反硝化脱硫工艺运行效能及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳氮硫同步脱除工艺系统能够同时去除废水中碳、氮及硫三大类污染物,具有工艺简单、运行成本较低、无二次污染、可回收单质硫,实现资源化等优点。该工艺系统由硫酸盐还原、反硝化脱硫及硝化三个处理单元组成,其中反硝化脱硫单元是工艺系统的核心单元,创造自养反硝化菌和异养反硝化菌共存的混养生态系统,实现对硫化物、乙酸盐和硝酸盐的同时去除并积累单质硫。
     本研究在探讨反硝化脱硫工艺处理效能的基础上,采用单因子法分别考察了硫酸盐还原工艺出水中的有机物、硫酸根、氨氮及硝化工艺回流水中的亚硝酸盐对反硝化脱硫过程的影响,以期为工艺系统的串联运行提供依据。
     采用膨胀颗粒污泥床(EGSB)反应器探讨反硝化脱硫工艺的运行效能,在HRT为10h,进水硫化物浓度为800mg/L时,硫化物的去除率超过92%,理论单质硫转化率为100%,乙酸盐的去除率稳定在100%,硝酸盐的去除率约85%。
     有机物对反硝化脱硫工艺的影响试验结果表明,乙酸盐与硝酸盐的比例(C/N)在0.75~1.26时对反硝化脱硫效果的影响较小;C/N为0.75时,硫化物和乙酸盐的去除率均为100%,硝酸盐去除率最低在90%左右;C/N为1.0时,反硝化脱硫的效果最好,硫化物、乙酸盐及硝酸盐的去除率均为100%;C/N为1.26时,乙酸盐和硝酸盐的去除率均为100%,硫化物去除率为92%。试验过程中,单质硫累积效果较好,去除的硫化物全部转化为单质硫。
     在进水硫化物浓度为200mg/L,硫化物、乙酸盐及硝酸盐的摩尔比为1:1:1时考察了不同硫酸盐和氨氮浓度对反硝化脱硫工艺的影响。结果表明,两种浓度分别为170mg/L~540mg/L和100mg/L~800mg/L时,对反硝化脱工艺基本无影响;硫酸盐未发生还原;由于氨氮的电离平衡作用,出水氨氮略微有所降低。
     本研究发现,亚硝酸盐对反硝化脱硫过程没有任何抑制,而且还可以作为反硝化脱硫过程的唯一电子受体。在硝酸盐浓度为388mg/L,亚硝酸盐浓度在100mg/L、200mg/L、400mg/L各阶段变化时,硫化物和乙酸盐的去除率均为100%,硝酸盐去除率保持在80%左右;亚硝酸盐单独存在时,浓度在400mg/L、500mg/L、600mg/L各阶段变化时,自养反硝化菌和异养反硝化菌都能利用亚硝酸盐作为电子受体,乙酸盐的去除率一直保持在100%,硫化物的去除率由80%左右逐渐增加至100%,亚硝酸盐的去除率从100%下降至80%左右。
The process of simultaneous removal of carbon, nitrogen and sulfur is able to removal carbon, nitrogen and sulfur simultaneously in wastewater. It has many advantages for example low operating costs, no secondary pollution, recoverying elemental sulfur, implementing resources. The process is composed of sulfate reduction(SR), denitrifying sulfur removal(DSR)and nitration. The core unit is denitrifying sulfur nemoval process, which can cultivate autotrophic dinitrifying bacterium and heterotrophic denitrificans to remove sulfide, acetate and nitrate simultaneously with elemental sulfur accumulation.
     In this study, on the basis of investigating the treatment performance of denitrifying sulfur removal(DSR)process, the factors of the denitrifying sulfur removal(DSR)process including organism, sulfate, ammonia from SR process and nitrite from nitration process were discussed.
     Expanded granular sludge bed(EGSB)reactor was used to investigate the treatment performance of the denitrifying sulfur remova(lDSR)process. At hydraulic retention time(HRT)of 10h and the influent sulfide concentration of 200mg/L, sulfide removal rate exceeded 92%, elemental sulfur conversion rate was 100%, acetate removal rate was stable at 100%, nitrate removal ratio was about 85%.
     The experimental results showed that organism had less effect on denitrifying sulfur removal(DSR)at C/N ratio of 0.75:1~1.26:1. With C/N=0.75:1, sulfide and acetate removal rates were all 100% and nitrate removal rate was about 90%; At C/N=1.0:1, the denitrifying sulfur removal(DSR)had the best performance and sulfide, acetate and nitrate removal rates were all 100%; At C/N=1.0:1, acetate and nitrate removal rates were all 100% and sulfide removal rate was 92%. In this experiment, the removed sulfide was all oxidized to elemental sulfur(S0).
     With the influent sulfide concentration at 200mg/L and with fixed C/N/S=1:1:1, the experiment analyzed effects of sulfate and ammonia on denitrifing sulfide removal(DSR)process respectly. The results showed that sulfate concentration at 170mg/L~540mg/L and ammonia concentration at 100mg/L~800mg/L had less effect on denitrifying sulfur removal(DSR)process. In the process, sulfate concentration wasn’t reduced and the outfluent ammonia concentration is less than the influent because of the ionization of ammonia.
     This study showed that nitrite didn’t inhibit the denitrifying sulfide removal(DSR)process and it might be sole electron acceptor. With nitrate concentration at 388mg/L, three nitrite concentrations—100mg/L, 200mg/L and 400mg/L—were applied to the EGSB reactor.The sulfide and acetate removal rates were all100%, nitrate rmoval rate was kept at 80%. With no nitrate in denitrifying sulfide removal( DSR ) process, three nitrite concentrations—400mg/L, 500mg/L and 600mg/L—were applied to the reactor. In the process, autotrophic dinitrifying bacterium and heterotrophic denitrificans could all use nitrite as electron acceptor, acetate removal rate was always kept at 100%, sulfide removal rate was from 80% to 100%, but nitrite removal rate was from 100% to 80%.
引文
1 P. Nielson. Biofilm Dynamics and Kinetics during High-rate Sulfate Reduction under Anaerobic Conditions. Appl. Environ. Microbiol.. 1987, 53: 27~32
    2 E. Chio, J. M. Rim. Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment. Wat. Sci. Technol.. 1991, 23: 1259~1264
    3 J. R. Postgate. The Sulfate Reducing Bacteria. UK. Cambridge University Press,1984
    4 A. W. Khan, T. M. Trottier. Effect of Sulfur Containing Compounds on Anaerobic Degradation of Cellulose to Methane by Mixed Cultures Obtained from Sewage Sludge. Appl. Environ. Microbiol.. 1978, 35: 1027~1034
    5 M. A. M. Reise. Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria. Biotech. Bioeng.. 1992, 40(5): 593~600
    6 I. W. Koster. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res.. 1986, 20(12): 1561~1567
    7杨景亮,左剑恶.两相厌氧工艺处理硫酸盐有机废水的研究.环境科学. 1995, 6(3): 8~11
    8李亚新,苏冰琴.硫酸盐还原菌和酸矿废水生物处理技术.环境污染控制技术. 2000, 1(5): 1~11
    9任南琪,王爱杰.硫化物氧化及新工艺.哈尔滨工业大学学报. 2003, 35(3): 265~268
    10 C. J. Buisman. Biotechnological Sulfide Removal in Three Polyurethane Carrier Reactors: Stirred Reactor, Bio-rotor Reactor and Up flow Reactor . Wat. Res.. 1990, 24 (2): 245~251.
    11 G. C. Stefess and J. G. Kuenen. Factors Influencing Elemental Sulfur Production from Sulfide or Thiosulfate by Autotrophic Thiobacilli . Forum Microbiology. 1989, 12: 92
    12 K. L. Lee, Sublette. A New Biotechnological Process for Sulfide Removal with Sulfur Production [A]. Proc. of the 5th International Symp. of Anaerobic Digestion, Bologna, Italy, 1988: 19~22
    13 C. J. Buisman. Optimization of Sulfur Production in a BiotechnologicalSulfide-Removing Reactor Biotech. Bioeng. 1990, 35: 50~56
    14 C. J. Buisman. Kinetics of Chemical and Biological Sulfide Oxidation in Aqueous Solutions . Wat. Res. 1990, 24 (5): 667~671
    15 C. J. Buisman and G. Lettinga. Sulfide from Anaerobic Waste Treatment Effluent of a Papermill . Wat. Res.. 1990, 24 (3): 313~319
    16 C. J. N. Buisman. Biotechnological Sulfide Removal from Effluent. Wat. Sci. Tech. 1991, 24(3/4): 347~356
    17 P. F. Henshaw. Biotechnological Removal of Hydrogen Sulfide from Refinery Wastewater and Conversion to Elemental Sulfur. Wat. Sci.& Tech.. 1992, 25(3): 265~267
    18 P. Dezham. Digester Gas H2S Control Using Iron Salts. JWPCF. 1998, 60(4): 514-517
    19 F. J. Millero. Oxidation of H2S in Seawater as a Function of Temperature, pH, and Ionic Strength. Environ. Sci. & Technol.. 1987, 21(5): 439~443
    20 Jackson Yu. An Advanced Method of Hydrogen Sulfide Removal from Biogas. Anaerobic Treatment of Industrial Wastewater. 1990: 98~101
    21林巯安等.用改进萘醌法脱除沼气中硫化氢的研究.中国沼气. 1985, 12(1): 15~20
    22 J. P. Maree and W. F. Strydom. Biological Sulfate Removal from Industrial Effluent in an Up flow Packed Bed Reactor. Wat. Res.. 1987, 21(2): 141~146
    23 D. Y. Sorokin and A. M. Lysenko. Characterization of Heterotrophic Bacteria from the Black Sea Able To Oxidize Sulfur Compounds to Sulfate. Mikrobiologiya. 1993, 62: 1018~1031
    24 D. Y. Sorokin, A. M. Lysenko and L. L. Mityushina. Isolation and Characterization of Alkaliphilic Chemoorganoheterotrophic Bacteria Oxidizing Reduced Inorganic Sulfur Compounds to Tetrathionate. Mikrobiologiya. 1996, 65: 370~383
    25 D. Y. Sorokin. Oxidation of Inorganic Sulfur Compounds by Obligately Organotrophic Bacteria. Microbiology. 2003, 72(6): 641~653
    26 S. W. Effler, C. M. Brooks, M. T. Auer, S. M. Doerr. Free Ammonia and Toxicity Criteria in a Polluted Urban Lake. J Water Pollut Control Fed 1990, 62: 771~779
    27 C. P. L. Grady Jr., H.C. Lim, Biological Wastewater Treatment: Theory and Applications, Marcel Dekker, New York, 1980
    28 S. S. Cheng, W. C. Chen. Organic Carbon Supplement Influencing Performance of Biological Nitritification in a Fluidized Bed Reactor. Wat. Sci. Technol.. 1994, 30(11): 131~142
    29 E. Van, P. Arts, B. J. Wesselink, L. A. Robertson, J. G. Kuenen. Competition Between Heterotrophic and Autotrophic Nitrifiers for Ammonia in Chemostat Cultures. FEMS Microbiol Ecol.. 1993, 102:109~118
    30 K. Hanaki, C. Wantawin, S. Ohgaki. Effects of the Activity of Heterotrophs on Nitrification in a Suspended-growth Reactor. Water Res.. 1990, 24: 289~296
    31 S. K. Gupta, S. M. Raja. Simultaneous Nitrification Denitrification in a Rotating Biological Contactor. Envir. Tech.. 1994, 15(3): 145~153
    32 H. Yoo, K. H. Ahn. Nitrogen Removal from Synthetic Waste Water by Simultaneous Nitrification and Denitrification (SND) via Nitrate in an Intermittently-aerated Reactor. Water Res.. 1999, 33(1): 145~154
    33 J. P. Voets. Removal of Nitrogen from Highly Nitrogenous Wastewater. JWPCF. 1975, 47(4): 394~398
    34 S. Villaverde, FDZ– Ploanco, P. A. Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters: Start-up Influence. Water Res.. 2000, 34(2): 602~610
    35周少奇,周吉林.生物脱氮新技术研究进展.环境污染技术与设备. 2000, 1(6):11~18
    36 C. Hellingga, M. C. M. Van Loosdrecht. The SHARON Process for Nitrogen Removal in Ammonium Rich Wastewater. Mededelingen Faculteit Landbouwwetenschappen. Unibersiteit Gent 62(4b): 1743~1750
    37 E. B. Muller. Simultaneous NH3 Oxidation and N2 Production at Reduced O2 Tensions by Sewage Sludge Subcultured With Chemolithotrophic Medium. Biodegradation. 1995, 6: 339~349
    38 A. Mulder, Van de Graaf L. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbial Ecol.. 1995, 16(3): 177~183
    39 M. S. M. Jetten. Towards a More Sustainable Waste Water System. Wat. Sci. Tech.. 1997, 35(9): 171~180
    40 Linping Kuai, Willy Verstraete. Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-Denitrification System. Appl. Envir. Microbial.. 1998,64: 4500~4506
    41王爱杰,杜大仲,任南琪.脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用.哈尔滨工业大学学报. 2004, 36(4): 423~425
    42杜大仲.脱氮硫杆菌的同步脱硫反硝化技术关键因素与运行效果研究.哈尔滨:哈尔滨工业大学, 2004
    43 A. J. Wang, D. Z. Du, N. Q. Ren. An Innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrifican. Journal of Environmental Science and Health. 2005, 40A (10): 1939~1950
    44 A. J. Wang, D. Z. Du, N. Q. Ren. An innovative process of simultaneous de-sulfurization and de-nitrification by thiobacillus denitrificans. The 10th Congress on Anaerobic Digestion. Oral presentation. 29 August - 2 September 2004 - Montreal, Canada
    45 J. J. Bisogni Jr., C. T. Driscoll Jr.. Denitrification Using Thiosulfate and Sulfide. J. Env. Eng.. 1977, 103: 593~604
    46 C. T. Driscoll, J. J. Bisogni. The Use of Sulfur and Sulfide in Packed-bed Reactors for Autotrophic Denitrification. JWPCF. 1978, 50(3): 569~577
    47 B. Batchelor and A. W. Lawrence. Autotrophic Denitrification Using Elemental Sulfur. JWPCF. 1978b, 50: 1986~2001
    48 A. W. Lawrence, J. J. Bisogni Jr., B. Batchelor, C. T. Driscoll Jr.. Autotrophic Denitrification Using Sulfur Electron Donors. Environmental Protection Tecnology Series. EPA. n600/2-78~113, Jul, 1978, 127p
    49 J. C. Kruith. Nitrate Removal from Ground Water by Sulfur/Limestone Filtration. Water Supply. 1988, 6: 207~217
    50 T. C. Zhang and D. G. Lampe. Sulfur:Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-contaminated Water: Batch Experiments. Water Research. 1999, 33(3): 599~608
    51 A. Koenig and L. H. Liu. Autotrophic Denitrification of Landfill Leachate Using Elemental Sulfur. Wat. Sci. Tech.. 1996, 34(5~6): 469~476
    52 A. Koenig and L. H. Liu. Kinetic Model of Autotrophic Denitrification in Sulfur Packed-bed Reactors. Water Research. 2001, 35(8): 1969~1978
    53 A. Darbi, T. Viraraghavan, R. Butler and D. Corkal. Column Studies on Nitrate Removal from Potable Water. Water, Air, and Soil Pollution. 2003, 150: 235~254
    54 F. Hiroaki, T. Hideki and F. Kenji. Effects of pH and Alkalinity onSulfur-Denitrification in a Biological Granular Filter. Wat. Sci. Tech.. 1996, 34(1-2): 355~362
    55 S. E. Oh, Y. B. Yoo, J. C. Young, I. S. Kim. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Mixotrophic Conditions. J. of Biotechnology. 2001, 92: 1~8.
    56 K. L. Londry and J. M. Suflita. Use of Nitrate to Control Sulfide Generation by Sulfate-reducing Bacteria Associated with Oily Waste. J. of Industrial Microbiology & Biotechnology. 1992, 22: 582~589
    57 M. S. Cecilia, M. Gerard, D. B. Dirk. Biofilm Dynamics Studied With Microsensors and Molecular Techniques. Wat. Sci. TecH.. 1998, 37: 125~129
    58 O. Satoshi, M. S. Cecilia, D. B. Dirk. Effects of Nitrite and Nitrate on in situ Sulfide Production in an Activated Sludge Immobilized Agar Gel File as Determined by Use of Microelectrodes. Biotech. Bioeng.. 2003, 81(5): 570~577
    59 G. D. L. Juan, C. Alfonso, M. G. Juan, et al.. Nitrate Prmotes Biological Oxidation of Sulfide in Wastewaters: Experiment at Plant-scale. Biotech. Bioeng.. 2006, 93(4):801~811
    60 P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor-Ⅰ. Water Research. 1988, 22(9): 1075~1083
    61 P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor-Ⅱ. Water Research. 1988, 22(9): 1085~1092
    62 R. A. Jesus, R. F. Elias, G. Jorge. Simultaneous Biological Removal of Nitrogen, Carbon and Sulfur by Denitrification. Water Research. 2004, 38: 3313~3321
    63 R. Sierra, F. Guerrero, P. Rowlette, S. Freeman, J. A. Field. Comparison of chemo-, hetero-and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol. 2005, 52(1–2): 337~342
    64邓旭亮.同步脱硫反硝化工艺运行效能及关键影响因素研究.哈尔滨:哈尔滨工业大学, 2006
    65 A. J. Wang, C. S. Liu, N. Q. Ren. Feasbility of an innovative integrated process of sinultaneous desulfurization and denitrification for high strength wastewater. Journal of Harbin Institue of Technology(New Series). 2008, 15(1): 13~17
    66 C. Chen, N. Q. Ren, A. J. Wang. Simultaneous biological removal of sulfur,nitrogen and carbon using EGSB reactor. Appl Microbiol Biotechnol. 2008, 78: 1057~1063
    67 A. J. Wang, C. S. Liu, N. Q. Ren. Optimization of Process Patterns of Simultaneous Desulfurization and Denitrification for Inorganic Sulfate-laden Wastewater Treatment. The 2nd International Conference on Bioinformatics and Biomedical Engineering. 16 - 18 May 2008 - Shanghai, China
    68国家环保局《水和废水监测分析方法》编委会.水和废水分析监测方法(第四版).北京:中国环境科学出版社. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700