驱动空调压缩机的永磁同步电动机的控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电动机因其具有结构简单、易维护、运行效率高、调速性能好等优点而在中小功率驱动场合得到了广泛应用。随着近年来对空调系统性能、能效比的要求越来越高,空调系统中驱动压缩机的传统的异步电机已逐步被永磁同步电动机所取代。本文紧紧围绕着驱动空调压缩机的永磁同步电动机这个研究对象展开,针对压缩机的负载特性和节能的目的进行了一些新型控制策略的研究和探索。
     本文首先描述了静止三相、静止两相与旋转两相坐标系下的永磁同步电动机的数学模型,在此基础上主要分析与探讨了永磁同步电动机矢量控制的原理及其应用较多的SVPWM调制方法,然后简单介绍了直接转矩控制原理。并选择id=0的转子磁场定向的速度和电流双闭环控制方案作为驱动压缩机的永磁同步电动机的一种控制策略。
     由于空调压缩机内部运行环境十分恶劣,传统的机械式位置传感器已经不能使用,本文利用滑模观测器对永磁同步电机的转子位置和转速进行了实时在线的估算。对滑模观测器的原理做了深入的研究和分析,在α-β坐标系下建立了滑模观测器的状态方程。针对算法中出现的抖振现象以及转速计算精度不高的问题,采用了以近似饱和函数取代开关函数以及锁相环代替直接微分计算转速的改进方法。
     为了降低空调系统中驱动压缩机的永磁同步电动机的能量消耗,本文在驱动压缩机的永磁同步电动机的控制中使用了基于瞬时功率开关表进行直接功率控制的新策略。该策略根据定子磁链所在扇区、瞬时有功功率和瞬时无功功率的两个滞环输出,查询瞬时功率开关表选取合适的空间电压矢量进行输出,从而对瞬时功率进行直接控制达到调速的目的。实验结果表明,该策略可以将无功功率控制在零附近,提高电机的功率因数。
     在永磁同步电机驱动的单转子压缩机变频空调系统中,呈周期性波动的负载转矩使得永磁同步电机的转速产生同周期的脉动。在低速运行时,速度脉动引起的整个空调系统框架的振动、高噪声等现象尤其明显,同时降低了系统的效率。本文在分析了这类周期性负载扰动对系统速度稳定度的影响的基础上,基于重复控制原理的动态补偿方法提出了在永磁同步电机速度控制环上采用一种重复控制和PI控制相结合的复合控制方案,以抑制周期性负载扰动引起的转速脉动。该方案在稳态时采用重复控制加PI控制以获得较好的稳态性能,而在动态过程中以PI控制作用为主来获得良好的动态响应。仿真和实验结果证明了该控制方案的可行性、正确性并具有很强的工程实用意义。
     在电动机控制中,三相电流采样是一个核心环节。为了降低变频空调控制器成本、减少其体积,提高效率,本文根据相电流、直流母线电流及逆变器开关状态之间的关系,给出了一种基于单电阻采样直流母线电流的方式进行电机相电流重构的方案。该方案通过空间电压矢量移相的方法解决了三相电流重构的难点。仿真和实验结果表明该方法的有效性和正确性。
     借助于Matlab软件和全数字控制硬件平台,对上述的理论和策略进行了仿真和实验验证。
Permanent Magnet Synchronous Motor(PMSM)has been widely used in motor drive occasions because of its simple structure,easy maintenance, high efficiency, excellent performance. With the air-condition system performance and energy efficiency is becoming increasingly demanding in recent years, the traditional induction motor used in compressor has gradually been replaced by permanent magnet synchronous motor. This paper focuses and elaborates on permanent magnet synchronous motor-driven compressor, and explores new control strategies for the compressor load characteristics and energy-saving purposes.
     This paper first describes permanent magnet synchronous motor mathematical model in the static three-phase, two-phase stationary phase and two-phase rotating coordinate system. The vector control theory of PMSM and SVPWM modulation method are analyzed and discussed in detail. The principle of direct torque control is then introdued in brief. The rotor flux orientation method of id = 0 is selected to achieve the speed and current dual closed-loop program for permanent magnet synchronous motor-driven compressor system.
     As the air-conditioning compressor within the operating environment is very poor, the traditional mechanical position sensors can no longer be used, so sliding mode observer is used in this paper to estimate the rotor position and speed of PMSM real-time online. The principle of sliding mode observer and its model of PMSM in theα-βcoordinate system are also analyzed in detail. For chattering phenomenon and the speed of calculation accuracy is not high, approximate saturation function and differential phase-locked loop are used to replace the switching function and directly differential calculation method respectively.
     In order to reduce energy consumption of PMSM-driven compressor in air-conditioning system, a new strategy namely direct power control is proposed to achieve energy-saving purpose in this paper. Based on the analysis of relationship of the active power、reactive power、torque and stator flux-linkage, the direct power control (DPC) control method for PMSM is studied in detail. It selects optimum space voltage vector to control the instantaneous power through optimum switching table which based on the sector of flux linkage and the output of the active and reactive power hysteresis. The goal of the method is to control reactive power as zero and improve power factor at the same output of active power. Both the results of simulation and experiment show the good performance and accuracy of the proposed method.
     For a common permanent magnetic synchronous motor (PMSM) single rotor compressor system, cyclical fluctuation of the load torque causes the ripples of speed at the same cycle. The vibration of the air-conditioning system framework, high noise et al. phenomenon caused by the ripple speed is particularly evident when compressor running at low speed. And the efficiency of the system comes down at the same time. After analysis the impact on the system stability of such periodic speed disturbances in detail, a new method aiming to suppress the pulsation of the speed caused by periodic torque disturbance is proposed in this paper. A composite controller consisting of PI controller and repetitive controller which are paralleled together is placed in the speed loop. The PI controller and repetitive controller are used together in the steady-state for better performance of the steady-state, and PI controller is mainly to obtain good dynamic response when non-periodic disturbance appears. Simulation and experimental results show the feasibility and validity of the control program.
     The sampling of phase current is a core part in motor control. In this paper three-phase current measurement using only a single current sensor in the inverter dc link is proposed based on the relationships among the phase current, DC bus current and inverter switch states, it can minimize the number of current sensors, reduce sensor cost, weight, and volume. The new single current sensor algorithm can solve the difficulty in three-phase current reconstruction by space voltage vector phase-shifting. Simulation and experimental results show that the method is effective and correct.
     By means of Matlab software and digital control hardware platform, the above-mentioned theories and strategies are verified through simulations and experiments.
引文
[1] http://www.hudong.com/wiki/能效等级.
    [2]肖凤明,王清兰,朱长庚.新型变频空调器微电脑控制电路分析与速修演练[M].北京:机械工业出版社, 2008.
    [3] http://finance.gxnews.com.cn/staticpages/20100208/newgx4b6f5006-2685386.shtml, 2010.2.8.
    [4]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D]. [博士学位论文],杭州,浙江大学, 2006.
    [5]唐任远等.现代永磁电机理论与设计[M].北京:机械工业出版社, 1997.
    [6]邹月海.基于模糊控制的永磁无刷直流电机调速系统研究[D]. [硕士学位论文],哈尔滨,哈尔滨工程大学, 2009.
    [7]叶金虎等.无刷直流电动机[M].北京:机械工业出版社, 1990.
    [8]张琛.直流无刷电动机原理及应用[M].北京:机械工业出版社, 1997.
    [9]张春燕.永磁同步电动机自适应模糊控制方法的研究[D]. [硕士学位论文],天津,天津大学, 2008.
    [10]韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究[D]. [博士学位论文],杭州,浙江大学, 2005.
    [11]李崇坚.交流调速同步电机调速系统[M].北京:科学出版社, 2005.
    [12]华德,白晶,李志民等.交流调速控制系统[M].北京:电子工业出版社, 2002.
    [13] Morimoto S, Takeda Y, Hirasa T. Current Phase Control Methods for Permanent Magnet Synchronous Motors [J].IEEE Trans. on Power Electronics, 1990, 5(2):133-139.
    [14]王成元等.电机现代控制技术[M].北京:机械工业出版社, 2006.
    [15] Rahman M F, Zhong L, Hu Y W. A Direct Torque Controller for Permanent Magnet Synchronous Motor Drivers[C]. ICEms’1997, Milwaukee,W, USA, 1997, 2(l):l-3.
    [16]田淳.无位置传感器同步电机直接转矩控制理论研究与实践[D]. [博士学位论文],南京,南京航空航天大学, 2001.
    [17] Zhong L, Rahmam M F, Hu Y W. Analysis of Direet Torque Control in Permanent Magnet Synchronous Motor Drivers [J]. IEEE Trans.onPowerEleetronies, 1997, 12(3):528-536.
    [18]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报, 2002,17(1):7-11.
    [19] Rahman M F, Zhong L, Lim K W, A Direct Torque Controlled Interior Permanent MagnetSynchronous Motor Drive Incorporating Field Weakening [J]. IEEE Transactions on Industry Applications, 1998, 34(6):1246-1253.
    [20] Hu Yuwen, Tian Cun, Gu Yikang, et al. In-depth Research on Direct Torque Control of Permanent Magnet Synchronous Motor[C]. The 28th Annual Conference of the IEEE Industrial Electronics Society, 2002, 2:1060-1065.
    [21] Tang Lixin, Zhong Limin, Rahman M F, et al. A Noveldirect Torque Controlled Interior Permanent Magnet Synchronous Machine Drive with Low Ripple in Flux and Torque and Fixed Switching Frequency [J].IEEE Trans on PowerElectronics, 2003, 19(2):346-354.
    [22]贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制[J].电工技术学报, 2006, 21(1):1 - 6.
    [23]孙丹,贺益康,智大为.基于模糊逻辑的永磁同步电动机直接转矩控制[J].电工技术学报, 2003, 18(1):33-38.
    [24]陈振,刘向东,靳永强,戴亚平.采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制[J].中国电机工程学报, 2008, 28(33):75 -81.
    [25]张猛,肖曦,李永东.基于区域电压矢量表的永磁同步电机直接转矩预测控制[J].清华大学学报(自然科学版), 2008, 48(1):1-4.
    [26] Jones L.A, Lang J.H. A State Observer for the Permanent Magnet Synchronous Motor. IEEE Transactions on Industrial Electronics, 1989, 36(3):374-382.
    [27]秦峰,贺益康,刘毅.永磁同步电机转子位置的无传感器自检测[J].浙江大学学报(工学版),2004,38(4):465-469.
    [28] Ribeiro L A S, Degner M W, Lorenz R D. Comprison of Carrier Signal Voltage and Current Injection for the Estimation of Flux Angle or Rotor Position[C]. IEEE IAS Conf.Rec., St.Louis, 1998:452-459.
    [29] Degner M W, Lorenz R D. Position Estimation in Induction Machines Utilizing Rotor Bar Slot Harmonics and Carrier Frequency Signal Injection[C]. IEEE.IAS,PCC Nagooka Tech.Conf. Rec., Nagaoka, Japan, 1997:69-72.
    [30] Jang J H, Sul S K, Ha J I. Sensorless Drive of Surface-mounted Permanent Magnet Motor by High-Frequency Signal Injection Based on Magnetic Saliency [J]. IEEE.Trans.on Industry Application, 2003, 39(4):1031-1038.
    [31]秦峰,贺益康,刘毅,章玮.两种高频信号注入法的无传感器运行研究[J].中国电机工程学报, 2005, 25(5) :116-121.
    [32]刘栋良.无速度传感器永磁同步电动机反馈线化控制研究[J].仪器仪表学报, 2006, 27(9):1147-1149.
    [33] R.Dhaouadi, N.Mohanetal. Design and Implementation of an Extended Kalmam Filter for the State Estimation of a Permanent Magnet Synchronous Motor [J]. IEEE Trans.on PE, 1991, 6(3): 491-497.
    [34] Bado A, Bolognani S, Zigliotto M. Effective Estimation of Speed and Rotor Position of a PM Synchronous Motor Drive by a Kalman Filtering Technique[C]. PESC 92 Record, 23rd Annual IEEE, 1992:951-957.
    [35] Yoon-seok Han, Jung-soo Choi, Young-Seok Kim. Sensorless PMSM Drive with a Sliding Mode Control based Adaptive Speed and Stator Resistance Estimator [J]. IEEE Trans. On Magnetics, 2000, 36(51):3588-3591.
    [36]胡军,朱东起,高景德.滑模观测器及其在无机械传感器永磁同步电机驱动系统的应用[J].清华大学学报, 1997, 37(1):13-17.
    [37] J.F.Moynihan, M.G. Egan and J.M.D.Murphy. The Application of State Observers in Current Regulated PM Synchronous Drives[C]. Proceedings of IEEE IECON, 1994, 20-25.
    [38]侯利民,张化光,刘秀翀,褚恩辉,王强. PMSM无速度传感器最优转矩控制系统的研究[J].仪器仪表学报, 2009, 30(4):706-710.
    [39]鲁文其,胡育文,黄文新,储剑波.无刷直流电机无位置传感器转子位置自检测复合方法[J].电工技术学报, 2008, 23(9):70-75.
    [40]诸静.模糊控制原理与应用[M」.北京:机械工业出版社, 1995.
    [41] Fayez F-M, Maged N-F. Fuzzy Adaptive Neural-network Model-following Speed Control for PMSM Drives [J]. WSEAS Transactions on Systems, 2005, 4:256-259.
    [42]张榜英,孙炜,黄鹏辉,杨辉媛.永磁同步电机PMSM的模糊PI控制方法[J].吉首大学学报(自然科学版) ,29 (2):79-82.
    [43]刘军,刘丁,吴浦升,等,基于模糊控制调节电压矢量作用时间策略的永磁同步电机直接转矩控制仿真研究[J].中国电机工程学报, 2004, 24(10):148-152.
    [44]程飞,过学迅,别辉.电动车用永磁同步电机的双模糊控制研究[J].中国电机工程学报, 2007, 27(18): 18-21.
    [45]董富红.无刷直流电动机自适应神经元模糊控制系统[J].江南大学学报(自然科学版), 2006, 5(4):456-459.
    [46]夏长亮,李志强,王明超,刘均华.基于RBF神经网络在线辨识的永磁无刷直流电机单神经元PID模型参考自适应控制[J].电工技术学报, 2005, 20(11):65-69.
    [47] A.Rubaai, R.Kotaru and M.D.Kankam. A Continually Online-trained Neural NetworkController for Brushless DC Motor Drives [J]. IEEE Trans.Ind.Appl., 2000, 36(2): 475~483.
    [48] Wunch W S. Reproduction of an Arbitrary Function of Timeby Discontinuous Control [D]. Stanford (CA, USA): Stanford University, 1953.
    [49]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制[J].中国电机工程学报, 2006, 26(20):134-138.
    [50]吴春华,陈国呈,孙承波.基于滑模观测器的无传感器永磁同步电机矢量控制系统[J].电工电能新技术,2006,25(2):1-3.
    [51] Uchiyama M. Formulation of High-speed Motion of a Mechnical Arm by Trial [J]. Trans. of Science, 1978, 14:706-712.
    [52] Arimoto S, Kawamura S, Miyazakif. Bettering Operation of Robotics by Learning [J].Robot System, 1984, 1(2):123-140.
    [53] MooreK L. Iterative Learning Control for Deterministic Systems [M]. London: SpringerVerlag, 1993.
    [54] MooreK L. Iterative Learning Control an Expository Overview [J]. Applied& Computational Controls, Signal Processing and Circuits,1999, 1(1): 151-241.
    [55]林辉.迭代学习控制理论[M].西安:西北工业大学出版社, 1998.
    [56]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社, 1999.
    [57]谢胜利.迭代学习控制的理论与应用[M].北京:科学出版社, 2005.
    [58]皮道映,孙优贤.非线性时变系统开闭环P型迭代学习控制的收敛性[J].自动化学报, 1999, 25(3): 351-354.
    [59] Moore K L, Chen Y Q. An Optimal Design of PD-type Iterative Learning Control with Monotonic Convergence [C]. Proc of the2002IEEE Int Symposium on Intelligent Control. Vancouver, 2002: 55-60.
    [60] Park K H, Bien Z, Wang D H. A Study on the Robustness of a PID-type Iterative Learning Controller Against Initial State Error [J].Int J of System Science, 1999, 30(1):49-59.
    [61] Moore K L, Chen Y Q. A Separative High-order Framework for Monotonic Convergent Iterative Learning Controller Design [C]. Proc of the American Control Conf Denver, 2003, 3644-3649.
    [62] Chen Y, Gong Z, Wen C. Analysis of A High-order Iterative Learning Control Algorithm for Uncertain Nonlinear Systems with State Delays[J].Automatica, 1998, 34(3):345-353.
    [63] Xu J X, Tan Y. Linear and Nonlinear Iterative Learning Control [M]. Berlin: Springer-Verlag, 2003:69-82.
    [64]黄发钧,杨孟远.迭代学习控制的研究与现状[J].计算机与现代化, 2008, 157:23-26.
    [65] Park B H, Kuc T Y, Lee J S. Adaptive Learning Control of Uncertain Robotic System [J]. Control, 1996, 65(5):725-744.
    [66] Heinzinger G, Enwick D, Paden B, Iyazaki F. Robust Learning Control [C]. Proc. of 24th IEEE Conf . on Decision and Control , Tamps. Florida , 1989, 436-440.
    [67]曹阳,沈毅力,李天石.加速算法闭环P型迭代学习在电液伺服协调加载系统中的研究应用[J].机床与液压, 2000, 5:38-39.
    [68] HuYun’an, Zuo Bin, Li Jing. Fast Algorithm of Open-closed Loop PD-type Iterative Learning Control for DC Motor [C]. Proceedings of the 6th world congress on intelligent control and Automtion, 2006, l:3834-3838.
    [69] Qian W, Panda S K, Xu J-X. Speed Ripple Minimization in PM Synchronous Motors Using Iterative Learning Control [J]. IEEE Trans. on Energy Conversion, 2005, 20(1):53-61.
    [70]扬晓峰,樊晓平,杨胜跃.迭代学习初态问题研究及其在机器人中的应用[J] .计算技术与自动化, 2001 , 20(4) :15-18.
    [71]孔祥波,郝晓弘.迭代学习控制的研究与应用[J].甘肃科技, 2008, 24(7):87-89.
    [72] Inoue T, Iwai S, Nakano M. High Accuracy Control of a Proton Synchrotron Magnet Power Supply[C]. Proec 8th IFAC world congress, part3, Oxford:Pergamon Press, 1981, 3137-3142.
    [73] B.A.Francis, W.M.Woham, The Internal Model Principle for Linear Multivariable Regulators, Applied Mathematics & Optimization, 1975, 2(2):170-194.
    [74]陈宏.基于重复控制理论的逆变电源控制技术研究[D]. [博士学位论文],南京,南京航空航天大学, 2003.
    [75] Inoue T, Nakano M, Iwai S. High Accuracy Control of Servo Mechanism for Repeated Contouring [C]. Proc 10th Annual symposium on Incremental Motion Control System and Devices, Champaign: Incremental Motion Control Systems Socl, 1981, 285-292.
    [76] Inoue T. Practical Repetitive Control System Design [C]. Proc 29th CDC, Piseataway: IEEE system design, 1990:1673-1678.
    [77] Srinivasan K, Shaw F R. Analysis and Design of Repetitive Control Systems Using the Regeneration Spectrum [J]. ASME Trans J Dyn Sys, Meas, and Contr, 1991, 113(2):216-222.
    [78] Tsai M C, Yao W S. Design of a Plug-in Type Repetitive Controller for Periodic Inputs [J]. IEEE Trans Control System Technology, 2002, 10(4):547-555.
    [79] Govenc L. Repetitive Controller Design in Parameter Space [C]. Proc ACC, USA: IEEE, 2001, 2749-2754.
    [80] Hara s. Repetitive Control System: a New Type Servo System for Periodic Exogenous Signals [J] .IEEE Trans Autom Contr, 1988, 33(7):659-668.
    [81] Nakano M, Hara S. Microprocessor Based Repetitive Control [M].Dordrecht: D Reidel Publishing Corp, 1986.
    [82] Tomizuka M, Tsao T C, Chew K K. Analysis and Synthesis of Discrete-time Repetitive Controllers [J]. ASME Trans J Dyn Sys, Meas, and Contr, 1989, 111:353-358.
    [83] M. Ymada, Y. Funahashi, S. Ishihara et al. Extended Discrete-time Prototype Repetitive Controllers and its Application [C], Proc 35th CDC IEEE 1996, 4: 3606-3611.
    [84] J.Hu and M.Tomizuka. A New Plug-in Adaptive Controller for Rejection of Periodic Disturbances [J], ASME/IEEE J. Dynamic Syst., Meas., Contr. ,1991, 33:1-5.
    [85] Keiji, Watanbe, K. Yamada. Repetitive Control of Time-delay System[C], Proc of 29th CDC, IEEE, Dec 1990, 1685-1690.
    [86] K. Chew, M. Tomizuka. Steady-state and Stochastic Performance of a Modified Discrete-time Prototype Repetitive Controller [C]. Journal of Dynamic Systems and Control, ASME, March 1990, 112:35-41.
    [87] Fujimoto H, Kawakami F, Konodo S. Multirate Repetitive Control and Applications-verification of Switching Scheme by HDD and Visual Servoing [C]. Proc ACC, USA:IEEE, 2003, 2875-2880.
    [88] T. Haneyoshi, A. Kawamura, R. G. Hoft. Waveform Compensation of PWM Inverter with Cyclic Fluctuating Loads [J], IEEE Trans. on IA, 1988, 24(4):582-589.
    [89]张凯,康勇,熊建,陈坚. UPS逆变电源重复控制技术研究[J].华中理工大学学报, 2002,28(6):34-39.
    [90]张凯,彭力,熊健,陈坚.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报, 2006, 26(10):56-62.
    [91]胡雪峰,谭国俊.应用神经网络和重复控制的逆变器综合控制策略[J].中国电机工程学报, 2009, 29(6): 43-47.
    [92] Tinghsu S, Hattori S, Ishida M, et al. Suppression Control Method for Torque Vibration of AC Motor Utilizing Repetitive Controller with Fourier Transform [J]. IEEE Trans Industry Applications, 2002, 38(5):1316-1325.
    [93] Hattori S, Ishida M, Hori T. Suppression Control Method for Torque Vibration of Brushless DC Motor Utilizing Repetitive Control with Fourier Transform [C]. Proc 6th Int Workshop on Advanced Motion Control, Piscataway: IEEE, 2000, 1:427-432.
    [94] Jeong-seong K, Doki S, ISHIDA M. Suppression of Harmonic Current in Vector Control for IPMSM by utilizing repetitive control[C]. IEEE Int Conf Industrial Technology, USA, 2002, 1: 264-267.
    [95]孙耀杰,左贺,康龙云,曹秉刚,史维祥.抑制混合式步进电机转矩波动的时变重复控制[J].中国电机工程学报, 2004, 24(11):183-187.
    [96]刘雨,苏宝库,曾鸣.一种改善无刷直流电机驱动系统速率平稳性的鲁棒重复控制方法[J].中国电机工程学报, 2005, 25(10):144-148.
    [97]孙宜标,闫峰,刘春芳.抑制直线伺服系统周期性扰动的改进型重复控制[J].组合机床与自动化加工技术,2009, 4:42-45.
    [98]陈云强.精密离心机主轴的实时重复控制系统研究[D]. [硕士学位论文],哈尔滨,哈尔滨工业大学, 2007.
    [99]李翠艳,张东纯,庄显衣.重复控制综述[J].电机与控制学报, 2005, 9(1): 37-44.
    [100]张猛,李永东,赵铁夫,等.一种减小变频空调压缩机低速范围内转速脉动的方法[J].电工技术学报, 2006, 21(7):99-104.
    [101] Zhang B., Pong M.H.. Maximum Torque Control and Vector Control of Permanent Magnet Synchronous Motor[C]. Intemational Conferenceon PE and Drive systems, 1997, 2:548-552.
    [102]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005.
    [103]田宏奇.滑模控制理论及应用[M].武汉:武汉出版社, 1995.
    [104]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1998.
    [105]王丰尧.滑模变结构控制[M].北京:机械工业出版社, 1995.
    [106]王庆龙.交流电机矢量控制系统滑模变结构控制策略研究[D]. [博士学位论文],合肥,合肥工业大学, 2007.
    [107] V.Utkin, Jurgen Guldner and Jingxin Shi. Slide Mode Control in Electromechanical Systems [M]. Taylor & Francis Press, 1999.
    [108]黄雷,赵光宙,年珩.基于扩展反电动势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报, 2007, 27(9):59-63.
    [109]王明金.永磁同步电机无位置传感器技术的研究[D]. [硕士学位论文],南京:南京航空航大学, 2009.
    [110]晏朋飞.基于滑模观测器的无传感器PMSM驱动控制系统的研究[D]. [硕士学位论文],哈尔滨:哈尔滨工业大学硕士论文, 2006.
    [111] K.Paponpen and M.Konghirun. An Improved Sliding Mode Observer for Speed Sensorless Vector Control Drive of PMSM[C]. Power Electronics and Motion Control Conference, 2006,2:1-5.
    [112]王峰,张波,丘东元.交流电机的虚拟光电编码盘测速技术[J].中国电机工程学报, 2005, 25(6):99-103.
    [113] Harnefors L, Nee H. A General Algorithm for Speed and Position Estimate of AC Motors[J]. IEEE Trans.on Industrial Electronics, 2000, 47(1):77-83.
    [114]陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社, 1989.
    [115]刘顺波.房间空调器动态特性与智能化控制研究[D].[博士学位论文],西安:西安交通大学,1999.
    [116]王美霞.小型变频空调系统动态特性及控制策略研究[D]. [博士学位论文],南京:东南大学, 2005.
    [117] Isao.Takahashi, oshihiko.Noguchi. A New Quick-response and High-efficiency Control Strategy of an Induction Motor [J], IEEE Trans. On IA, 1986, IA-22 (5):820-827.
    [118] Noguchi T, Tomiki H, Kondo S, et al. Direct Power Control of PWM Converter without Power-source Voltage Sensors [J]. IEEE Transactions on Industry Applications, 1998, 34(6): 473-479.
    [119] Su Chen, Joos G. Direct Power Control of Three Phase Active Filter with Minimum Energy Storage Components[C]. Sixteenth Annual IEEE, 2001, 1(1): 570 -576.
    [120] Xu Lie, Cartwright P. Direct Active And Reactive Power Control of DFIG for Wind Energy Generation [J]. IEEE Transactions on energy conversion, 2006, 21(3): 750-758.
    [121]郑灼.永磁同步电机瞬时功率控制[J].中国电机学报, 2007, 27(15): 38-42.
    [122] Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices Without Enery Storage Components [J]. IEEE Transactions on Industrial Application, 1984, 20(3): 625-630.
    [123] Peng Fangzheng, Lai Jihsheng. Generalized Instantaneous Reactive Power Theory for Three-phase Power Systems [J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(1):293-297.
    [124] Peng Fangzheng, Ott G W Jr, Adams D J. Harmonic and Reactive Power Compensation Based on the Generalized Instantaneous Reactive Power Theory for Three-phase Four-wire Systems[J]. IEEE Transactions on Power Electronics, 1998, 13(6):1174-1180.
    [125]刘进军,王兆安.基于旋转空间矢量分析瞬时无功功率理论及其应用[J].电工技术学报, 1999, 14(1): 49-54.
    [126] Jahns T M, Soong W L. Pulsating Torque Minimization Techniques for Permanent Magnet ACDrives-a Review [J]. IEEE Transactions on Industrial Electronics, 1996, 43(2):321-330.
    [127] Studer C, Keyhani A, Sebastian T, et al. Study of Cogging Torque in Permanent Magnet Machines[C]. Proceeding of IEEE Conference on Industry Applications, New Orleans, Louisiana, USA, 1997, 1(1):42-49.
    [128] Choi Jong Woo, Lee Sang Sup, Sang Yeop Yu, et al. Novel Periodic Torque Ripple Compensation Scheme Invector Controlled AC Motor Drives[C]. Applied Power Electronics Conference and Exposition, 1998, 1:81-85.
    [129] Qian Weizhe, Panda S K, Xu Jianxin.Torque Ripple Minimization in PM Synchronous Motors Using Iterative Learning Control[J].IEEE Transactions on Power Electronics, 2004, 19(2): 272-279.
    [130]孔雪娟,王荆江,彭力,等.基于内模原理的三相电压源型逆变电源的波形控制技术[J].中国电机工程学报, 2003, 23(7):67-70.
    [131]王成智,邹旭东,许赟,等.采用改进重复控制的大功率电力电子负载[J].中国电机工程学报, 2009, 29(12): 1-9.
    [132]孙耀杰,左贺,康龙云,等.抑制混合式步进电机转矩波动的时变重复控制[J].中国电机工程学报, 2004, 24(11): 183-187.
    [133]邓文浪.双级矩阵变换器及其控策略研究[D].[博士论文],长沙:中南大学, 2007.
    [134]李翠艳.重复控制的一些设计问题研究[D].[博士论文],哈尔滨:哈尔滨工业大学, 2005.
    [135] Tsai M C, Yao W S. Design of a Plug-in Type Repetitive Controller for Periodic Inputs [J]. IEEE Trans Control Syst Technol, 2002, 10(4): 547-555.
    [136] Cosner C, Anwar G, Tomizuka M. Plug in Repetitive Control for Industrial Robotic Manipulators [C]. Proceedings of IEEE Conference on Robotics and Automation, 1990, 3: 1970-1975.
    [137] K.Chew, M.Tomizuka. Steady-state and Stochastic Performance of a Modified Discrete-time Prototype Repetitive Controller [J].Journal of Dynamic Systems and Control, 1990, 1(3):35-41.
    [138]王斌,王凤岩.提高重复控制逆变电源的负载瞬态响应特性[J].电源技术应用, 2008, 11(2): 6-9.
    [139] Tomizuka M. Zero Phase Error Tracking Algorithm for Digital Control [J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1987, 109(1): 65-68.
    [140]陈宏.基于重复控制理论的逆变电源控制技术研究[D]. [博士学位论文],南京:南京航空航天大学, 2003年3月.
    [141]姜淑忠,李小海.电机驱动器中的电流传感器[J].电机与控制应用, 2007, 34(6): 29-32.
    [142]黄文新,胡育文.基于空间矢量调制策略270V高压直流笼型异步发电系统[J].电工技术学报, 2007, 22(1):22-28.
    [143] Frede Blaabjerg, John K Pedersen, Ulrik Jaeger, et al. Single Current Sensor Technique in the DC Link of Three-phase PWM-VS Inverters: a Review and a Novel Solution [J]. IEEE Transactions on Industry Applicat- ions, 1997, 33(5):1241-1253.
    [144]刘艳,邵诚.三相电压源型PWM逆变器相电流重构策略研究[J].信息与控制, 2007, 36(4): 506-513.
    [145] Hongrae Kim,Thomas M Jahns. Phase Current Reconstruction for AC Motor Drives Using a DC Link Single Current Sensor and Measurement Voltage Vectors [J].IEEE Transactions on Power Electronics, September 2006, 121(5): 413-1419.
    [146] Woo Cheol Lee, Taeck Kie Lee, Dong Seok Hyun. Comparison of Single-sensor Current Control in the DC Link for Three-phase Voltage-source PWM Converters [J]. IEEE Transactions on Industrial Electronics, June 2001, 48(3):491-505.
    [147] Mognihan J F, Kavanagh R C, Egan M G, et al. Indirect Phase Current Detection for Field Oriented Control of a Permanent Magnet Synchronous Motor Drive[C]. in Proc. EPE’91, 1991, 3:641-646.
    [148] Saritha B, Janakiraman P A. Single Sensor Current Control of Permanent Magnet Synchronous Motor Using Field Programmable Gate Array[J]. IET Electr. Power Appl., 2007, 1(3): 416-422.
    [149] Bertoluzzo M, Buja G, Menis R. Direct Torque Control of an Induction Motor Using a Single Currentsensor [J]. IEEE Transactions on Industrial Electronics, 2006, 53:778-784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700