腐霉菌对大豆幼苗生理生化指标的影响及其抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐霉菌在世界范围引起大豆病害,是大豆根腐病的主要病原菌之一。主要侵染土壤中未萌发的种子、出土前幼苗的下胚轴和根部、出土后植株的根尖和营养根,造成种子腐烂、幼苗出土前后倒伏等。本试验通过种子腐烂测试法,对大豆品种进行抗腐霉菌鉴定,选择抗、感腐霉菌的大豆品种,研究其幼苗接种腐霉菌后下胚轴生理生化指标的变化,评价各生理生化指标在大豆与腐霉菌互作过程中的抗性作用。结果如下:
     1.大豆对腐霉菌的抗性鉴定
     利用种子腐烂测试法对常见的大豆栽培品种进行了抗腐霉菌鉴定,结果表明东农47、黑河38、抗线5、抗线3对腐霉菌表现为高感病性,合丰52、绥07-361对腐霉菌表现为中感病性,灰不支黑豆、嫰丰16、嫰丰19、黑农55对腐霉菌表现为抗病性。
     2.腐霉菌对大豆幼苗生理、生化指标的影响
     在接种腐霉菌后,抗、感病大豆品种接种处理的侧根数、子叶的干物质含量、胚根的干物质含量和根冠比都少于对照处理,抗病品种接种处理的侧根数、子叶的干物质含量、胚根的干物质含量和根冠比的减少幅度明显小于感病品种。在腐霉菌侵染前期,抗病品种的PAL活性、几丁质酶活性、总酚含量、类黄酮含量快速上升,但感病品种在此时表现为上升较缓,抗病品种的PAL活性、几丁质酶活性、总酚含量和类黄酮含量的最大峰值都高于感病品种;抗病品种的POD活性、可溶性糖含量随接种时间的延长呈现整体快速上升的趋势,感病品种POD活性、可溶性糖含量上升则相对缓慢,抗病品种的POD峰值高于感病品种;在接种腐霉菌后,抗病品种的脯氨酸含量、丙二醛含量变化幅度明显小于感病品种。
     3.选择最佳抗、感腐霉菌的大豆杂交组合亲本
     黑农55与理想参考种的关联度最大为0.925,其它品种的关联度排序依次为嫩丰19、嫩丰16、抗线3、东农47、抗线5,选择黑农55和抗线5作为抗腐霉菌基因分子标记的抗感杂交组合的亲本,亲本DNA间具有多态性,多态性引物频率为16.00%。
Soybean was susceptible by Pythium in the world. Pythium was the main pathogens of the diseasesoybean root rot. It mainly infected unerupted seed in the soil, the hypocotyls and root before the seedemergence and the apical and nutritive root after the seed emergence. It causes the seeds to rot, theseeding lodging befor and after seedling emergence, et al. According to the seed decay test method, thisexperiment made the identification of soybean varieties for the resistance of Pythium. Physiological andbiochemical indexes change of soybean hypocotyls after soybean seeding of the resistant varieties andsusceptible varieties inoculation Pythium was studied. The resistance effect of the physiological andbiochemical index between the interaction of soybean and Pythium was studied.The results as:
     1. Identification of resistance of soybean to Pythium
     The experiment used seed decay test method on common soybean cultivars for resistance toPythium identification. The results show that Dongnong47, Heihe38, Kangxian5and Kangxian3showed high susceptibility for Pythium. Hefeng52andSui07-361performed moderate susceptibility onPythium. The Huibuzhiheidou, Nenfeng16、Zooplankton abundance19、Heinong55manifested diseaseresistance on Pythium.
     2. Effect of Pythium infection on physiological and biochemical indexes of soybean seedling
     After inoculation Pythium, the lateral root number, cotyledons of dry matter content, radicle of drymatter content and root cap of the resistant and susceptible soybean varieties was less than the controlsample.The reduced amplitude of the ratio of the lateral root number, cotyledons of dry matter content,radicle of dry matter content and root cap of the resistant soybean varieties is significantly smaller thanthe susceptible cultivar.Early infection Pythium, the content of the PAL activity, chitinase activity, totalphenolics content, and flavonoids content in resistant varieties rises quickly, but the content ofsusceptible varieties rises slowly. The peak of PAL activity, chitinase activity, total phenolics content,and flavonoids content of the disease resistant varieties was higher than that of susceptible varieties.ThePOD activity, soluble sugar content in resistant varieties with the extend of the inoculation time showsrapid upward trend. The POD peak of the disease resistant varieties was higher than that of susceptiblevarieties, but the content of susceptible varieties rises slowly. After the infection of Pythium, the prolineand MDA content of the disease resistant varieties was significantly less than that in susceptiblecultivars.
     3. Selection of the best parent crosses on the differences resistance to Pythium
     The maximum correlation of the ideal reference and Heinong55was0.925. The relevance rankingof other types in turn is Nenfeng19, Nenfeng16, Kangxian3, Dongnong47, and Kangxian5. Thisexperiment selects Heinong55and Kangxian5as the resistant and susceptible hybrid crosses that markedby the resistance to Pythium gene molecular.The DNA of resistant Heinong55and susceptibleKangxian5exists polymorphism, and polymorphic primers frequency is16%.
引文
[1] Hymowitz, T.and C.A.Newell. Taxonomy of genus Glycine,domestication and uses of soybeans[J].Econ. Bot,1981,35:272-288.
    [2] Fukuda Y.Cytogenetical studies on the wild and cultivated Manchrian soybean (GlycinemaxL.)[J]. Jap. J. Bot,1933,6:489-506.
    [3]王金陵.中国南北地区野生大豆光照生态类型分析[J].遗传学通讯,1973,(3):1-8.
    [4]常汝镇.大豆中国农学会遗传资源学会编.中国作物遗传资源[M].北京:农业出版社,1994:311-365.
    [5]王连铮.大豆的起源演化与传播[J].大豆科学,1985,4(1):1-7.
    [6]徐豹.大豆起源地的三个新论据[J].大豆科学,1986,5(2):123-130
    [7]吉林省农业科学院主编.中国大豆育种与栽培[M].北京:农业出版社,1987:3-7
    [8]吕世霖.关于我国栽培大豆原产地问题的探讨[J].中国农业科学,1978,(4):90-94
    [9]孙志强,刘玉芝,孙大敏.大豆对大豆花叶病毒1,2,3号株系的抗性的遗传[J].中国油料,1990,(2):20-24.
    [10]崔章林,盖钧锰,CarterTE,等.中国大豆育成品种及系谱分析(1923-1995)[M].北京:中国农业出版社,1998.
    [11]盖钧锰,赵团结.中国大豆育种的核心祖先亲本分析[J].南京农业大学学报,2001,24(2):20-23.
    [12] Dick,M.W. Keys to Pythium [M]. University of Reading Press,Reading,1990.
    [13] Van der Plaats-Niterink, A.J. Monograph of the genus Pythium. Study in Mycology21.Centraalbureau Voor Schimmelculutres, Baarn, the Netherlands,1981.
    [14] Saunders,G.A., J.O.Washburn, D.E.Egerter,and J.R.Anderson.Pathogenicity of fungi isolatedfrom field-collected larvae of the western treehole mosquito,Aedes sierrensis (Diptera: Culicidae)[J].J.Invert.Pathol,1988,52:360–363.
    [15] Martin, F.N.,and J.E. Loper. Soil borne plant disease caused by Pythium spp.: ecology,epidemiology and prospects for biological control [J].Plant Sci,1999,18:111-181.
    [16] Gaut, B.S., A.D.Long.The low down on linkage disequilibrium [J].Plant Cell,2003,15:1502-1506.
    [17] Southern, J.W., N.C. Schenck, and D.J. Mitchell.Comparative pathogenicity of Pythiummyriotylum and P.irregulare to the soybean cultivar Bragg [J].Phytopathology,1976,66:1380-1385.
    [18] Pankhurst, C.E., H.J. McDonald, and B.G. Hawke. Influence of tillage and crop rotation on theepidemiology of Pythium infections of wheat in red-brown earth of South Australia [J].Soil Biol.Biochem,1995,27:1065-1073.
    [19] Hendrix, F.F., and W.A.Campbell. Pythium as plant pathogens [J].Annu. Rev. Phyto pathol,1973,11:78-98.
    [20] Rizvi, S.S.A., and X.B.Yang. Fungi associated with soybean seedling disease in Iowa [J]. PlantDis,1996,80:57-60.
    [21] Rosso, M.L.,J.C. Rupe,P.Chen,and L.A.Mozzoni.Inheritance and genetic mapping ofresistance to Pythium damping-off caused by Pythium aphanidermatum in ‘Archer’ soybean [J].CropSci,2008,48:2215-2222.
    [22] Deep,I.W.,and Lipps,P.E. Recovery of Pythium arrhenomanes and its virulence to corn[J].Crop Prot,1996,15:85-90.
    [23] Rao, B., A.F. Schmitthenner, R. Caldwell, and C.W. Ellett. Prevalence and virulence ofPythium species associated with root rot of corn in poorly drained soil [J].Phytopathology,1978,68:1557-1563.
    [24] Higginbotham, R.W., T.C.Paulitz, and K.K.Kidwell.Virulence of Pythium species isolat--edfrom wheat fields in eastern Washington [J].Plant Dis,2004,88:1021-1026.
    [25] Zhang, B.Q., and Yang, X.B. Pathogenicity of Pythium populations from corn-soybeanrotation fields [J].Plant Dis,2000,84:94-99.
    [26] Hendrix, F.F. and W.A. Campbell. Some Pythiaceous fungi, new roles for old organisms
    [M].In: Zoosporic Plant Pathogens. Buczaki, S. T., Ed., Academic Press, London. Pp.1983,123–160.
    [27] Leach, L.D. Growth rates of host and pathogen as factors determining the severity ofpreemergence damping-off [J].J. Ag. Res,1997,75:161–179.
    [28] Pieczarka,D.J. and G.S. Abawi. Influence of soil water potential and temperature on severity ofPythium root rot of snap beans [J].Phytopathology,1998,68:766–772.
    [29] Sippell,D.W. and R. Hall. Effects of pathogen species, inoculum concentration,tempe rature, and soil moisture on bean root rot and plant growth [J].Can. J. Plant Pathol,1982,4:1–7.
    [30] Thomson,T.B., K.L. Athow, and F.A. Laviolette.1971. The effect of temperature on thepathogenicity of Pythium aphanidermatum, P. debaryanum, and P. ultimum on soybean [J].Phytopathology,1971,61:933-935.
    [31] Ben-Yephet,Y., and E.B. Nelson. Differential suppression of damping-off caused by Pythiumaphanidermatum, P. irregulare, and P. myiotylum in composts at different temperatures [J].Plant Dis,1999,83:356-360.
    [32] Hershman, D.E., E.H.Varney, and S.A. Johnston. Etiology of parsley damping-off andinfluence of temperature on disease development [J].Plant Dis,1986,70:927–930.
    [33] Littrell, R.H.and S.M.McCarter.Effect of soil temperature on virulence of Pythiumaphanidermatum and Pythium myriotylum to rye and tomato [J].Phytopathology,1970,60:704–707.
    [34] Brown, G.E., and B.W.Kennedy.Pythium pre-emergence damping-off of soybean in Minn esota[J].Plant Dis. Reporter,1965,49:646-647.
    [35] Broders, K.D., P.E.Lipps, P.A. Paul, and A.E. Dorrance. Characterization of Pythium spp.associated with corn and soybean seed and seedling disease in Ohio [J].Plant Dis,2007,91:727-735.
    [36] Yang, X. B. Pythium damping-off and root rot.Compendium of soybean diseases.G.L.Hartman et al.(ed.)4th ed. APS Press, St.Paul, MN [J].Pages,1999,42-44.
    [37] Kirkpatrick, M.T., J.C.Rupe, and C.S. Rothrock. Soybean response to flooded soilconditions and the association with soilborne plant pathogenic genera [J].Plant Dis,2006,90:592-596.
    [38] Kirkpatrick, M. T., C.S. Rothrock, J.C. Rupe, and E.E. Gbur.The effect of Pythium ultimumand soil flooding on two soybean cultivars [J].Plant Dis,2006,90:597-602.
    [39] Keeling, B.L. Soybean seed rot and the relation of seed exudate to host susceptibility [J].Phytopathology,1974,64:1445-1447.
    [40] Nanayakkara, R.Influence of soybean cultivars,seed quality,and temperature on seedexudation and Pythium disease development [J].Ph.D.diss.,Univ.of Arkansas,Fayetteville,2001.
    [41] Griffin, G.J.Importance of Pythium ultimum in a disease syndrome of cv[J].Essex soybean. Can. J. Plant Pathol,1990,12:135-140.
    [42]龙艳艳,韦继光,曹春梅,等.我国植物病原腐霉的为害与种类[J].中国食用菌,2008,27:77-81.
    [43]付岗,赖传雅,袁高庆,等.广西北部地区腐霉种类和地理分布研究[J].菌物学报,2005,24(3):330-335.
    [44]楼兵干,张炳欣,张耀洲.杭州地区番茄苗期猝倒病的8种腐霉的DNA多态性[J].浙江大学学报(农业与生命科学版),2000,26(6):607-610.
    [45]王晓鸣,吴全安,刘晓娟,等.寄生玉米的6种腐霉及其致病性研究[J].植物病理学报,1994,24(4):343-346.
    [46]高同春,马严明,陆悦建,等.水稻旱育秧立枯病致病菌鉴定及药剂防治研究[J].植物保护,2001,27(6):1-4.
    [47]曹齐卫,孙小镭,王志锋,等.越冬茬日光温室黄瓜腐霉根腐病的发生与防治[J].山东农业科学,2006,1:60.
    [48]楼兵干,张炳欣.PYTHIUM SYLVATICUM鉴定及其专一性PCR引物[J].菌物学报,2004,23(3):356-365.
    [49] KOUKOL J, CONN EE. The metabolism of aromatic compounds in higher plants. IV.Purification and properties of the-phenylalanine deaminase of Herdeum vulagare [J].Journal of Biologyand Chemistry,1961,236:2692-2698.
    [50]冯容宝.氨基酸的工业生产[J].发酵科技通讯,2000,29(1):11-14.
    [51] HANSONK R, HAVIR E A. Phenylalanine ammonia-lyase [J].The Bio-chemistry of Plants,1981,7:578-621.
    [52]庄炳昌.抗性不同大豆感染灰斑病后若干生化反应[J].作物学报,1994,20(3):327-333.
    [53]赵荣乐,郑光宇.ZYMV感染对甜瓜苯丙氨酸解氨酶和叶绿素的影响[J].北京师范大学学报(自然科学版),2003,39(4):515-518.
    [54]谢世勇,卢同,李本金,等.苯丙氨酸解氨酶、过氧化物酶与甘薯抗青枯病的关系[J].福建农业学报,2003,18(4):236-238.
    [55]崔彦玲,张环.番茄叶霉病抗性与苯丙氨酸解氨酶的相关性[J].华北农学报,2003,18(1):79-82.
    [56]周桂元,梁炫强.花生种子苯丙氨酸解氨酶活性与抗黄曲霉侵染的关系[J].花生学报,2002,31(1):14-17.
    [57]徐敬华,黄丹枫,支月娥.PAL活性与嫁接西瓜枯萎病抗性传递的相关性[J].上海交通大学学报(农业科学版),2004,22(1):12-16.
    [58]张俊华,崔崇士.不同抗性南瓜品种感染Phytop hthora cap sici病菌后几种酶活性测定[J].东北农业大学学报,2003,34(2):124-128.
    [59]邵金旺,党俊梅,张家骅,等.甜菜抗(耐)丛根病生理基础的研究(Ⅰ)过氧化物酶(POX)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)与甜菜抗丛根病的关系[J].内蒙古农业大学学报,1999,20(4):1-6.
    [60] Jones, D H. Review Article Number3.Phenylalanine ammonia-lyase: Regulation of itsinduction, and its role in plant development [J].Phytochemisty,1984,23(7):1349-1359.
    [61] Powell, D Robb, J, Ellis, B. Induction of phenylalanine ammonia-lyase activity inVerti cillium-infested tomato plants [J]. Canadian Journal of Plant Pathology,1987,9(1):84.
    [62] Prasad, K, Weigle, J. L. Relation of phenylalanine ammonia-lyase, activity and phaseollincontent with resis-tance to Rhizoctonia solani in Phaseolus vulgaris [J].Proceedings of the AmericanPhytopathological Society,1975,2:49.
    [63] Glazener,J A.Accumation of phenolic compounds in cells and formation of lignin-likepolymers in cell walls of young tomato fruits after inoculation with Botrytis cinerea [J]. Physiol. PlantPathol,1982,20:11.
    [64] Talieva,M N,Runkova,L V.Phenylalanine ammonia-lyase activity in onion leavesin fected by Botrytis allii Munn [J]. Mikologiya Fitopatologiya,1980,14(6):500~506
    [65] FUKUDAH, KOMAMINEA. Establishment of an experimental system for the study oftracheary element differentiation from single cellsiso lated from the mesophyll of Zinnia elegans[J].Plant Physiology,1980,65:57-60.
    [66]余沛涛,薛应龙.植物苯丙氨酸解氨酶(PAL)在细胞分化中的作用[J].植物生理学报,1986,12(1):37-38.
    [67]冯洁,陈其焕.棉株体内几种生化物质与抗枯萎之间关系的初步研究[J].植物病理学报,1991,21(4):291-297.
    [68]郭文硕.杉木对炭疽病的抗性与苯丙氨酸解氨酶的关系[J].应用与环境生物学报,2002,8(6):592-595.
    [69]王敬文,吴畏,吴友三.植物苯丙氨酸类代谢与小麦白粉病抗性的关系[J].植物病理学报,1986,16(3):169-173.
    [70] Legrand,M,Friting,B,Hirth,L. Enzymes of the phenylpropanoid pathway and the necroticreaction of hypersensi-tive tobacco to tobacco mosaic virus [J].Phytochemistry,1976,15:1353-1359.
    [71] Duchesne, M et al.Phenylalanine ammonia-lyase in tobacco mosaic virus infectedhypers ensitive tobacco [J].Bio-chim. Biophys.Acta,1977,485:465.
    [72] Massala, R et al.Effects of α-aminooxyacetate, a competitive inhibitor of Phenylalanineammonia-lyase, on the hypersensitive resistance to tobacco to tobacco mosaic virus [J].Physiol. PlantPathol,1980,16:213.
    [73]蒋选利,李振歧.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报,2001,29(6):124-129.
    [74]杨民和.水稻—稻瘟菌(Magnaporthe grisea)相互作用的细胞生物学研究[J].植物病理学报,2002,32(4):371-372.
    [75]宋从凤,王金生,施仲美,等.桉树对青枯病抗性与过氧化物酶及同工酶关系的研究[J].广西林业科学,2000,29(1):7-10.
    [76]周博如,刘太国,杨微,等.不同抗性的大豆品种感染细菌性疫病后POD、PPO变化的研究[J].大豆科学,2002,21(3):183-186.
    [77]温琪汾,刘润堂,王纶,等.谷子种质资源抗黑穗病鉴定与过氧化物酶研究[J].植物遗传资源学,2006,7(3):349-351.
    [78] Yubedee A G.Role of polyphenol oxidase, peroxidase and total phenol content indifferential resistance of Dioscorea species to Fusarium moniliforme [J].Indian Journal of AgriculturalSciences,1998,68(10):644-646.
    [79] Lebeda A, Kristkova E, Dolezal K.Peroxidase isozyme polymorphism in Cucurbitapepocultivars with various morphotypes and different level of field resistance to powdery mildew[J].Scientia Horticulturae,1999,81(2):103-112.
    [80]叶钟音,刘经芳.过氧化物酶活性及其同工酶与植物抗病性的关系[J].南京农学院学报,1984,(2):39-45.
    [81]李华琴.小麦抗感白粉病生理生化特性研究[J].贵州农业科学,1983,(2):40-45.
    [82]胡广淦,李清锐.小麦抗感白粉病过氧化物酶同工酶和醋酶的比较测定[J].江苏农学院学报,1989,(3):27-32.
    [83]邢会琴,李敏权,徐秉良,等.过氧化物酶和苯丙氨酸解氨酶与苜蓿白粉病抗性的关系[J].草地学报,2007,15(4):376-380.
    [84]马国华,王拴茂.水稻品种过氧化物酶活性和木质素含量与抗稻瘟病菌的关系[J].植物生理学通讯,1992,28(4):264-267.
    [85] Siegel B Z.Plant peroxidases-an organismic perspective [J].Plant Growth Regulation,1993,12:303-312.
    [86] Christensen J H, Purirication and characterization of peroxidases correlated withlignificationin popar xylem [J].Plant Physiol,1998,118:125-135.
    [87] Brockoert WF, Peumans WJ.Physiol Plant,1988,74(6):740
    [88]左豫虎,芮海英,杨传平,等.几丁质酶活性与大豆抗疫霉根腐病的关系[J].植物保护,2008,36(6):49-53.
    [89]刘亚光,徐刚,杨庆凯.大豆叶片内几丁质酶活性的变化与大豆抗灰斑病关系的研究[J].东北农业大学学报,2003,34(2):119-123.
    [90] Balsalobre J M,Mas P,Sanchez-Pina MA,et al.Spatial distribution of acidic chitinases and eirmessenger RNAs in tobacco plants infected with cherry leaf roll virus[J].Molecular PlanticrobeInteractions,1997,10(60):784-788.
    [91] Siva Kumar P,Sharmila P,Samadhi P.Proline alleviates salt stress-induced enhancement inribulose-l,5-bisphosphate oxygenase activity [J].Biochem BiophysRes Commun,2000,279:512-515.
    [92] Nanjo T, Kobayashi N T, Yoshiba Y, et al. Yamaguchi-shinoza-k,i biological functions ofproline in morphogenesis and osmotoler-ance revealed in antisense transgenic Arabidopsisthaliana[J].Plant J,1999,18:185-193.
    [93] Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plantsfrom osmotic stress [J]. Plant Physiol,2000,122:1129-1136.
    [94] Anjum F, Rishi V, Ahmed F.Compatibility of osmolytes with Gibbs energy ofstabilization of proteins [J]. Biochim Biophys Acta,2000,1476:75.
    [95] Matysik J, Alia Bhalu B, Mohanty P.Molecular mechanisms of quenching of reaction oxygenspecies by proline under stress in plants [J].Curr Sci,2002,82:525.
    [96] Alia P, Saradhi P, Mohanty P.Involvement of proline in protecting thy lakoid membranesagainst free radical-induced photo damage [J].J Photochem Photobiol,1997,38(2):253-257.
    [97]许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,17(6):536-642.
    [98] Delauney A J.V erma D P S.Proline biosynthesis and osmoregula-tion in plants [J].Plant J,1993(4):215-223.
    [99] Stewart G R, Lee J A. The role of proline accumulation in halo-phytes [J].Planta,1974,120:279-289.
    [100] Mc Cue K F,Hanson A D.Drought and salt tolerance:towards un-derstanding and application[J].Trends Biotech,1990(8):358-362.
    [101]陈托兄,张金林,陆妮,等.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业学报,2006,36(1):36-41.
    [102] Nakashima K, Satoh R, Kiyosue T et al (1998) A gene encoding pro-linedehydrogenase is not only induced by proline and hypoosmolari-ty, but is also developmentallyregulated in the reproductive organs of Arabidopsis. Plant Physiol,118:1233-1241.
    [103] Trotel-Aziz P, Niogret MF, Deleu C et al(2003)The control of pro-line consumption byabscisic acid during osmotic stress recovery of canola leaf discs. Physiol Plant arum,117:213-221.
    [104]郭红莲,陈捷,高增贵.游离脯氨酸在玉米灰斑病抗性机制中作用的研究[J].玉米科学,2003,11(1):83-85.
    [105]邵金旺,冯福应,张少英,等.甜菜抗(耐)丛根病性不同的品种细胞壁羟脯氨酸研究[J].中国甜菜糖业,2001(2):4-8.
    [106]赵小钒,弭忠祥.细胞壁羟脯氨酸的含量与大豆灰斑病抗性关系的研究[J].大豆科学,2000,19(2):146-150.
    [107]宋凤鸣,郑重.细胞壁经脯氨酸和游离脯氨酸与棉花对枯萎病抗性的关系[J].植物生理学报,1995,21(3):235-241
    [108]李海燕,刘惕若,甄艳.辣椒品种对疫病的抗性研究—脯氨酸、丙二醛与可溶性糖在抗病中的作用[J].中国农学通报,2006,22(11):315-317.
    [109] Nikolopoulos D, Manetas Y. Compatible solutes and in vitro stability of Sabola sada enzymes;proline incompatibility [J].Phyto-chemistry,1991,30:411-413.
    [110] Samuel D, Kumar T K S, Ganesh G, et al. Proline inhibits aggregation during proteinrefold-ing [J].Protein Sci,2000,9:344-352.
    [111] Hellmann H,Funck D,Rentsch D et al.Hypersensitivity of an Arabidopsis sugar signalingmutant towa-rd exogenous proline appli-cation [J].Plant Physiol,200,123:779-790.
    [112] Deuschle K, Funck D, Hellmann H et al. A nuclear gene encod-ing mitochondrial1-pyrroline-5-carbo-xylate dehydrogenase and its potential role in protection from proline toxicity[J].Plant J,2001,27:345-355.
    [113]甘莉,吕金殿,俞征,等.棉黄萎病对棉叶脯氨酸含量及光合蒸腾作用的影响[J].西北农业学报1992,l(1):8-11.
    [114]王少先,林晓民.TMV对辣椒花药中游离脯氨酸含量和花粉萌发率的影响[J].西北植物学报1998,18(4):545-548.
    [115]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [116]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [117]阎芝芳,马春红,魏建昆.稻瘟病致病毒素对水稻雄性不育细胞质的专化性致病机理[J].中国农业科学,1998,31(6):56-61.
    [118]史俊卿,张浩,于红威,等.立枯丝核菌毒素对人参防御酶活性及丙二醛含量的影响[J].湖南农业大学学报(自然科学版),2010,36(4):434-436.
    [119]樊堂群,迟玉成,谢宏峰,等.不同抗性花生感染网斑病菌的酶活性及丙二醛含量变化[J].花生学报,2009,38(4):31-34.
    [120]王建明,张作刚,郭春绒,等.枯萎病菌对西瓜不同抗感品种丙二醛含量及某些保护酶活性的影响[J].植物病理学报,2001,31(2):152-156.
    [121]张珏,吴小芹,施士争,等.溃疡病侵染对6个柳树无性系丙二醛及相关酶活性的影响[J].江苏林业科技,2008,35(6):9-12.
    [122]房保海,张广民,迟长凤,等.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响[J].植物病理学,2004,34(1):27-31.
    [123]商闯,马春红,翟彩霞,等.丙二醛(MDA)含量在玉米诱导抗病过程中的变化[J].华北农学报,2007,22(增刊):29-32.
    [124]翟彩霞,马春红,王立安,等.抗病激发子在诱导植物抗病性中的应用[J].华北农学报,2003,18(增刊):58-61.
    [125]闫亚杰,耿广琴,李涛.月季感染白粉病后叶片抗氧化酶活性与MDA含量的变化[J].甘肃科学学报,2010,22(3):68-71.
    [126]赵秀娟,张衍荣,胡开林.酶活性、丙二醛含量变化与豇豆抗枯萎病的关系[J].湖南农业大学学报(自然科学版),2009,35(3):245-248.
    [127]江彤,杨建卿,高明,等.不同抗病性烟草罹黑胫病后几种酶的活性及丙二醛含量的变化[J].安徽农业大学学报,2006,33(2):218-221.
    [128]翟彩霞,马春红,王立安,等.玉米在诱导抗病过程中丙二醛(MDA)含量的变化[J].玉米科学,2005,13(1):77-82.
    [129]王淑芬,张仪.大白菜干烧心病的形态结构及生理生化变化[J].园艺学报,1996,23(1):37-44.
    [130] Horsfall M P. Soluble sugar content changes and their role in the resistance of potatoesagainst phytopathora infestans [J].Biokhimiya,1953,12:141-152.
    [131] Craig J.and A.L.Hooker.Relation of sugar trends and pith density to Diplodia stalk rot in dentcorn[J].Phytopathology.1961,51:376-382
    [132]龙书生,李亚玲,张宇宏,等.糖分含量作为抗镰刀菌茎腐病玉米品种的育种指标研究[J].山东农业大学学报,1999,30(4):372-380.
    [133]周博如,李永镐,刘太国,等.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究[J].大豆科学,2000,19(2):111-114.
    [134]栾晓燕,陈怡,杜维广,等.不同抗性大豆品种(系)感染SMV后可溶性糖和游离氨基酸的研究[J].大豆科学,2000,19(4):356-361.
    [135]张建军,李祥,侯明生.小麦植株内可溶性糖含量与对梭条斑花叶病毒抗性的关系[J].植物保护,1997,23(5):16-18.
    [136]马奇祥.不同小麦品种感染根腐叶斑前后生化特性的研究[J].河南农业大学学报,1992,26(1):38-43.
    [137]梁军,王媛,贾秀贞,等.溃疡病菌对杨树愈伤组织细胞膜透性、可溶性糖及MDA含量的影响[J].林业科学,2008,44(8):72-77.
    [138]李海英,刘亚光,杨庆凯.大豆品种感染灰斑病前后可溶性糖含量的比较[J].中国油料作物学报,2002,24(3):50-51.
    [139]陈晓梅,郭顺星.植物抗病性物质的研究进展[J].植物学通报,1999,16(6):658-664
    [140]杨辉,沈火林,朱鑫,等.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系[J].植物保护科学,2006,22(5):369-373.
    [141]徐兆飞,刘亚光.灰斑病菌对大豆叶片总多酚和总黄酮的诱导研究[J].大豆科学,2006,(3):234-238.
    [142]吴元华,钟丽娟,赵秀香.烟草感染PVYN后叶脉坏死与总酚、类黄酮及PPO关系研究[J].植物病理学报,2007,37(4):398-402.
    [143] Jakkula LR, Mian M AR, Tamulonis JP and Boerma. HR. Marker assisted selection forsouthern root knot nematode resistance in soybean. Symposium of Molecular and Cellular Biology ofthe Soybean B-7.1998.
    [144] Walker DR. Boerma HR et al. Molecular breeding to pyramid in2sect resistance genes insoybean. Annual Meeting Abstract OF ASA, CSSA and SSSA.p77.1998
    [145] Van Toai TT, Boru G, Lark KG, and Martin. SKS. Mapping of QTL for tolerance to soil waterlogging in soybean. Symposium of Molecular and Cellular Biology of the Soybean B-1.1998
    [146]郑殿峰,梁喜龙,左豫虎,等.大豆根腐病菌对大豆幼苗生理生化指标的影响[J].中国油料作物学报,2004,26(3):57-61.
    [147]金庆超,叶华智,张敏.苯丙氨酸解氨酶活性与玉米对纹枯病抗性的关系[J].四川农业大学学报,2003,21(2):116-118.
    [148]周博如,刘太国,杨微,等.不同抗性的大豆品种感染细菌性疫病后POD、PPO变化的研究[J].大豆科学,2002,21(3):183-186.
    [149]杨振海.基于灰色关联度法和权重决策法评价牧草营养成分[J].陕西农业科学,2011,(5):58-60.
    [150]李彦平,丁燕芳,李雪君,等.应用模糊综合评判和灰色关联度分析评估烤烟区试新品种[J].中国烟草科学,2010,31(1):5-8.
    [151]白建军,李春艳,曹连莆,等.小黑麦抗旱相关性状的灰色关联度分析[J].新疆农业科学,2011,48(6):1083-1088.
    [152] Cregan P B, Jarvik T, Bush A L, et al. An integrated genetic link-agemap of the soybeangenome [J].Crop Science,1999,35(5):1464-1490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700