伴大豆球蛋白促双歧杆菌增殖肽的分离和鉴定及其对肠道细菌区系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆种子中贮藏有丰富的蛋白质,其中绝大部分是球蛋白,主要包括大豆球蛋白(Glycinin)和伴大豆球蛋白(Conglycinin)。有研究表明,伴大豆球蛋白水解肽具有特殊的生理活性,能够降低血压,提高免疫力,抗氧化等作用。人和动物肠道内栖息着数量巨大的微生物群体,它们对宿主的健康具有深远的意义,其中双歧杆菌是肠道中重要的生理性细菌之一,具有益生、营养和免疫等功能,对维持肠道菌群的结构及功能起主导作用。本实验通过对伴大豆球蛋白的制备,并模拟机体内环境,通过胃蛋白酶水解伴大豆球蛋白,以研究其水解肽对双歧杆菌增殖的影响,为进一步阐明食物源蛋白活性肽的生理功能,提供实验依据。同时对伴大豆球蛋白胃蛋白酶水解产物中促双歧杆菌增殖肽进行分离,所得到的活性组分应用质谱等方法进行鉴定。分离得到促双歧杆菌增殖肽后,又通过体内研究,了解伴大豆球蛋白促双歧杆菌肽对机体免疫功能及肠道细菌区系的影响,特别是对肠道双歧杆菌的影响。
     1.伴大豆球蛋白胃蛋白酶水解肽对双歧杆菌增殖的影响
     系列1伴大豆球蛋白的分离纯化及其胃蛋白酶水解肽的制备
     大豆粉脱脂后,经过等电点沉淀,硫酸分级盐析(51%和100%)得到伴大豆球蛋白粗提品,采用Sepharose-CL-6B柱进一步纯化,洗脱液为磷酸盐缓冲液(2.6mmol/L KH_2PO_4,32.5mmol/L K_2HPO_4,0.4mol/L NaCl,10mmol/L 2-ME,pH7.6),流速30mL/h,于280nm处进行检测,收集各组分,采用SDS-PAGE电泳鉴定提取物,得到伴大豆球蛋白纯品,应用半微量凯氏定氮法测定其蛋白含量,冻干后备用。取伴大豆球蛋白冻干粉,双蒸水溶解后,调溶液pH值至1.4,按酶底物比1∶30加入胃蛋白酶,37℃水浴条件下水解2h后,在70℃,30min灭活酶并终止反应,同时调pH=7.0,在4℃,以3000rpm,离心20min,取上清液,用半微量凯氏定氮法测定胃酶水解液的含氮量冻干后备用,胃蛋白酶水解物水解度的测定采用茚三酮法。同时取伴大豆球蛋白,加入过量6mol/L盐酸,110℃,水解24h,制得伴大豆球蛋白盐酸彻底水解物。结果表明,经过分离纯化的伴大豆球蛋白纯度为90.13%,可供生理功能的研究,应用
Soybean storage proteins are composed mainly of two major components, conglycinin and glycinin. Many studies have demonstrated that the enzymatic hydrolysis of conglycinin improved its functional properties and had various physiological activities such as antihyprtensive, immunostimulating and antioxide activities. It is now generally accepted that the human gastrointestinal tract is host to various species of microorganisms and this bacterial plays a significant role in health and disease. Bifidobacteria are gram-positive anaerobic bacteria, which normally inhabit the gut of humans and animals, the presence of a great deal of bifidobacteria has been considered essential to promote intestinal health and to strengthen the local immune response. In this paper, we used pepsin and simulated digestion and fermentation in the animal gastrointestinal tract to hydrolyze the conglycinin in vitro. Then we isolated and identified the soybean conglycinin peptides that selectively stimulate the growth of bifidobacteria in vitro. We also evaluate the in vivo effects of soybean conglycinin peptides on immunity and gut ecolosystem of intestine.1. Effect of growth-stimulating peptides for bifidobacteria from soybean conglycininSeries 1 Separation of conglycinin from soybean and hydrolysis ofconglycinin by pepsinSoybeans were finely ground and defatted with hexane at room temperature. The procedure for fraction of conglycinin was based on the isoelectric precipitation and size exclusion chromartography. The 51-100% saturation fraction was dialysed against water and applied to a Sepharose-CL-6B column. Elution was performed with the phosphate buffer(2.6 mmol/L KH_2PO_4, 32.5 mmol/L K_2HPO_4, 0.4 mol/L NaCl, 10 mmol/L 2-ME, pH 7.6), and
    the absorbance of the column effluent was monitored at 280nm. The purification rate was identified by Sodium dodecyl sulfate gel electrophoresis. Finally the purified conglycinin was dialyzed against water. After readjusted to pH7.0 and analyzed for protein concentration by the method of micro-Kjeldahl, the protein solutions were freeze-dried and stored at 4°C. These materials were used as protein samples. Conglycinin was hydrolyzed by pepsin using a 1:30 enzyme: substrate ratio. Enzymatic hydrolysis was performed after acidification to pH1.4 with lmol/L HC1, and mixture of pepsin and conglycinin was incubated for 2 h at 37°C. The reaction was terminated by heating at 70°C for 30 min, and the solution was adjusted to pH 7 with lmol/L NaOH. After centrifugation (20 min, 3000 r/min, 4°C), the supernatant was collected and lyophilized. The nitrogen concentrations of the conglycinin digestion were evaluated by the method of micro-Kjeldahl. The conglycinin was full hydrolyzed with 6 mol/L HC1 at 110°C for 24 h. The solution composed of amino acid composition of conglycinin. The hydrolysates were neutralized and lyophilized. The result showed that the purification rate of conglycinin was 90.13% and the DH of conglycinin hydrolysates was 14.49%. The average length of peptides of the hydrolysates was 7.Series 2 Effect of conglycinin peptides on growth of bifidobacteriaThe basal medium used for a bioassay in vitro was a fully synthetic medium as described by Hassinen. For Growth assays, the assay medium (5mL) was mixed with 0.15mg/mL(nitrogen concentration) samples and inoculated with 100 uL of bacteria culture. The control contained ammonium acetate which has equal nitrogen concentration with samples. Culture was done under anaerobic conditions at 37°C. The extent of growth was measured by the absorbance at 460 nm and total DNA concentration of bifidobacteia after 24h, 48h and 72h of cultivation. The growth experiments were done triplicately. The results of the experiments in vitro conducted with soybean conglycinin hydrolysates on the regulation of the growth activity for Bifidobacterium longum showed that, compared with control, pepsin-treated conglycinin (PTC) could significantly promote the growth of Bifidobacterium longum (P<0.0l), while HCL-full hydrolysis of conglycinin conglycin in (HCL-FH
引文
1.许月,朱长甫,石连旋,等.大豆种子贮藏蛋白的研究概况[J].大豆科学,1998,17(3):262-264.
    2. Naismith W E F. Ultracentrifuge studies on soya bean protein [J]. Biochimica Biophysica Acta, 1955, 16, 203-210.
    3.赵威祺.大豆蛋白质的构造和功能特性(上)[J].粮食与食品工业,2003,2:24-25.
    4. Maruyama N, Fukuda T, Saka S, et al. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins [J]. Phytochemistry, 2003, 64(3): 701-708.
    5. Shewry P R., Napier J A, Tatham A S. Seed storage proteins: structure and biosynthesis [J]. Plant Cell, 1995, 7(7):945-956.
    6. Koshiyama I, Kikuchi M, Fukushima D. 2S globulins of soybean seeds. 1. Isolation and characterization of protein components [J]. J Agric Food Chem, 1981, 29(2): 336-340.
    7. Koshiyama I, Kikuchi M, Fukushima D. 2S globulins of soybean seeds. 2. Physicochemical and biological properties of protease inhibitors in 2S globulins [J]. J Agric Food Chem, 1981, 29(2): 340-343.
    8. Yamauchi F, Kawase M, Kanbe M, et al. Separation of the aspartamido-carbohydrate fractions from soybean conglycinin protein: protein carbohydrate linkage [J]. Agric Biol Chem, 1975, 39(4):873-878.
    9. Sykers G E, Gayler K R. Detection and charcterization of a new β-conglycinin from soybean seeds [J]Arch Biochem Biophys, 1981, 210(2): 525-530.
    10. Thanh V H, Shibasaki K. Beta-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms [J]. Biochim Biophys Acta, 1977, 490(2): 370-384.
    11. Maruyama N, Katsube T, Wada Y. The roles of the N-linked glycans and extension regions of soybean beta-conglycinin in folding, assembly and structural features [J]. Eur J Biochem, 1998, 258(12):854-862.
    12. Draper M, Catsimpoolas N. Isolation of the acidic and basic subunits of glycinin [J]. Phytochemistry, 1977, 16(1):25-27.
    13. Utsumi S, Matsumura Y, Mori T. Structure-function relationships of soy protein, In: Damodaran, S, Paraf A. (Eds.), Food Proteins and Their Applications. Marcel Dekker, New York, 1997, 257-291.
    14. Mori T, Utsumi S, Inhaba H et al. Differences in subunit composition of glycinin among soybean cultivars [J]. J Agric Food Chem, 1981, 29, 20-23.
    15. Badley R A, Atkinson D, Hauser H, et al. The structure, physical and chemical properties of the soy bean protein glycinin [J]. Biochim Biophys Acta, 1975, 412(2): 214-228.
    16. Wolf W J, Briggs D R. Purification and characterization of the 11S component of soybean proteins [J]. Arch Biochem Biophys, 1959, 85(11): 186-199.
    17. Moreira M A, Hermodson M A, Larkins B A, et al. Partial characterization of the acidic and basic polypeptides of glycinin [J]. J Biol Chem, 1979, 254(10): 9921-9926.
    18.周兵,周瑞宝.大豆球蛋白的性质[J].西部粮油科技,1998,23(4):39-43.
    19. Liu K. Expanding soybean food utilization.[J]. Food Technology, 2000, 54(2):46-58.
    20. Young V R. Soy protein in relation to human protein and amino acid nutrition [J]. J Am Diet Assoc, 1991, 91(7): 828-835.
    21. Adlercreutz H. Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations [J]. Stand J Clin Lab Invest Suppl, 1990, 201(1): 3-23.
    22. Potter S M, Baum J A, Teng H. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women [J]. Am J Clinical Nutrition, 1998, 68(12): 1375-1379.
    23. Anderson J W, Johnstone B M, Cook-Newell M E. Meta-analysis of the effects of soy protein intake on serum lipids [J]. N Engl J Med, 1995, 333(8): 276-282.
    24. Krauss R M, Chait A, Stone N J, et al. Soy Protein and Serum Lipids [J]. N Engl J Med, 1995, 333(12): 1715-1716.
    25. Potter S M. Overview of possible mechanisms for the hypocholesterolemic effect of soy protein [J]J Nutr, 1995, 125(Suppl 3): 606S-611S.
    26. Lovati M R, Manzoni C, Corsini A, et al. 7S globulin from soybean is metabolized in human cell cultures by a specific uptake and degradation system. [J]. J Nutr, 1996, 126(11): 2831-2842.
    27. Carroll K K, Kurowska E M. Soy consumption and cholesterol reduction: Review of animal and human studies [J]. Nutr J Nutr, 1995, 125(3 Suppl): 594S-597S.
    28.罗建民,周晓明.大豆蛋白质及副产物的功能与应用[J].江苏食品与发酵,2003,1:31-33.
    29.韩济生.内啡肽的生成释放和降解[J].生理科学进展,1984,15(2):107.
    30.付轻泉,左斌海,李天全.几类生物活性肽的研究进展[J].航天医学与医学工程,2002,15(3):227-230.
    31.沈骏.脑肠肽在肠易激综合征中的作用.[J].国外医学·消化系疾病分册,2004,24(3):169-171.
    32.姚泰主编.生理学[M].北京:人民卫生出版社,第五版,2002.
    33. Broglio F, Gottero C, Arvat E, et al. Endocrine and non-endocrine actions of ghrelin [J]. Horm Res, 2003, 59(3): 109-117.
    34.林文学,汪以真.Ghrelin促生长机理的研究进展[J].中国畜牧杂志,2003,39(4):45-47.
    35.金文桥.内阿片肽.[M].邹冈主编,基础神经药理学.北京:科学出版社,第2版,1999,288-322.
    36. Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands [J]. Current Topics in Medicinal Chemistry, 2004, 4(1):1-17.
    37.谢启文主编.现代神经内分泌学[M].上海:上海医科大学出版社,1999,79-86.
    38.方秀斌.神经肽与神经营养因子[M].北京:人民卫生出版社,2002,23-41.
    39.王蕾,欧可群.内源性阿片肽的研究进展[J].四川解剖学杂志,2000,8(4):227-230.
    40. Lenz H. J, Brown M R. Central nervous system actions of β-endorphin on gastric acid secretion [J]. Brain Research, 1987, 413(1):1-9.
    41. Morley J E, Levine A S. Involvement of dynorphin and the kappa opioid receptor in feeding [J]. Peptides, 1983, 4(6): 797-800.
    42. Glass M J, Billington CJ, Levine A S. Opioids and food intake: distributed functional neural pathways? [J]. Neuropeptides, 1999, 33(5): 360-368.
    43. Morley J E, Levine A S, Gosnell B A, et al. Peptides as central regulators of feeding [J]. Brain Res Bull, 1985; 14(6): 511-519.
    44. Schweigerer L, Schmidt W, Teschemacher H, et al. beta-Endorphin: surface binding and internalization in thymoma cells [J]. PNAS, 1985, 82(17): 5751-5755.
    45.薛建中.α-内腓肽的免疫调节作用.[J].免疫学杂志,1993,9(4):275.
    46. Morley J E, Kay N, Allen J, et al. Endorphins, immune function, and cancer [J]. Psychopharmacol Bull, 1985, 21 (3): 485-488.
    47. Couture R, Harrisson M, Vianna RM. et al. Kinin receptors in pain and inflammation [J]. European Journal of Pharmacology, 2001, 429(1-3): 161-176.
    48.许绍芬.神经生物学.[M].上海:上海医科大学出版社,第二版,1999,106-109.
    49.李聪,燕安,余利凤等.抗菌肽研究进展.[J].细胞生物学杂志.2004,26(2):125-127
    50. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes [J]. Biochim Biophys Acta, 1999, 1462(1-2): 1-10.
    51. Yang L, Thomas M W, Lehrer R I, etal. Crystallization of Antimicrobial Pores in Membranes: Magainin and Protegrin [J]. Biophys J, 2000, 79(10): 2002-2009.
    52. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides [J]. Biochim Biophys Acta, 1999, 1462(1-2): 55-70.
    53. Audhya T, Kroon D, Heavner G, etal. Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the bursa of fabricius [J]. Science, 1986, 231 (4741): 997-999.
    54. Youbicier-Simo B J, Boudard F, Mekaouche M, et al. A role for bursa fabricii and bursin in the ontogeny of the pineal biosynthetic activity in the chicken [J]. J Pineal Res, 1996, 21 (1): 35-43.
    55. Fujita H, Usui H, Kurahashi K, Yoshikawa M. Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin [J]. Peptides, 1995, 16(5):785-790.
    56.王秋韫,庞广昌,陈庆森.免疫活性肽的研究进展与展望[J].食品科学,2002,23(7):136-140.
    57.肖红,段玉峰,刘平.食品蛋白降血压肽及其研究进展[J].食品研究与开发,2004,25(5):3-8.
    58. Malkoski M, Stuart G, Macris M, etal. Novel antibacterial peptide from bovine milk [J]. Antimicrobial agents and chemotherapy, 2001, 45(8):2309-2315
    59. Kilara A, Panyam D. Peptides from milk proteins and their properties [J]. Critical Reviews in Food Science and Nutrition, 2003, 43(6), 607-633.
    60. Newey H, Smyth D H. Intracellular hydrolysis of dipeptides during intestinal absorption [J]. J Physiol, 1960, 152(7): 367-380.
    61. Webb K E. Recent development in gastrointestinal absorption and tissue utilization of peptides [J]. J Dairy Sci, 1993, 76(1):351-361.
    62.王岗,卢德勋,程茂基.肽吸收的研究进展[J].动物营养学报,1999,11(Supple):69-75.
    63.韩兴泰.动物消化道内肽的吸收与体内肽的代谢[J].中国草食动物,1999,1(2):37-39.
    64.韩飞,乐国伟,施用晖.肽转运载体的分子特征及其分布[J].生理科学进展,2003,34(3):222-226.
    65. Adibi S A. Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance [J]. Am J Physiol Endocrinol Metab, 1997, 272 (5): 723-736.
    66.罗以勤,王梁华,焦炳华.小分子活性肽筛选方法[J].生命的化学,2004,24(1):16-19.
    67.王克夷.开发小肽,筛选新药[J].中国生化药物杂志,2003,24(1):48-51.
    68. Sewald N, Jakubke H D. Peptides: Chemistry and Biology [M] Wiley-VCH. 2002, 135-256.
    69.汪玉松,邹思湘主编[M].乳生物化学,吉林大学出版社,1995,136-150.
    70. Brantal V, Teschemacher T, Henschen A. et al. Novel opioid peptides derived from casein (Casomorphin)Ⅱ: structure of the active components from bovine casein [J]. Peptone Hoppe-Seyler's Z Physiol Chem, 1979, 360:1217-1224.
    71.石岗.乳蛋白生物活性肽的序列及其功能[J].动物学杂志,2002,37(2):80-85.
    72. Chiba H, Tani F, Yoshikawa M. Opioid antagonist peptides derived from k-casein [J]. Journal of Dairy Research, 1989, 56(3):363-366.
    73. Karaki H, Dot K, Sugano S. et al. Antihypertensive effect of tryptic hydrolysate of milk casein in spontaneously hypertensive rats [J]. Comparative Biochemistry and Physiology C, 1990, 96(2): 367-371.
    74. Jolles P, Parker F, Floch F. et al. Immunostimulating substances from human casein [J]. Journal of Immunopharmacology, 1981, 3(3-4):363-369.
    75. Fiat A M, Migliore D, Jolles P. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunostimulating activities [J]. J Dairy Sci, 1993, 76(1): 301-310.
    76. Kasai T, Iwasaki R, Tanaka M, et al. Caseinophosphopeptides (CPP) in faeces and contents in digestive tract of rats fed casein and CPP preparations [J]. Biosci Biotech Biochem, 1995, 59(1), 26-30.
    77.陈成,滕波,刘文玉.功能性乳蛋白多肽在乳品中的应用[J].中国乳品工业,2004,32(4):32-33.
    78. Clare D A, Catignani G L, Swaisgood H E. Biodefense properties of milk: The role of antimicrobial proteins and peptides [J]. Current Pharmaceutical Design, 2003, 9(16): 1239-1255.
    79. Silva S V, Malcata F X. Caseins as source of bioactive peptides. [J]. International Dairy Journal, 2005, 15:1-15.
    80. Frokjaer S. Use of hydrolysates for protein supplementation [J]. Food Technology, 1994, 48(10): 86-88.
    81.姜毓君,李庆章,闫宏博.乳蛋白生物活性肽的药理学作用及应用前景[J].中国乳品工业,2004,32(5):30-34.
    82.张源淑.酪蛋白酶解及其产物的阿片肽样活性研究[D].南京:南京农业大学,1997.
    83.张源淑,邹思湘,陈伟华.酪蛋白酶解产物阿片样活性的细胞生物学鉴定[J].中国乳品工业,2000,28(4):36-39.
    84.张源淑,钟海涛,邹思湘等.酪蛋白酶解产生β-Casomorphin-7样物质的ELISA检测[J].中国乳品工业,2001,29(5):10-12.
    85.张源淑,陈伟华,邹思湘.用HPLC测定酪蛋白酶解产物中的β-Casomorphin-7[J].中国乳品工业,1999,27(1):37-38.
    86.周文华,陈伟华,邹思湘.饲喂β-酪啡肽对大鼠免疫功能影响的研究[J].畜牧与兽医,2002,34(2):13-15.
    87.潘翠玲,陈伟华,邹思湘.β-酪啡肽-7对早期断乳仔猪免疫器官及内分泌功能的影响[J].南京农业大学学报,2003,26(2):57-60.
    88.潘翠玲,陈伟华,邹思湘.蛋白酶解物对10日龄仔猪淋巴细胞转化的影响[J].畜牧与兽医,2003,35(4):7-10.
    89.周涛,林建利,何胜俊等.酶解鲐鱼蛋白制取低分子肽的进一步研究[J].宁波大学学报,1997,10(4):36-41.
    90. Matsui T, Matsufuji H, Seki E, et al. Inhibition of angiotensin I-convertingenzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle [J]. Biosci Biotech Biochem, 1993, 57(10):922-925.
    91. Matsui T, Matsufuji H, Seki E, et al. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle [J]. Biosci Biotech Biochem, 1994, 58 (12):2244-2245.
    92. Fujii M, Matsumura N, Mito K, Shimizu T, et al. Antihypertensive effects of peptides in autolysate of bonito bowels on spontaneously hypertensive rats.[J]. Biosci Biotech Biochem, 1993, 57(12): 2186-2188.
    93. Yokoyama K, Chiba H, Yoshikawa M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito [J]. Biosci Biotech Biochem, 1992, 56(10): 1541-1545.
    94. Matsui T, Oki T, Osajima Y. Isolation and identification of peptidic alpha-glucosidase inhibitors derived from sardine muscle hydrolyzate [J]. Z Naturforsch, 1999, 54(3-4): 259-263.
    95. Pellegrini A, Hulsmeier A J, Hunziker P, et al. Proteolytic fragments of ovalbumin display antimicrobial activity [J]. Biochim Biophys Acta, 2004, 1672(2):76-85.
    96. Davalos A, Miguel M, Bartolome B et. al, Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis [J]. J Food Prot, 2004, 67(9): 1939-1944.
    97. Yoshii H, Tachi N, Ohba R, Sakamura O, et al. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks.[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2001, 128(1):27-33.
    98. Fujita H, Sasaki R, Yoshikawa M. Potentiation of the antihypertensive activity of orally administered ovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine [J]. Biosci Biotech Biochem, 1995, 59(12):2344-2345.
    99. Chan K M, Decker E A, Means W J. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle [J]. J Food Sci; 1993, 58(1):1-41.
    100.吴建平.一种开发米糠蛋白的新方法[J].粮食与饲料工业,1997,10:33-34.
    101. Takahashi M, Moriguchi S, Yoshikawa M, et al. Isolation and characterization of oryzatensin: a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin [J]. Biochem Mol Biol Int, 1994, 33(6):1151-1158.
    102. Takahashi M, Moriguchi S, Ikeno M. Studies on the ileum-contracting mechanisms and identification as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin [J]. Peptides, 1996, 17(1):5-12.
    103. Jinsmaa Y, Takenaka Y, Yoshikawa M. Designing of an orally active complement C3a agonist peptide with anti-analgesic and anti-amnesic activity [J]. Peptides, 2001, 22(1): 25-32.
    104. Hamada J S. Preparative separation of value-added peptides from rice bran proteins by high-performance liquid chromatography [J]. Journal of Chromatography A, 1998, 827(20):319-327.
    105.王梅.酶解玉米黄粉蛋白制备可溶性肽[J].粮油食品科技,1999,7(1):1-3.
    106.翟瑞文,李雁群,陈子林等.玉米渣中蛋白质的酶水解[J].食品工业科技,1997,5:38-40.
    107. Yano S, Suzuki K, Funatsu G. Isolation from alpha-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity [J]. Biosci Biotech Biochem, 1996, 60(4): 661-663.
    108. Miyoshi S, Ishikawa H, Kaneko T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate [J]. Agric Biol Chem, 1991, 55(5): 1313-1318.
    109. Huebner F R, Lieberman K W, Rubino R P, et al. Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates [J]. Peptides, 1984, 5(6): 1139-1147.
    110. Fukudome S, Jinsmaa Y, Matsukawa T, et al. Release of opioid peptides, gluten exorphins by the action of pancreatic elastase [J] FEBS Lett, 1997, 412(3): 475-479.
    111. Fanciulli G, ettoriA D, Fenude E, et al. Intravenous administration of the food-derived opioid peptide gluten exorphin B5 stimulates prolactin secretion in rats [J]. Pharmacol Res, 2003, 47(1): 53-58.
    112. Fukudome S, Yoshikawa M. Opioid peptides derived from wheat gluten: their isolation and characterization [J]. FEBS Lett, 1992, 296(1): 107-111.
    113. Fukudome S, Yoshikawa M. Gluten exorphin C. A novel opioid peptide derived from wheat gluten [J]. FEBS Lett, 1993, 316(1): 171-179.
    114. Schlichtherle-Cerny H, Amado R. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J]. J Agric Food Chem, 2002, 50(6): 1515-1522.
    115.潘翠玲,添喂蛋白酶解物对早期断奶仔猪消化生理及免疫功能的影响[D].南京:南京农业大学,1997.
    116.杨小军,灌喂大豆蛋白、面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响[D].南京:南京农业大学,2003.
    117.潘进权,刘耘.大豆多肽研究概况[J].中国调味品 2003,2:6-10.
    118.王静,郝再彬.大豆肽的特性和功能及研究进展[J].黑龙江农业科学,2004,5:31-33.
    119.宋俊梅,曲静然,徐少萍.大豆肽的研究进展[J].山东轻工业学院学报,2002,16(3):1-3.
    120.李世成,王启荣,杨则宜等.活性肽在大鼠小肠吸收特点的实验研究[J].中国运动医学杂志,2004,23(3):271-275.
    121. Chen H M, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. [J]. J Agric Food Chem, 1995, 43(1): 574-578.
    122. Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein [J]. J Agric Food Chem, 1998, 46(1): 49-53.
    123.黄莉,江连洲,朱秀清.大豆蛋白抗氧性肽的研究[J].大豆通报,2003,5:20-21.
    124.张学忠,王寰宇,陈松明等.大豆功能短肽的制备及生理活性的研究[A].大豆新加工技术原理与应用[M].北京:科学技术文献出版社,1999,181-200.
    125.陈美珍,余杰,郭慧敏.大豆分离蛋白酶解物清除羟自由基作用的研究[J].食品科学,2002,23(1):43-47.
    126.沈蓓英.大豆蛋白抗氧性肽的研究[J].中国油脂,1996,21(6):21-24.
    127.荣建华,李小定,谢笔钧.大豆肽体外抗氧化效果的研究[J].食品科学,2002,23(11):118-121.
    128.肖红,段玉峰,刘平.食品蛋白降血压肽及其研究进展[J].食品研究与开发,2004,25(5):3-8.
    129. Yang H Y, Yang S C, Chen J R et. al. Soyabean protein hydrolysate prevents the development of hypertension in spontaneous 1ly hypertensive rats [J]. Br J Nutr, 2004, 92(3):507-512.
    130. Shin Z I, Yu R, Park S A, et al. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo [J]. J Agric Food Chem, 2001, 49(6):3004-3009.
    131. Wu J, Ding X Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats [J]. J Agric Food Chem. 2001, 49(1):501-506.
    132.吴建平.大豆降血压肽的研制[J].中国油脂,1998,23(5):22-25.
    133. Samoto M, Akasaka T. Simple and efficient procedure for removing the 34Kda allergenic soybean protein, Glyml, from defatted soy milk [J]. Biosci Biotech Biochem, 1994, 58(11):2123-2125.
    134.安毅,张君文.大豆蛋白活性肽在功能性食品中的应用及发展前景[J].大豆通报,2004,4:27-29.
    135.陈路,张日俊.生物活性肽(或寡肽)饲料添加剂的研究与应用[J].动物营养学报,2004,16(2):12-14.
    136.张智,赵云财,梁金钟.大豆蛋白活性肽的生理功能及产品开发[J].大豆通报,2003,2:25-26.
    137.蒋文强,孙显慧.大豆多肽的功能特性及其开发应用[J].粮油加工与食品机械,2004,7:36-39.
    138. Yasuyuki T, Yoshikawa M. Introduction of enterostatin (VPDPR) and a related sequence into soybean proglycinin A1aB1b subunit by site directed mutagenesis [J]. Biosci Biotech Biochem, 2000, 64(12):2731-2733.
    139. Asato L, Kina T, Sugiyama M, et al Effect of dietary peptides on plasma lipids and its mechanism studied in rats and mice [J]. Nutr Res, 1994, 14: 1661-1669.
    140.王世英.免疫功能活性肽.[J].生物学通报,2001,36(1):5-7.
    141. Yoshikawa M, Takahashi M. Immunomodulating peptide derived from soybean protein [J]. Ann NY Acad Sci., 1993, 685(6): 375-376.
    142. Maruyama N, Maruyama Y, Tsuruki T, et. al. Creation of soybean beta-conglycinin beta with strong phagocytosis-stimulating activity [J]. Biochim Biophys Acta, 2003,1648(1-2):99-104.
    143. Tsuruki T, Yoshikawa M. Design of soymetide-4 derivatives to potentiate the anti-alopecia effect. [J]. Biosci Biotech Biochem, 2004, 68(5): 1139-1141.
    144. Hanson L A, Ahlstedt S, Andersson B, et al. Mucosal immunity [J]. Ann NY Acad Sci, 1983, 409(7): 1-21.
    145.王岚,高杰英.肠粘膜上皮细胞在天然免疫中的作用[J].生物技术通讯,2002,13(5):368-371.
    146.石辛甫.肠粘膜上皮细胞的免疫学功能[J].国外医学免疫学分册,1999,22(4):203-206.
    147. Neutra M R, Mantis N J, Kraehenbuhl J P. Collaboration of epithelial cells with organized mucosal lymphoid tissues.[J]. Nature Immunol,. 2001, 2(11): 1004-1009.
    148.姚光弼.小肠的免疫功能[J].中国消化杂志,1997,17(5):289-291.
    149. Owen R L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: an ultrastructural study [J]. Gastroenterology, 1977, 72(3):44-51.
    150. Ottaway C A. Neuroimmunomodulation in the intestinal mucosa.[J]. Gastroenterol Clin North Am, 1991, 20(3):511-529.
    151. Wolf J L, Rubin D H, Finberg R, et al. Intestinal M cells: a pathway for entry of reovirus into the host [J]. Science, 1981, 212(4493):471-472.
    152. Neutra M R. Current concept in mucosal immunology V: Role of M cells in transepithelial transport of antigen and pathogens to the mucosal immune system [J]. Am J Physiol Gastrointest Liver Physiol, 1998, 274(5): 785-791.
    153. Johnson C D, Kudsk K A. Nutrition and intestinal mucosal immunity [J]. Clin Nutr, 1999, 18(6):337-344.
    154. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component inepithelial transport of immunoglobulin [J]. Nature, 1984, 311: 71-73.
    155. Brandtzaeg P, Farstad I N, Johansen F E, et al. The B-cell system of human mucosae and exocrine glands [J]. Immunol Rev, 1999, 171 (10):45-87.
    156. Van Egmond M, Damen G, Annemiek B. IgA and the IgA Fc receptor [J]. Trends in Immunology, 2001, 22(4):205-211.
    157. Vaerman JP, Langendries A, Pabst R, et al. Contribution of serum IgA to intestinal lymph IgA, and vice versa, in minipigs [J]. Vet Immunol Immunopathol, 1997, 58(3-4): 301-308.
    158. Strobel S, Mowat A M. Immune responses to dietary antigens: oral tolerance [J]. Immunol Today, 1998, 19:173-81.
    159.金光明,杨倩,刘胜兵.动物粘膜免疫与分泌型免疫球蛋白A.[J].安徽技术师范学院学报,2003,17(2):107-111.
    160.马玉龙,许梓荣.肠道粘膜免疫研究进展.[J].中国畜牧兽医.2004,31(2):27-30
    161.余传霖.黏膜免疫系统.[M].余传霖,叶天星,陆得源,章谷生主编,现代医学免疫学,上海:上海医科大学出版社,1998,310-319.
    162. Mazanec M B, Kaetzel C S, Lamm M E. Intracellular neutralization of virus by immunoglobin A antibodies [J]. Proc. Natl. Acad. Sci USA, 1992, 89(15):6901-6905.
    163. Kaetzl C S, Robinson J K, Chintalacharavn K R. The polymeric immunoglobulin receptor mediates transport of immune complexes across epithelial cells: a local denfence function for IgA [J]. Proc Natl Acad Sci USA, 1991, 88(19):8796-8880.
    164.罗治彬,吴嘉惠.肠道sIgA免疫系统的研究进展[J]细胞与分子免疫学杂志,1997,13:39.
    165.余保平,王伟岸.消化系疾病免疫学[M].北京:科学出版社,2000,24-40.
    166. Rolfe R D. Colonization resistance. [M]. In: Mackie R I, White B A, Isaacson R E, eds. Gastrointestinal Microbiology Vol 2: Gastrointestinal microbes and host interactions. Chapman & Hall, New York, 1997, 501-536.
    167. Plant L, Lain C, Conway P L. Gastrointestinal microbial community shifts observed following administration of a Lactobacillus fermentum strain [J]. FEMS Microbiol Ecol, 2003, 43(2): 133-140.
    168. O'Sullivan D, Kullen MJ. Tracking of probiotic bifidobacteria in the intestine [J]. Int Dairy Journal, 1998, 8(5-6): 513-525.
    169. Gedek B, Kirchgessner M, Wiehler S, et al. The nutritive effect of Bacillus cereus as a probiotic in the raising of piglets. 2. Effect and microbial count, composition and resistance determination of gastrointestinal and fecal microflora [J]. Arch Tierernahr, 1993, 44(3): 215-226.
    170. Guarner F, Malagelada J R. Gut flora in health and disease [J]. The Lancet, 2003, 361(9371): 512-519.
    171.郭兴华主编.益生菌基础与应用.[M].北京:北京科学技术出版社,2002,27.
    172. Favier C F, De Vos W M, Akkermans A D. L Development of bacterial and bifidobacterial communities in feces of newborn babies [J]. Anaerobe Clinical microbiology, 2003, 9:219-229.
    173.郭本恒,益生菌.[M].北京:化学工业出版社,2004,67.
    174. Holzapfel W H. Haberer P, Snel J, et al. Overview of gut flora and probiotics[J]. International Journal of Food Microbiology, 1998, 41(2): 85-101.
    175. Fuller R. A review. Probiotics in man and animals [J]. J Appl Bacteriol, 1989, 66(5): 365-378.
    176. Ziemer CJ, Gibson GR. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. [J]. Int Dairy Journal, 1998, 8(5-6): 473-479.
    177.赵红霞,詹勇.乳酸菌的研究及其应用[J].江西饲料,2003,1:9-11.
    178. Isolauri E, Sutas Y, Kankaanpaa P, et al. Probiotics: effects on immunity [J]. American Journal of Clinical Nutrition, 2001, 73(2):444-450.
    179. Salminen S, Bouley C, Boutron-Ruault M C, et al. Functional food science and gastrointestinal physiology and function [J]. Br J Nutr, 1998, 80(supp 1):S147-S171.
    180. Fuller R. Probiotics in human medicine [J]. Gut, 1991, 32(4):439-442.
    181. Bernet M F, Brassart D, Neeser J R, et al. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria [J]. Gut, 1994, 35(4):483-489.
    182. Bernet M F, Brassart D, Neeser J R, et al. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions [J]. Appl Environ Microbiol, 1993, 59(12):4121-4128.
    183.何国庆,孔青,丁立孝.益生菌的功效与潜在危害[J]食品科技,2004,1:12-15
    184. Kankaanpaa P, Salminen SJ, Isolauri E, et al. The influence of polyunsaturated fatty acids on probiotic growth and adhesion [J]. FEMS Microbiol Lett, 2001; 194(2):149-53.
    185. Kankaanpaa P, Yang B, Kallio H, et al. Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of Lactobacilli [J]. Appl Environm Microbiol, 2004, 70:129-136.
    186.程波财,魏华.乳酸菌与肠黏膜免疫[J].中国微生态学杂志,2001,13:302-303.
    187. Perdigon G, Vintini. E, Alvarez S. Study of possible mechanism involved in the mucosal system activation by lactic acid bacteria.[J]. J Dairy sci, 1999, 82(6):1108-1114.
    188. Isolauri E, Sutas Y, Kankaanpaa P. Probiotics: effects on immunity [J]. Am J Clin Nutr, 2001, 73(suppl):444S-450S.
    189. Rartanen T, Isolauri E, Salo E, et al. Management of acute diarrhoea with low osmolarity oral rehydration solution and Lactobacillus strain GG [J]. Arch Dis Child, 1998, 79(2): 157-160.
    190. Majarmaa H B, Isolauri E. Probiotics: a novel approach in the management of food allergy [J]. J Allergy Clin Immunol, 1997, 99:179-186.
    191. Perdigon G, de Macias M E, Alvarez S, et al. Effect of perorally administered lactobacilli on macrophage activation in mice [J]. Infect Immun 1986, 53(2):404-410.
    192. Perdigon G, Alvarez S, Rachid M, et al. Immune System Stimulation by Probiotics [J]. J Dairy Sci, 1995, 78(7): 1597-1606.
    193. Kitazawa H, Mataumura K, Itoh T, et al. Interferon induction in murine peritoneal macrophage by stimulation with Lactobacillus acidophilus [J]. Microbiol Immunol, 1992, 36(3):311-315.
    194. Kaur I P, Chopra K, Saini A. Probiotics: potential pharmaceutical applications [J]. European Journal of Pharmaceutical Sciences, 2002, 15 (1): 1-9.
    195.Brian J B主编,徐岩译,发酵食品微生物学[M].第二版,北京:中国轻工业出版社.2001.255.
    196.宋文刚,曲迅,张彬彬等.双歧杆菌DNA对小鼠腹腔巨噬细胞分泌和杀瘤功能的影响[J].肿瘤学杂志,2002.8(2):91.
    197. Ward D M, Weller R, Bateson M M. 16S rRNA reveal numerous uncultured microorganisms in a natural community [J]. Nature, 1990, 345(6270):63-65.
    198. Brigidi P, Vitali B, Swennen E,. Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome or functional diarrhea [J]. Res Microbiol, 2001, 152(8): 735-741.
    199. Chevalier P, Roy D, Savoie L. X-a-Gal based medium for simultaneous enumeration of bifidobacteria and lactic acid bacteria in milk [J]. J Microbiol Methods, 1991, 13(1):75-83.
    200. Suau A, Bonnet R, Sutren M. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut [J]. Appl Environ Microbiol, 1999, 65(11):4799-4807.
    201. Muyzer G, Dewaal E C, Uitterlinden A G. Profiling of complex microbial-populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA [J]. Appl Environ Microbiol, 1993, 59(3):695-700.
    202. McCartney A L. Application of molecular biological methods for studying probiotics and the gut flora. [J]. Br J Nutr, 2002, 88(Suppl 1): S29-S37.
    203. Vaughan EE, Schut F, Heilig H G, et al. A molecular view of the intestinal ecosystem. [J]. Curr. Issues Intest. Microbiol. 2000, 1 (1): 1-12.
    204. Langendijk P S, Schut F, Jansen G J. Quantitative fluorescence in situ hybridization of bifidobacterium. spp with genus-specific 16S ribosomal-RNA-targeted probes and its application in fecal samples.[J]. Appl Environ Microbiol, 1995, 61(8):3069-3075.
    205.马悦欣,Holmstrm C,Webb J等.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.[J].生态学报,2003,23(8):1561-1569.
    206. Muyzer G. DGGE/TGGE: a method for identifying genes from natural ecosystems [J]. Curr Opin Microbiol, 1999, 2(3):317-322.
    207. Biavati B. Vescovo M, Torriani S, et al. Bifidobacteria: history, ecology, physiology and applications. [J]. Ann Microbiol Enzim, 2000, 50:117-131.
    208.陈文学,史俊华.双歧杆菌的研究进[J].中国微生态学杂志,2000,12(5):298-301
    209. Sekine K, Ohta J, Onishi M, et al. Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis. [J]. Biol Pharm Bull, 1995, 18(1): 148-153
    210. Scardovi V. In: Sneath P H A, Mair N S, Sharpe M E and Holt J G, eds. Bergey's Manual of Systematic Bacteriology. Baltimore, MD: Williams and Wilkins 1986, vol 2:1418-1434.
    211. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenge [J]. Antonie Van Leeuwenhoek, 1996, 70(2-4): 347-358.
    212. Gill H S. Stimulation of the immune system by lactic cultures [J]. Int Dairy J, 1998, 8(5-6): 535-544.
    213.王立生,潘令嘉,陈宏,等[J].中华医学杂志,1999,79(1):69-70。
    214. Modler H W. Bifidogenic factors—sources, metabolism and applications [J]. Int Dairy J, 1994, 4(5): 383-407.
    215. Deguchi Y, Morishita T. Mutai M. The nutritional and physiological value of fermented milks and lactic drinks. [J] Agricultural and Biological Chemistry, 1985, 49: 13-19.
    216. Klein G, Pack A, Bonaparte C, et al. Taxonomy and physiology of probiotic lactic acid bacteria. [J]. Int J Food Microbiol, 1998, 41 (2): 103-125.
    217. Racker E. Fructose-6-phosphate phosphoketolase from Acetobacter xylinum [J]. Methods Enzymol, 1962, 5:276-280.
    218. Orban J I, Patterson J A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria [J]. J Microbiol Methods, 2000, 40 (3): 221-224.
    219. Gavinil F, Esbroeck M V, Touzel J P A. Detection of Fructose-6-phosphate Phosphoketolase (F6PPK), a Key Enzyme of the Bifid-Shunt, in Gardnerella vaginalis [J]. Anaerobe, 1996, 2(4): 191-193.
    220.徐营,李霞,杨利国.双歧杆菌的生物学特性及对人体的生理功能[J].微生物学通报,2001,28(6):94-97.
    221. Arunachalam K D. Role of bifidobacteria in nutrition, medicine and technology [J]. Nutrition Research, 1999,19(10):1559-1597.
    222. Mitsuoka T. Significance of dietary modulation of intestinal microflora and intestinal environment [J]. Biosci Microflora, 2000,19:15-25.
    223.周家春.双歧杆菌对人体的生理功能[J].广州食品科技工业科技,2002,18(2):8-10.
    224.杜显光,涂国云,蒋寒青,等.双歧杆菌促生长因子的研究[J].中国微生态学杂志,1996,8(6):50-52.
    225.郭本恒.功能性乳制品[M].北京:中国轻工业出版社,2001,128.
    226. Petschow B W, Talbott R D. Growth promotion of Bifidobacteria species by whey and casein fractions from human and bovine milk [J]. J Clin Microbiol, 1990, 28(2):287-292.
    227.施正学,骆承庠.人乳和牛乳组分对双歧杆菌生长影响的研究[J].浙江农业学报 1997,9(4):196-200.
    228. Liepke C, Adermann K, Raida M, et al. Human milk provides peptides highly stimulating the growth of bifidobacteria [J]. Eur J Biochem, 2002, 269(2):712-718.
    229. Pooh M, Bezkorovainy A. Bovine milk kappa-casein trypsin digest is a growth enhancer for the genus Bifidobacterium [J]. J Agric Food Chem, 1991, 39(1): 73-77.
    230.杨洁彬主编.乳酸菌——生物学基础及应用[M].北京:中国轻工业出版社,1996,182.
    231.孙纪录,贾英民,田洪涛等.双歧杆菌生长促进因子的研究进展[J].食品工业科技,2003,24(8):110-113.
    232.郑建仙.功能性食品(第一卷)[M].北京:中国轻工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700