统基本方法[M].郑州:河南大学出版社,1987.
    6. 邓向瑞,冯仲科.三维激光扫描系统在林业中的应用研究[J].北京林业大学学报,2005,27(增2):43-47.
    7. 东北林学院林学系.应用模拟样地法进行森林调查[J].林业科技通讯,1975,(11):15-16.
    8. 杜盛珍,陈士银,全球定位系统(GPS)在林业上应用的介绍,广东林业科技,1998(1):47-50.
    9. 范海英Cyra三维激光扫描系统在精准林业中的应用研究[D].辽宁工程技术大学,2004.
    10. 房长有,朱殿敏,殷有.DQL-6立木材积测量法[J].沈阳农业大学学报,2002,33(1):48-50.
    11. 冯益明,唐守正,李增元,空间统计分析在林业中的应用[J].林业科学,2004,40(3):149-155.
    12. 冯仲科,何诚,姚山,等.一种基于高程等值线法量测树冠体积的方法[P].中国专利:201110164615.4,2011-06-14.
    13. 冯仲科,景海涛,周科亮等.全站仪测算材积的原理及精度分析[J].北京林业大学学报.2003,25(3):60-63.
    14. 冯仲科,罗旭,马钦彦,等.基于三维激光扫描成像系统的树冠生物量研究[J].北京林业大学学报,2005,27(增2):82-87.
    15. 冯仲科,殷嘉俭,贾建华,南永天.数字近景摄影测量用于森林固定样地测树的研究[J].北京林业大学学报,2001,(5):22-25
    16. 冯仲科,余新晓著.3S技术及其应用[M].北京:中国林业出版社,2000.
    17. 冯仲科,赵春江,聂玉藻等著.精准林业[M].北京:中国林业出版社,2004.
    18. 付强.数据处理方法及其农业应用[M].科学出版社,2006.
    19. 葛宏立,方陆明.遥感图像森林资源信息提取与分析研究[M].北京:科学出版社,2007.
    20. 国家林业局.国家森林资源连续清查技术规定[M].北京:国家林业局(内部),2004.
    21. 何诚,冯仲科,刘柯珍,吴露露,袁进军.高精度低成本特种环境实时定位超站仪研制的关键技术[J],《测绘科学》(Supp.1),2010,4(35):129-131.
    22. 何诚,冯仲科,刘柯珍,袁进军.云杉二元材积与蓄积量精度分析模型研究[J],《林业调查规划》,2010,35(4): 1-5.
    23. 何诚,冯仲科,袁进军,王佳,董志海,巩垠熙.基于数字高程模型的树木三维体积测量[J],《农业工程学报》,2012,08(28):195-199.
    24. 何诚,巩垠熙,冯仲科,刘柯珍,袁进军.超站仪极坐标法的运用及其探讨[J],《测绘通报》,2011,02:26-28.
    25. 何诚、冯仲科。GPS RTK联合全站仪在唐山煤矿塌陷区测图中的应用与研究[J],《测绘与空间地理信息》,2010,33(1):52-56.
    26. 黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004(1):68-74.
    27. 克劳斯.冯佳多,惠刚盈.德国现代森林经营技术[M].北京:中国科学技术出版社,2001.
    28. 克劳斯.冯佳多,惠刚盈.森林生长与干扰模型[M].国际林业研究组织联合会&中国林业科学研究院,1998.
    29. 寇文正.以“三个代表”思想为指导全面加强森林资源管理实现林业跨越式发展[J].林业资源管理,2002(2):2-8.
    30. 李明艳,刘悦翠,曹小玉.基于数量化方法的森林蓄积与环境因子关系的研究[J].西北林学院学报,2006,21(4):89-92.
    31. 李庆海,陶本藻.概率统计原理和在测量中的应用[M].北京:测绘出版社,1982.
    32. 李希菲,唐守正,王松林.大岗山实验区杉木人工林可变密度收获表的编制[J].林业科学研究,1988,1(4):382-389.
    33. 李章贵.基于RS、GIS的呈贡县总体活立木蓄积量分层抽样控制方法[J].林业调查规划.2007.Apr.32(2):15—17。
    34. 李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社.2005.
    35. 林昌庚.林木蓄积量测算技术中的干形控制问题[J].林业科学.1964:9(4):365-375,
    36. 林辉等.基于高分辨率卫星图像的立木材积表的编制[J].林业科学.2004.40(4):33-39
    37. 刘安兴.森林资源监测技术发展趋势[J].浙江林业科技.2005.25(4):70-76
    38. 刘承平.数学建模方法[M].北京:高等教育出版社.2002
    39. 罗旭.基于三维激光扫描测绘系统的森林计测学研究[D].北京林业大学,2006.
    40. 孟宪宇.使用Weibull函数对树高分布和直径分布的研究[J].北京林业大学学报,1988,10(1):40-48.
    41. 孟宪宇主编.测树学[M].北京:中国林业出版社.2004.
    42. 聂玉藻,马小军,冯仲科,等.精准林业技术的设计与实践[J].北京林业大学学报,2002.(3):18-20.
    43. 郄广平,林辉,孙华.基于六株木法的杉木蓄积量估测研究[J].四川林业科技,2011,32(2):104-107.
    44. 佘光辉,刘恩斌,叶金盛等.非线性立木材积模型参数辨识的改进算法及其应用[J].南京林业大学学报(自然科学版),2004,28(3):1-4
    45. 宋新民,李金良.抽样调查技术[M].北京:中国林业出版社.2007
    46. 孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    47. 谭炳香,杜纪山.遥感数据分析林区的植被和土壤侵蚀特征[J].林业科学,2006,42(4):7-11.
    48. 唐守正著.多元统计分析方法[M].北京:中国林业出版社,1986
    49. 童庆禧,张兵,郑兰芬.高光谱遥感:原理、计算与应用[M].北京:高等教育出版社,2006:46-283.
    50. 王雪,卫发兴,崔志新.3S技术在林业中的应用[J].世界林业研究,2005,18(2):44-47.
    51. 武汉测绘科技大学测量平差编写组.测量平差基础(第三版)[M].北京: 测绘出版社,1994.
    52. 肖化顺.森林资源监测中林业3S技术的应用现状与展望[J].林业资源管理.2004,2:53-58.
    53. 徐祯祥.测定单株立木材积的形点法[J].林业科学.1990,5:475-480.
    54. 杨华.近景摄影测量技术在立木材积测定中的应用研究[D].北京林业大学,2005.
    55. 杨龙,殷有,房长有,等.辽宁朝阳地区杨树二元材积表与一元材积表的比较[J].沈阳农业大学学报.2002,33(1):51-52.
    56. 叶功富,涂育合,田有圳等.凹叶厚朴二元立木材积方程的研究[J].北华大学学报(自然科学版).2002,6(3):528-533
    57. 游先祥.遥感原理及在森林资源环境中的应用[M].北京:中国林业出版社,2003.
    58. 于政中.森林经理学[M].北京:中国林业出版社,1993.
    59. 余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    60. 袁国仁,李晓峰.六株木抽样调查法实验一例[J].林业勘察设计,1981,(1):33-34.
    61. 张海军,张娟.3S技术在森林分类工作中的应用[J].森林工程.2003.19(2):18—19
    62. 张彦林.基于3S技术的山东省是森林蓄积量定量估测研究[D].北京林业大学,2008.
    63. 张煜星,王祝雄.遥感技术在森林资源清查中的应用研究[M].北京:中国林业出版社,2007.
    64. 赵春江,薛绪掌,王秀等.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4):7-12
    65. 赵俊兰,冯仲科.森林资源清查实时自动测量定位系统的建立与应用[J].北方工业大学学报,2000,(1):82-86.
    66. 赵茂程,郑加强,佘光辉.数据融合技术及其在林业中的应用[J].南京林业大学学报,2005,29(6):114-117.
    67. 赵鹏祥,强建华,张会儒,等.基于遥感的黄土高原天然林林地信息提取及计算机分类研究[J].西北农林科技大学学报,2006,34(10):75-79.
    68. 赵宪文.林业遥感定量估测[M].北京:中国林业出版社,1996.
    69. 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    70. 周忠福.六株木法在次生林中的应用[J].林业勘察设计,1982,(04):35-36.
    71. Acker,Steven A. etc.Biomass accumulation over the first 150 years in coastal Oregon Picea Tsuga forest [J].Journal of Vegetation Science,2000,11(5):725-738.
    72. Ahmet Karaburun,Ali Demirci,I-Shian Suen.Impacts of urban growth on forest cover in Istanbul (1987-2007)[J].Environ Monit Assess,2010,(166):267-277.
    73. Akira Kato.L.Monika Moskal.Peter Schiess,et al.Capturing tree crown formation through implicit surface reconstruction using airborne lidar data[J].Remote Sensing of Environment,2009,(113): 1148-1162.
    74. Anatoly A Gitelson,Yoram J Kaufman,Robert Stark,et al.Novel algorithms for remote estimation of vegetation faction[J]. Remote Sensing of Environment.2002,80(1):76-87.
    75. Annika Kangas, Matti Maltamo. Forest Inventory Methodology and Applications[D].The Netherlands as a part of Springer Science+Business Media All Rights Resered,2010.
    76. Avery T E, et al. Forest measurements[M]. McGraw Hill Publishing Company New York,1976.
    77. Bellhouse, D. R. A Brief History of Random Sampling Methods[J]. Handbook of Statistics, 1988,(6):1-13.
    78. Bienert A.Tree detection and diameter estimation by analysis of terrestrial laser scanner point clouds[J].IAPRS,2007,36(3):52.
    79. BOZIC M, CAVLOVIC J, LUKIC N, et al. Efficiency of ultrasonic Vertex III hypsometer compared to the most commonly used hypsometer in Croatian forestry[J]. Croatian Journal of Forest Engineering,2005,26(2):91-99.
    80. Bradley B.Walters.Local Management of Mangrove Forests in the Philip pines:Successful Conservation or Efficient Resource Exploitation[J].Human Ecology,2004,32(2):177-195.
    81. Brown S I, Schroeder. Spatial patterns of aboveground production and mortality of woody biomass for eastern U. S. forests[J]. Ecological Applications,1999 (9); 968-980.
    82. Burrough P A.GIS and geostatistics:essential partners for spatial analysis[J].Environmental and Ecological Statistics,2001,8(4):361-377.
    83. C. Song.Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery[J].Intrenational Journal of Remote Sensing,2007,28(15):3305-3322.
    84. C.Comas,M.Palahi,T.Pukkala,et al.Characterising forest spatial structure through inhomogeneous second order characteristics[J].Stoch Environ Res Risk Assess,2009,(23):387-397.
    85. Cheng He,Zhongke Feng, Han Xu,et al. The inversion processing of vegetation biomass along Yong-ting River based on multi-spectral information[J]. Spectroscopy and Spectral Analysis,2012,12(32):075-079
    86. Cheng He,Zhongke Feng,Jinjun Yuan,et al. Advances in Researches on Hyper-Spectral Remote Sensing Biodiversity and Conservation[J]. Spectroscopy and Spectral Analysis,2012,06(32):1628-1632.
    87. C.Songa,M.B.Dickinsonb.Extracting forest canopy structure from spatial information of high resolution optical imagery:tree crown size versus leaf area index[J],International Journal of Remote Sensing, 2008,29(19):5605-5622.
    88. Chalifoux. S., F. Cabayas and J. T. Gray. MapGuided Approach fir the Automatic Detection on Landsat TM Images of Forest Stands Damaged by the Spruce Budworm [J]. Photogrammetric Engineering and Remote Sensing.1998.64 (6):629-635.
    89. Chaved. P. S. Radiometric Calibration of Landsat Thematic Mapper Multispectral Images [J]. Photogrammetric Engineering and Remote Sensing.1989.55 (9):1285-1294.
    90. Chen Li-Jun,LIU Gao-Huan,FENG Xian-Feng.Estimation of Net Primary Productivity of TerrestrialVegetation in China by Remote Sensing[J].Acta Botanica Sinica,2001,43(11):1191-1198.
    91. Chiesi M, Maselli F, Bindi M, et al. Calibration and application of Forest-BGC in a Mediterranean area by the use of conventional and remote sensing data[J]. Ecological Modelling,2002.154:251-262.
    92. Chiesi M.,Maselli F, Bindi M,et al.Calibration and application of Forest-BGC in a Mediterranean area by the use of conventional and remote sensing data[J]. Ecological Modelling,2002,(154):251-262.
    93. Clark J R,Matheny,Crossg,et al.A model of urban forest sustainability[J].J Arboric,1997,23(1):17-30.
    94. Conghe Song,Curtis E.Woodcock. Estimating Tree Crown Size from Multiresolution Remotely Sensed Imagery[J].Photogrammetric Engineering & Remote Sensing,2003,69(11):1263-1270.
    95. Czaplewski, R.L.1999. Multistage remote sensing:Toward an annual national inventory [J]. Journal of Forestry,1999,97:44-48.
    96. Danson F M,Hetherington D.Forest canopy gap fraction from terrestrial laser scanning[J].Ieee Geoscience and Remote Sensing Letters,2007,4(1):157-160.
    97. David J.Nowak,Daniel E.Crane,John F.Dwyer,et al.Compensatory value of urban trees in the United States [J]. Journal of Arboriculture,2002,28(4):194-199.
    98. Doig, I. When the Douglas-firs were counted:the beginning of the forest survey [J]. Journal of Forest History,1976,20:20-27.
    99. Dong Yan,Zhao Lin-sen,Zhao Yu-xiang,et al..Quantity of plant leaf area on three major public squares in kunming City, china[J]. Journal of Forestry Research,2004,15(4):291-294.
    100. Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China an estimate based on the biomass-volume relationship [J]. Ecological Applications,1998,8 (4):1984-1991.
    101. Franco-Lopez H, Ek A.R. Bauer M.E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method [J]. Remote Sensing of Environment.2001,77(3): 251-274.
    102. Frayer, W.E. and Furnival, G.M. Forest survey sampling designs [J]. A history. Journal of Forestry, 1999,97:4-10.
    103. Gabor Brolly, Geza Kiraly. Algorithms for stem mapping by means of terrestrial laser scanning[J].Acta Silv Lign Hung,2009,5(1):119-130.
    104. Gemmell. F. M. Effects of Forest Cover, Terrain, and Scale on Timber Volume Estimation with Thematic Mapper Data in a Rocky Mountain Site [J]. Remote Sensing of Environment,1995,51(2): 291-305.
    105. Gianfranco D.De Grandi, Richard M. Lucas, Jan Kropacek. Analysis by Wavelet Frames of Spatial Statistics in SAR Data for Characterizing Structural Properties of Forests [J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(2):494-407
    106. Gorte B, Pfeifer N. Structuring laser-scanned trees using 3D mathematical morphology[J]. nternational Archives of Photogrammetry and Remote Sensing,2004,35(B5):929-933.
    107. Gorte B, Winterhalder D. Reconstruction of laser-scanned trees using filter operations in the 3D raster domain[J]. Remote Sensing and Spatial Information Sciences,2004,35(8):39-44.
    108. Goward S N. Huemmrich K F. Vegetation canopy PAR absorptanee and the normalized diference vegetation index:An assessment using the SAIL model[J]. Remote Sensing of Enviroment,1992,39: 119-140.
    109. Guangxing Wang, Tonny Oyana, Maozhen Zhang. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images[J]. Forest Ecology and Management,2009, (258):1275-1283.
    110. Hiroaki Ishii, Nate McDowell. Age-related development of crown structure in coastal Douglas-fir trees [J]. Forest Ecology and Management,2002, (169):257-270.
    111. I. Ozdemir. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing,2008,29(19):5643-5655.
    112. J. E. S. Fransson, G. Smith, J. Askne, et al. Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data[J]. International Journal of Remote Sensing,2001,22(14): 2777-2791.
    113. Jakob WeiB. A pplication and statistical analysis of terrestrial laser scanning and forest growth simulations to determine selected characteristics of Douglas-Fir stands[J], Folia Forestalia Polonica, series A,2009,51(2):123-137.
    114. Joao L.F. Batista, Douglas A. Maguire. Modeling the spatial structure of topical forests[J]. Forest Ecology and Management,1998, (110):293-314.
    115. Josee Levesquea, Douglas J. King. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modeling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment,2003, (84):589-602.
    116. Kimes, D.S. and J.A. Kirchner. Diurnal variation of vegetation canopy structure. Int. J. Remote Sens, 1983,4:257-271.
    117. Klaus Seeland, Sabine Dubendorfer, Ralf Hansmann. Making friends in Zurich's urban forests and parks:The role of public green space for social inclusion of youths from different cultures[J]. Forest Policy and Economics,2009, (11):10-17.
    118. Kutulakos, K.N. and S.M. Seitz. A theory of shape by space carving. Int. J. Comput. Vision,2000, 38:199-218.
    119. Lael Parrott, Holger Lange. Use of interactive forest growth simulation to characterize spatial structure[J]. Forest Ecology and Management,2004, (194):29-47.
    120. Lang, A.R.G. Leaf orientation of a cotton plant. Agric. Meteorol,1973,11:37-51.
    121. Lang, A.R.G. and X. Yueqin. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric. For. Meteorol,1986,37:229-243.
    122. Laurentini, A. Surface reconstruction accuracy for active volume intersection. Pattern Recogn. Lett, 1996,17:1285-1292.
    123. Laurentini, A. How many 2D silhouettes does it take to reconstruct a 3D object? Computer Vision and Image Understanding,1997,67:81-87.
    124. Laurentini, A. Computing the visual hull of solids of revolution. Pattern Recogn,1999,32:377-388.
    125. Leena Hamberg, Susanna Lehvavirta, D. Johan Kotze. Forest edge structure as a shaping factor of understorey vegetation in urban forests in Finland[J]. Forest Ecology and Management,2009, (257): 712-722.
    126. Lee K, Wanninkhof R, Takahashi T, Doney S C, Feely D. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature,1998,396:155-159
    127. Leith H and Whittaker R H (eds.) Primary productivity of biosphere [M]. Berlin,Springer-Verlag.1975
    128. Liu J, Chen J M,Chen W. Net Primary Productivity Distribution in the BOREAS Region from a Process Model Using Satellite and Surface Data[J]. Journal of Geophysical Research,1999,104(D22): 27735-27754.
    129. Loetsch, F., Zohrer, F. and Haller, K. Forest Inventory[J]. BLV Verlagsgesellschaft,1973,(2):436-469.
    130. Lugo A E, Sanchez A J, Brown S. Land use and organic carbon content of some subtropical soils[J]. Plant and Soil,1986,96:185-196.
    131. Mann L K. Change in Soil Carbon Storage after Cultivation[J]. Soil Science,1986,142:279-288.
    132. MACLEAN, G A, KRABILL, W B. Gross-merchantable timber volume estimation using an airborne lidar system[J]. Canadian Journal of Remote Sensing,1986,(12):7-18.
    133. Matti Mottus, Madis Sulev, Mait Lang. Estimation of crown volume for a geometric radiation model from detailed measurements of tree structure[J]. Ecological Modelling,2006, (198):506-514.
    134. McPherson E G, Simpson J R, Peper P J, er al. Benefit-cost analysis of Modesto municipal urban forest[J]. Jouranl of Arboriculture,1999, (25):235-247.
    135. Mcpherson E G Structure and sustainability of Sacramento's urban forest[J]. J Arboric,1998,24(4): 174-190.
    136. McGuire A D, et al. Carbon balance of the terrestrial biosphere in the twentieth century:Analyses of CO2, climate and land-use effects with four process-based ecosystems models[J]. Glob. Biogeochem. Cycles,2001,15:183-206.
    137. Meentemeyer V, Box E O, Folkoff M, Gardner J. Climatic estimation of soil properties; soil pH, litter accumulation and soil organic content[J]. Bull. Ecol. Soc. Am.1981,62:104-109.
    138. Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature,1993,363:234-240.
    139. Mitchell J F B.The Greenhouse effect and climate change[J]. Reviews of Geophysics,1989,27(1):115-139.
    140. Mizoue, N. Fractal analysis of tree crown images in relation to crown transparency. J. For. Plan,2001, 7:79-87.
    141. Mizoue, N. and A. Inoue. Automatic thresholding of tree crown images. Jpn. J. For. Plan,2001, 6:75-80.
    142. Morse, R., J. Lawton, M. Dodson and M. Williamson. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature,1985,314:731-732.
    143. Myneni R B, Keeling C D, Tucker C J, Asrar G, Nemani R R. Increased plant growth in the northern high latitudes from 1981-1991 [J]. Nature,1997,386:698-702.
    144. Moorthy I, Miller JR. Retrieving crown leaf area index from an individual tree using ground-based lidar data[J]. Canadian Journal of Remote Sensing,2008,34(3):320-332.
    145. N. C. Coops, R. H. Waring. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS[J]. Remote Sensing of Environment,2001, (75):324-334.
    146. Nelson, R. Modeling forest canopy heights:the effects of canopy shape. Remote Sens. Environ,1997, 60:327-334.
    147. Nilson, T. Radiative transfer in nonhomogeneous plant canopies. Adv. Bioclimatol,1992,1:59-88.
    148. Norman, J.M. and J.M.Welles. Radiative transfer in an array of canopies. Agron. J,1983,75:481-488.
    149. Nowak D J, Nobln M H, Sistnni S M, et al. Assessing the US urban forest resource[J]. Journal of Forestry,2001, (3):37-42.
    150. Oker-Blom, P. and S. Kellomaki. Effect of grouping of foliage on the within-stand and within-crown light regime. Comparison of random and grouping canopy models. Agric. Meteorol,1983,28:143-155.
    151. Oscar Aguirre, Gangying Hui, Klaus von Gadow. et al. An analysis of spatial forest structure using neighbourhood-based variables [J]. Forest Ecology and Management,2003, (183):137-145.
    152. P. Bolduc, K. Lowell, G. Edwards. Automated estimation of localized forest volume from large-scale aerial photographs and ancillary cartographic information in a boreal forest [J]. International Journal of Remote Sensing,1999,(18):3611-3624.
    153. Peter M Atkinson and Paul J Curran.Choosing an Appropriate Spatial Resolution for Remote Sensing Investigation[J]. Photogrammetric Engineering & Remote Sensing.1997.63(12):1345-1351
    154. Peter R J. North Estimation of APAR, LAI, and vegetation fractional cover from ATSR-2 imagery[J]. Remote Sensing of Environment,2002,80(1):114-121.
    155. Petra Kilchling, Ralf Hansmann, Klaus Seeland, et al. Demand for non-timber forest products:Surveys of urban consumers and sellers in Switzerland[J]. Forest Policy and Economics,2009, (11):294-300.
    156. Pfeifer N, B Gorte, D Winterhalder. Automatic reconstruction of single trees from terrestrial laser scanner data[C]. Proceedings of the XXth ISPRS Congress:Geo-Imagery Bridging Continents, Istanbul, Turkey,2004,35(B 5):114-119.
    157. Pfeifer N, Winterhalder D.Modelling of tree cross sections from terrestrial laser-scanning data with free-form curves[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2004,36(8):76-81.
    158. Puhr C B, Dongoghue DNM, CoxNJC, et al. Logit modeling to map canopy closure in conifer plantations:A case study using landsat TM data from SW Scotlan[J]. Remote Sensing Society Observations & Intrenations New York:The Remote Sensing Society,1997,16:171-176.
    159. Qi J, Marsett R C, Moran M S., et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area[J]. Agricultural and Forest Meteorology,2000,105:55-68.
    160. R. A. Houghton, K. T. Lawrence, J. L. Hackler, et al. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates[J]. Global Change Biology.2001, (7):731-746.
    161. Rauste, Yrjo. Techniques for wide-area mapping of forest biomass using radar data[J]. Espoo VTT Publications,2005,24:91-103.
    162. Renzo Motta, Emanuele Lingua. Human impact on size, age, and spatial structure in a mixed European larch and Swiss stone pine forest in the Western Italian Alps[J]. C an. J. For. Res,2005, (35): 1809-1820.
    163. RONALD E, MCROBERTS, ERKKI O, et al. Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research[J]. Scandinavian Journal of Forest Research, 2010,25(4):368-381.
    164. Ronald E. McRoberts, Susanne Winter, Gherardo Chirici. Large-scale spatial patterns of forest structural diversity[J]. Can. J. For. Res,2008, (38):429-438.
    165. Schreuder, H.T., Gregoire, T.G. and Wood, G.B. Sampling Methods for Multiresource Forest Inventory [M]. John Wiley Sons. New York,1993.
    166. S.E.Franklin,A.J.Maudie,M.B.Lavigne.Using Spatial Co-Occurrence Texture to Increase Forest Structure and Species Composition Classification Accuracy[J].Photogrammetric Engineering & Remote Sensing,2001,67(7):849-855.
    167. Scott E M,McPherson E G.Assessing canopy cover over streets and sidewalks in street tree population[J].Journal of Arboriculture,2002,28(6):270-276.
    168. Seppala, R.1985. Forest Inventories and the Development of Sampling Methods [J]. Silva Fennica, 1985,3:218-219.
    169. Shawn X. Meng,Victor J.Lieffers,Shongming Huang,et al.Modeling crown volume of lodgepole pine based upon the uniform stress theory[J].Forest Ecology and Management,2007,(251):174-181.
    170. Simonse M. Automatic determination of forest inventory parameters using terrestrial laser scan-ning[C]. Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests,Ume(a), Sweden,2003,26:251-257.
    171. Skidmore, A. K, et al. An Operational GIS Expert System for Mapping Forest Soils [J]. Photogrammetric Engineering and Remote Sensing.1996,62 (5):501-511
    172. Sorin C.Popescu,Randolph H.Wynne,Ross F.Nelson,et al.Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass[J].Can. J,Remote Sensing,2003,29(5):564-577.
    173. T. Svoray,M.Shoshany,P.J.Curran,et al.Relationship between green leaf biomass volumetric density and ERS-2SAR backscatter of four vegetation formations in the semi-arid zone of Israel[J].International Journal of Remote Sensing,2001,22(8):1601-1607.
    174. Tansey K,Selmes N.Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data[J].International Journal of Remost Sensing,2009,30(19):5195-5209.
    175. Tokola T.The Influence of Field Sample Data Location on Growing Stock Volume Estimation in Landsat TM-Based Forest Inventory in Eastern Finland[J].Remote Sensing of Environment,2000, 74(3):422-431.
    176. Tomppo E. Multi-source national forest inventory of Finland [J]. Metsantutkimuslaitoksen tiedonantoja, 1992,444:52-60.
    177. Tomppo E O, Gagliano C, McRoberts R E, et al. Predicting categorical forest variables using an improved k-nearest neighbour estimator and Landsat imagery[J]. Remote Sensing of Environment, 2009,113,500-517.
    178. Trotter C. M., Dymond J. R. Goulding C. J. Estimation of timber volume in a coniferous plantation forest using Landsat TM [J]. International Journal of Remote Sensing,1997,18(10):2209-2223.
    179. Wenhua Zhang,Yinghai Ke,Lindi J.Quackenbush,et al.Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery[J].Can.J.For.Res,2010,(40):1095-1108.
    180. Wezyk P,Koziol K.Terrestrial laser scanning versus traditional forest inventory first results from the polish forests[J].IAPRS,2007,36(3):424-429. Z. Fazakas, M. Nilsson and H. Olsson. Regional forest biomass and wood volume estimation using satellite data and ancillary data [J]. Agricultural and Forest Meteorology,1999,31:417-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700