同步脱硫反硝化工艺运行效能及关键影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究基于具有反硝化功能的自养硫氧化细菌可在厌氧条件下利用硫化物为电子供体、硝酸盐为电子受体进行代谢活动同时胞外生成单质硫的生理特性,利用定向驯化的活性污泥启动厌氧固定床生物膜——同步脱硫反硝化反应器,从而创造一个自养硫氧化/反硝化菌和异养反硝化菌共存的混养生态系统,通过二者的协同作用,实现对硫化物、硝酸盐和乙酸盐的同时去除以及单质硫的积累。
     通过在不同条件下的连续流运行,考察了混养条件下同步脱硫反硝化工艺的可行性,探讨了工艺运行的关键影响因素如pH值和硫氮比,并在此基础上确定了本工艺系统的最大处理负荷。结果表明:①混养条件下可获得了良好的硫化物、硝酸盐和乙酸盐的同步去除以及单质硫生成的效果,硫化物的毒性对系统中微生物没有明显的抑制作用;②混养条件下自养反硝化菌和异养反硝化菌是共生的关系。异养反硝化菌通过利用自养反硝化菌的代谢中间产物亚硝酸根,促进自养反硝化活动的进行,同时保证了工艺过程中单质硫的大量积累;③较低的偏碱性pH值条件有利于同步脱硫反硝化过程的进行,在较高的pH值条件下,单质硫产率较低;④硫氮比对工艺的运行效能影响显著,硫氮比为5/6时可获得最佳的硫化物去除和单质硫生成的效果;⑤工艺的最大处理负荷为2.4 kgS2-/m3d,该负荷条件下可获得100%的硫化物去除率和略高于2.4 kgS/m3d的理论单质硫产率。更高的负荷条件下,工艺的运行效能大幅度降低。结合试验结果,对同步脱硫反硝化过程的机理进行了探讨,并推导了该过程的反应计量式。
     混养同步脱硫反硝化工艺比单独自养时具有更佳的去除硝酸根的能力,是废水处理中一项经济高效的厌氧生物新技术。
In this study, a laboratory-scale anaerobic fixed-bed bio-reactor was used to investigate the treatment performance and key factors of simultaneous de-sulfurization and de-nitrification process. Activated sludge was domesticated directionally to cultivate autotrophic sulfur-oxidizing/denitrifying bacterium, which are capable to oxidize sulfide to elemental sulfur when nitrate was adopted as electron acceptor under anaerobic or anoxic conditions and accumulate elemental sulfur extracellularly. Acetate was also added to incubate heterotrophic denitrificans. Thus, autotrophs and heterotrophs coexisted in the ecosystem, and cooperated to remove sulfide, nitrate and acetate simultaneously with elemental sulfur accumulation.
     The feasibility of simultaneous desulfurization and denitrification under mixotrophic condition was investigated via continuous-flow tests. Then key factors of the process, including pH value and sulfide/nitrate (S/N) ratio, were discussed. Under the optimum pH value and S/N ratio conditions, the volume loading rates were elevated until the treatment performance declined. The experimental results suggest:①The simultaneous removal of sulfide, nitrate and acetate as well as elemental sulfur accumulation could be achieved under mixotrophic condition. It was shown that the toxicity of sulfide had little inhibition on the functional microorganisms in this system.②The relation between autotrophic sulfur-oxidizing/denitrifying bacteria and heterotrophic denitrifiers was symbiotic. The heterotrophs could accelerate the autotrophic denitrification by utilizing its intermediate products, namely nitrite, which also ensured the accumulation of elemental sulfur.③Lower alkalescent pH condition was favorable to the SDD process. The theoretical S0 production rate was much lower under higher pH conditions.④S/N ratio had a remarkable influence on the treatment performance. The optimum S/N ratio to acquire the best efficiencies of both sulfide removal and elemental sulfur accumulation was supposed to be 5/6.⑤Complete sulfide removal and a theoretical elemental sulfur production rate of 2.4 kgS/m3d were achieved at a volume loading rate of 2.4 kgS2-/m3d. At higher loading rates, the efficiency deteriorated sharply. Based on these results, the
引文
1 邓良伟,唐一,吴彦. 生物脱硫机理及其研究进展. 上海环境科学. 1998,12(5):35~39
    2 Peter Fox and Venkatraghavan Venkatasubbiah. Coupled Anaerobic/Aerobic Treatment of High-sulfate Wastewater with Sulfate Reduction and Biological Sulfide Oxidation. Wat. Sci. Tech, 1996, 34:359-366
    3 F. Cadena and R. W. Peters. Evaluation of Chemical Oxidizer for Hydrogen Sulfide Control. JWPCF, 1988, 60:1259-1263
    4 P. H. Nielson. Biofilm Dynamics and Kinetics during High-rate Sulfate Reduction under Anaerobic Conditions. Appl. Environ. Microbiol.. 1987, 53: 27~32
    5 E. Chio, J. M. Rim. Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment. Wat. Sci. Technol.. 1991, 23: 1259~1264
    6 J. R. Postgate. The Sulfate Reducing Bacteria. UK. Cambridge University Press, 1984
    7 A. W. Khan, T. M. Trottier. Effect of Sulfur Containing Compounds on Anaerobic Degradation of Cellulose to Methane by Mixed Cultures Obtained from Sewage Sludge. Appl. Environ. Microbiol.. 1978, 35: 1027~1034
    8 M. A. M. Reise. Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria. Biotech. Bioeng.. 1992, 40(5): 593~600
    9 I. W. Koster. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res.. 1986, 20(12): 1561~1567
    10 杨景亮,左剑恶. 两相厌氧工艺处理硫酸盐有机废水的研究. 环境科学. 1995,6(3):8~11
    11 李亚新,苏冰琴. 硫酸盐还原菌和酸矿废水生物处理技术. 环境污染控制技术. 2000,1(5): 1~11
    12 任南琪,王爱杰. 硫化物氧化及新工艺. 哈尔滨工业大学学报. 2003,35(3):265~268
    13 C. J. Buisman. Biotechnological Sulfide Removal in Three Polyurethane Carrier Reactors: Stirred Reactor, Bio-rotor Reactor and Up flow Reactor .Wat. Res.. 1990, 24 (2): 245-251.
    14 G. C. Stefess and J. G. Kuenen. Factors Influencing Elemental Sulfur Production from Sulfide or Thiosulfate by Autotrophic Thiobacilli . Forum Microbiology. 1989, 12: 92
    15 Lee, K. L. Sublette. A New Biotechnological Process for Sulfide Removal with Sulfur Production [A]. Proc. of the 5th International Symp. of Anaerobic Digestion, Bologna, Italy, 1988: 19-22
    16 C. J. Buisman. Optimization of Sulfur Production in a Biotechnological Sulfide-Removing Reactor Biotech. Bioeng. 1990, 35:50-56
    17 C. J. Buisman. Kinetics of Chemical and Biological Sulfide Oxidation in Aqueous Solutions . Wat. Res. 1990, 24 (5): 667-671
    18 C. J. Buisman and G. Lettinga. Sulfide from Anaerobic Waste Treatment Effluent of a Papermill . Wat. Res.. 1990, 24 (3): 313-319
    19 C. J. N. Buisman. Biotechnological Sulfide Removal from Effluent. Wat. Sci. Tech. 1991, 24(3/4): 347-356
    20 P. F. Henshaw. Biotechnological Removal of Hydrogen Sulfide from Refinery Wastewater and Conversion to Elemental Sulfur. Wat. Sci.& Tech.. 1992, 25(3): 265-267
    21 P. Dezham. Digester Gas H2S Control Using Iron Salts . JWPCF. 1998, 60 (4): 514-517
    22 F. J. Millero. Oxidation of H2S in Seawater as a Function of Temperature, pH, and Ionic Strength. Environ. Sci. & Technol.. 1987, 21(5): 439-443
    23 Jackson Yu. An Advanced Method of Hydrogen Sulfide Removal from Biogas. Anaerobic Treatment of Industrial Wastewater. 1990: 98-101
    24 林巯安等. 用改进萘醌法脱除沼气中硫化氢的研究. 中国沼气. 1985, 12(1): 15~20
    25 J. P. Maree and W. F. Strydom. Biological Sulfate Removal from Industrial Effluent in an Up flow Packed Bed Reactor. Wat. Res.. 1987, 21(2): 141-146
    26 D. Y. Sorokin and A. M. Lysenko. Characterization of Heterotrophic Bacteria from the Black Sea Able To Oxidize Sulfur Compounds to Sulfate. Mikrobiologiya. 1993, 62: 1018–1031
    27 D. Y. Sorokin, A. M. Lysenko and L. L. Mityushina. Isolation and Characterization of Alkaliphilic Chemoorganoheterotrophic BacteriaOxidizing Reduced Inorganic Sulfur Compounds to Tetrathionate. Mikrobiologiya. 1996, 65: 370–383
    28 D. Y. Sorokin. Oxidation of Inorganic Sulfur Compounds by Obligately Organotrophic Bacteria. Microbiology. 2003, 72(6): 641~653
    29 S. W. Effler, C. M. Brooks, M. T. Auer, S. M. Doerr. Free Ammonia and Toxicity Criteria in a Polluted Urban Lake. J Water Pollut Control Fed 1990, 62: 771–779
    30 C. P. L. Grady Jr., H.C. Lim, Biological Wastewater Treatment: Theory and Applications, Marcel Dekker, New York, 1980
    31 S. S. Cheng, W. C. Chen. Organic Carbon Supplement Influencing Performance of Biological Nitritification in a Fluidized Bed Reactor. Wat. Sci. Technol.. 1994, 30(11): 131–142
    32 E. Van, P. Arts, B. J. Wesselink, L. A. Robertson, J. G. Kuenen. Competition Between Heterotrophic and Autotrophic Nitrifiers for Ammonia in Chemostat Cultures. FEMS Microbiol Ecol.. 1993, 102:109–118
    33 K. Hanaki, C. Wantawin, S. Ohgaki. Effects of the Activity of Heterotrophs on Nitrification in a Suspended-growth Reactor. Water Res.. 1990, 24: 289–296
    34 S. K. Gupta, S. M. Raja. Simultaneous Nitrification Denitrification in a Rotating Biological Contactor. Envir. Tech.. 1994, 15(3): 145-153
    35 H. Yoo, K. H. Ahn. Nitrogen Removal from Synthetic Waste Water by Simultaneous Nitrification and Denitrification (SND) via Nitrate in an Intermittently-aerated Reactor. Water Res.. 1999, 33(1): 145-154
    36 J. P. Voets. Removal of Nitrogen from Highly Nitrogenous Wastewater. JWPCF. 1975, 47(4): 394-398
    37 S. Villaverde, FDZ – Ploanco, P. A. Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters: Start-up Influence. Water Res.. 2000, 34(2): 602-610
    38 周少奇,周吉林. 生物脱氮新技术研究进展. 环境污染技术与设备. 2000,1(6):11-18
    39 C. Hellingga, M. C. M. Van Loosdrecht. The SHARON Process for Nitrogen Removal in Ammonium Rich Wastewater. Mededelingen Faculteit Landbouwwetenschappen. Unibersiteit Gent 62(4b): 1743-1750
    40 E. B. Muller. Simultaneous NH3 Oxidation and N2 Production at Reduced O2 Tensions by Sewage Sludge Subcultured With Chemolithotrophic Medium. Biodegradation. 1995, 6: 339-349
    41 A. Mulder, Van de Graaf L. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbial Ecol.. 1995, 16(3): 177-183
    42 M. S. M. Jetten. Towards a More Sustainable Waste Water System. Wat. Sci. Tech.. 1997, 35(9): 171-180
    43 Linping Kuai, Willy Verstraete. Ammonium Removal by the Oxygen-limited Autotrophic Nitrification-Denitrification System. Appl. Envir. Microbial.. 1998, 64: 4500-4506
    44 王爱杰,杜大仲,任南琪. 脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用. 哈尔滨工业大学学报. 2004,36(4):423~425
    45 杜大仲. 脱氮硫杆菌的同步脱硫反硝化技术关键因素与运行效果研究. 哈尔滨:哈尔滨工业大学,2004
    46 Wang Aijie, Du Dazhong, Ren Nanqi. An Innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrifican. Journal of Environmental Science and Health. 2005, 40A (10): 1939-1950
    47 Wang Aijie, Du Dazhong, Ren Nanqi. An innovative process of simultaneous de-sulfurization and de-nitrification by thiobacillus denitrificans. The 10th Congress on Anaerobic Digestion. Oral presentation. 29 August - 2 September 2004 - Montreal, Canada
    48 J. J. Bisogni Jr., C. T. Driscoll Jr.. Denitrification Using Thiosulfate and Sulfide. J. Env. Eng.. 1977, 103: 593–604
    49 C. T. Driscoll, J. J. Bisogni. The Use of Sulfur and Sulfide in Packed-bed Reactors for Autotrophic Denitrification. JWPCF. 1978, 50(3): 569–577
    50 B. Batchelor and A. W. Lawrence. Autotrophic Denitrification Using Elemental Sulfur. JWPCF. 1978b, 50: 1986?2001
    51 A. W. Lawrence, J. J. Bisogni Jr., B. Batchelor, C. T. Driscoll Jr.. Autotrophic Denitrification Using Sulfur Electron Donors. Environmental Protection Tecnology Series. EPA. n600/2-78-113, Jul, 1978, 127p
    52 J. C. Kruith. Nitrate Removal from Ground Water by Sulfur/Limestone Filtration. Water Supply. 1988, 6: 207-217
    53 T. C. Zhang and D. G. Lampe. Sulfur:Limestone Autotrophic Denitrification Processes for Treatment of Nitrate-contaminated Water: Batch Experiments. Water Research. 1999, 33(3): 599-608
    54 A. Koenig and L. H. Liu. Autotrophic Denitrification of Landfill Leachate Using Elemental Sulfur. Wat. Sci. Tech.. 1996, 34(5~6): 469~476
    55 A. Koenig and L. H. Liu. Kinetic Model of Autotrophic Denitrification in Sulfur Packed-bed Reactors. Water Research. 2001, 35(8): 1969-1978
    56 A. Darbi, T. Viraraghavan, R. Butler and D. Corkal. Column Studies on Nitrate Removal from Potable Water. Water, Air, and Soil Pollution. 2003, 150: 235-254
    57 Hiroaki Furumai, Hideki Tagui and Kenji Fujita. Effects of pH and Alkalinity on Sulfur-Denitrification in a Biological Granular Filter. Wat. Sci. Tech.. 1996, 34(1-2): 355-362
    58 S. E. Oh, Y. B. Yoo, J. C. Young, I. S. Kim. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Mixotrophic Conditions. J. of Biotechnology. 2001, 92: 1-8.
    59 K. L. Londry and J. M. Suflita. Use of Nitrate to Control Sulfide Generation by Sulfate-reducing Bacteria Associated with Oily Waste. J. of Industrial Microbiology & Biotechnology. 1992, 22: 582-589
    60 Cecilia M. Santegoeds, Gerard Muyzer and Dirk de Beer. Biofilm Dynamics Studied With Microsensors and Molecular Techniques. Wat. Sci. TecH.. 1998, 37: 125-129
    61 Satoshi Okabe, Cecilia M. Santegoeds, Dirk De Beer. Effects of Nitrite and Nitrate on in situ Sulfide Production in an Activated Sludge Immobilized Agar Gel File as Determined by Use of Microelectrodes. Biotech. Bioeng.. 2003, 81(5): 570~577
    62 Juan Garcia de Lomas, Alfonso Corzo, Juan M. Gonzalez, et al.. Nitrate Prmotes Biological Oxidation of Sulfide in Wastewaters: Experiment at Plant-scale. Biotech. Bioeng.. 2006, 93(4):801-811
    63 P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor- Ⅰ . Water Research. 1988, 22(9): 1075-1083
    64 P. J. F. Gommers, W. Bijleveld, F. J. Zuiderwijk and J. G. Kuenen.Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor- Ⅱ . Water Research. 1988, 22(9): 1085-1092
    65 Jesus Reyes-Avilla, Elias Razo-Flores and Jorge Gomez. Simultaneous Biological Removal of Nitrogen, Carbon and Sulfur by Denitrification. Water Research. 2004, 38: 3313-3321
    66 国家环保局《水和废水监测分析方法》编委会. 水和废水分析监测方法(第四版). 北京:中国环境科学出版社.2002
    67 刘广民, 任南琪,王旭. 连续流完全混合生物膜法处理硫酸盐废水.中国给水排水,2003,19(10):10-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700