重载铁路曲线段磨耗状态下轮轨相互作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展,铁路货物运量迅速增长,重载运输已成为我国铁路货运的发展方向。但是,由于车辆运行速度及轴重的增大,重载铁路曲线段钢轨磨耗日益严重,大大增加了铁路的运营成本。由于磨耗而导致的轮轨型面的变化,对钢轨磨耗的发展有重要影响。因此,研究分析实际磨耗状态下轮轨相互作用特征,对进一步认识钢轨磨耗机理,研究合理的钢轨减磨措施有重要意义。
     本文以车辆动力学理论为基础,应用多体动力学仿真软件ADAMS/Rail建立了详细的重载货车动力学模型。基于重载铁路曲线段车轮和钢轨的实测型面,研究分析了实际磨耗状态下轮轨型面匹配时的轮轨接触几何关系和重载货车的曲线通过性能。结果表明,实际磨耗状态下的轮轨型面对轮轨接触几何关系和车辆曲线通过性能均有较大的影响;磨耗后的轮轨型面匹配时,容易出现车轮轮缘与外侧钢轨内侧面接触的现象,并导致车辆曲线通过过程中轮轨动态作用力增大,使外侧钢轨出现严重的侧向磨耗。
     应用有限元分析软件ANSYS建立了轮轨三维弹塑性接触模型,研究分析了车辆通过曲线时实际磨耗状态下车轮和钢轨的接触应力特征。分析表明,钢轨使用初期,外侧钢轨的接触应力及钢轨的塑性变形均较大,导致外侧钢轨极易出现接触疲劳伤损;随着钢轨磨耗量的增加,外侧钢轨轨距角处的接触应力和内侧钢轨轨头的塑性变形均逐渐增大,进一步加剧了外侧钢轨的侧磨和内侧钢轨的压溃。
     相关研究结果对研究探讨合理的曲线段钢轨减磨措施具有参考价值。
Heavy-haul railway transportation has been the development direction in China with the growth of economy and railway transport volume. But due to the increase of train speed and axle load, the rail wear on curve has constantly increased, which increases railway running cost greatly. As changes of wheel/rail profile caused by wear seriously affect the rail wear, it is very meaningful to conduct research on worn wheel/rail interaction characteristics to further study rail wear principle and effective measures for reducing rail wear.
     Based on vehicle dynamic theory, a detailed dynamics model is established by using multi-body dynamic simulation software ADAMS/Rail. The analysis is carried out on contact geometry of worn wheel/rail and curving performance of heavy haul freight car. The results show that both vehicle curving performance and wheel/rail contact geometry are seriously influenced by worn wheel/rail profiles; and the side wear of outer rail is becoming serious due to the contact between wheel flange and rail gauge corner and the excessive wheel/rail dynamic force when worn wheel/rail are combined.
     A three-dimensional wheel-rail elastic-plastic contact model is established by using the finite element software ANSYS. The analysis is carried out on contact stress characteristics between the worn wheel and rail on heavy-haul railway curve. The results show that contact fatigue easily occurs on new outer rail head led by excessive contact stress and plastic deformation; as wear progresses, the contact stress of outer rail gage corner and plastic deformation of inner rail head gradually increase, which further exacerbates the side wear of outer rail and the crushing of inner rail.
     The results have the reference value for researching effective measures to reduce rail wear on curve.
引文
[1]翟婉明.车辆—轨道耦合动力学[M].第三版.北京:科学出版社,2007
    [2]张良威.重载货车轮轨磨耗研究[D].成都:西南交通大学硕士学位论文,2008
    [3]练松良,孙琦王午生.铁路曲线钢轨磨耗及其减缓措施[M].北京:中国铁道出版社,2003
    [4]金学松,张雪珊,张剑等.轮轨关系研究中的力学问题[J].机械强度.2005,27(4):408~418
    [5]高长宇.曲线钢轨侧面磨耗的形成机理及减磨措施[D].成都:西南交通大学硕士论文,2003.
    [6]苏辉艳.减轻重载列车轮轨磨耗的研究[J].中国铁路.1997,(6):42~43
    [7]HUIMIN WU. Effects of wheel and rail profiles on vehicle performance [J]. Vehicle System Dynamics.2006,44 (Suppl):541~550
    [8]M. A. Rezvani, A. Owhadi, F. Niksai. The effect of worn profile on wear progress of rail vehicle steel wheels over curved tracks [J]. Vehicle System Dynamics.2006,47 (3): 325~342
    [9]卢家方,张通,孙琦等.在内燃牵引下减缓曲线钢轨侧面磨耗的研究[J].中国铁道科学.1990,12(2):74~91
    [10]王平,刘学毅,万复光.钢轨磨耗动力分析模型[J].西南交通大学学报.1996,31(1):93~97
    [11]黄运华,李芾,傅茂海等.踏面形状对地铁车辆动力学性能的影响[J].机车电传动.2007,(1):39~41
    [12]王开云,翟婉明,蔡成标.两种类型踏面的车辆与轨道耦合动力学性能比较[J].西南交通大学学报.2002,37(3):261~264
    [13]王开云,翟婉明.实测型面的轮轨接触几何关系研究[J].西南交通大学学报.2005,(增刊):51~56
    [14]王开云,翟婉明,刘建新等.山区铁路小半径曲线强化轨道动力性能[J].交通运输工程学报.2005,5(4):15~19
    [15]Aleksander S, Marek S. Analysis of Wheel-Rail Interaction using FE Software [J]. Wear. 2005,258:1217~1223
    [16]Telliskivi T, Olofsson U. Contact Mechanics Analysis of Measured Wheel-Rail Profiles Using the Finite Element Method [J]. Journal of Rail and Rapid Transit.2001,215:65~72
    [17]张焱,孔祥安,金学松.轨头内弹塑性接触应力场与工况参数[J].铁道学报.1999,21(5):33~36
    [18]张军,吴昌华.轮轨接触问题的弹塑性分析[J].铁道学报.2000,22(3):16~21
    [19]张军.基于有限元法的轮轨蠕滑理论研究[D].大连:大连理工大学博士学位论文,2003
    [20]王俊彪,马大炜,王成国.日本轮轨关系研究现状综述(上)[J].现代城市轨道交通.2009,(4):5~8
    [21]王俊彪,马大炜,王成国.日本轮轨关系研究现状综述(下)[J].现代城市轨道交通.2009,(5):5~8
    [22]D. E. Newland. Steering a Flexible Railway Truck on Curved Track [J]. Journal of Engineering for Industry.1969,91:908~918
    [23]D. Boocock. The Steady state Motion of Railway Vehicles on Curved Track [J]. Journal of Mechnical Engineering Science.1969,11 (6):556~566
    [24]J. A. Elkins, R. J. Gostling. A General Quasi-static Curving Theory for Railway Vehicles [J]. IUTAM Sympasium, Vienna.1977,6:100-106
    [25]M. L. Nagulka. Curving Performance of Rail Passenger Vehicles [D]. M. I. T.,1983
    [26]Kalker J. J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction [D]. Delft University, The Netherlands,1967
    [27]Kalker J. J. Three-dimensional Elastic Bodies in Rolling Contact[M]. Dordrecht: Kluer Publishers,1990
    [28]金学松.轮轨蠕滑理论及其试验研究[M].成都:西南交通大学出版社,2006
    [29]颜秉善,王其昌.钢轨力学与钢轨伤损[M].成都:西南交通大学出版社,1988
    [30]范俊杰.试论列车轴重对钢轨磨耗与伤损的影响[J].北方交通大学学报.1987,(1):79~88
    [31]孙国瑛, 刘学毅, 万复光.小半径曲线上的钢轨磨耗[J].西南交通大学学报.1994,29(1):66~70
    [32]吴德利,金永日.对减缓钢轨磨耗的几种途径的探索[J]_哈铁科技通讯.1994,2:1~6
    [33]刘学毅,孙国瑛,万复光.大秦线钢轨侧磨原因分析及减磨措施[J].西南交通大学学报.1996,31(2):6~11
    [34]段固敏.轴重和摩擦系数对钢轨侧磨影响的研究[J].兰州铁道学院.1994,13(3):9~13
    [35]俞展猷.轮轨磨耗机理与轮轨润滑[J]_铁道机车车辆.2000,(5):11~14
    [36]李立东,杨爱国.转K6型转向架的研制[J].铁道车辆.2005,43(10):22~26
    [37]Roberson Re., S chwertassek R. Dynamics of Multi-body Systems [M]. Berlin: Spring-Verlag,1988
    [38]Wittenburg J.多刚体系统动力学[M].北京:航空航天大学出版社,1986
    [39]王成国.MSC.ADAMS/Rail基础教程[M].北京:科学出版社,2005
    [40]陆正刚,胡用生.货车转向架动力学性能与悬挂结构设计和参数优化的综合研究[J].铁道车辆.2001,39(1):1~5
    [4l]司道林.重载铁路曲线轨道结构参数及钢轨型面对曲线通过性能影响的研究[D].成都:西南交通大学硕士论文,2009
    [42]郭俊,温泽峰,金学松,刘启跃.轮轨三维弹塑性滚动接触应力[J].西南交通大学学报.2007,42(3):262~268
    [43]严隽耄,傅茂海.车辆工程[M].第三版.北京:中国铁道出版社,2008
    [44]龚积球等.轮轨磨损[M].北京:中国铁道出版社,1997
    [45]王福天.车辆系统动力学[M].第二版.北京:中国铁道出版社,1994
    [46]严隽髦,翟婉明,陈清等.重载列车系统动力学[M].北京:中国铁道出版社,2003
    [47]周清跃,张银花等编著.钢轨的材质性能及相关工艺[M].北京:中国铁道出版社,2005
    [48]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004
    [49]Vijay K. Garg, Rao V. Dukkipati.铁道车辆系统动力学[M].沈利人,译.成都:西南交通大学出版社,1998
    [50]Carter F. W. On the Action of a Locomotive Driving Wheel [J]. Proc of the Royal Society of London.1926,112:151~157
    [51]Vermeulen J. K., Johnson K. L. Contact of Non-spherical Bodies Transmitting Tangential Forces [J]. Journal of Applied Mechanics.1964, (31):338~340
    [52]Piotrowsiki J. Kalker J. J., The Elastic Cross-influence between Two Qausi-Hertzian Contact Zones [J].VSD.1988,17:337~355
    [53]孙翔,金鼎昌.磨耗形踏面与钢轨的两点接触[J].西南交通大学学报.1985,2:45~56.
    [54]Shen Z Y, Hedrick J. K. A Fast Non-steady Creep Force Model Based on the Simplified Theory [J]. Wear.1996,191:242~244
    [55]金学松,张卫华.非赫兹接触轮轨力数表TPLR的研究[J].西南交通大学学报.1996,31(6):646~651
    [56]金学松,薛弼一,沈志云.接触问题的余能原理及其在轮轨滚动接触研究中的应用[J].铁道学报.1996,18(5):30~36
    [57]江晓禹,金学松.考虑表面微观粗糙度的轮轨接触弹塑性分析[J].西南交通大学学报.2001,36(6):588~590
    [58]王勇,曾京,吕可维.三大件转向架货车动力学建模与仿真[J].交通运输工程学报.2003,3(4):30~34
    [59]吕可维.三大件式转向架菱形变形特性研究[J].铁道车辆.1999,37(11):7~9
    [60]王勇,曾京,张卫华.铁道货车非线性稳定性[J].交通运输工程学报.2002,2(2):36~40
    [61]阳光武,肖守讷,金鼎昌.货车旁承间隙对车辆动力学性能的影响[J].中国铁道科学.2007,28(2):71~75
    [62]刘启跃.减缓曲线钢轨侧磨的方法探讨[J].铁道建筑.1997,5:28~29
    [63]马培德,赵中华,王培生.石太线小半径曲线钢轨侧面磨耗的研究[J].铁道标准设计.1998,(12):37~39
    [64]李亨利.货车径向转向架动力学特性及轮轨磨耗研究[D].西南交通大学硕士论文,2006
    [65]张伟,郭俊,刘启跃.钢轨滚动接触疲劳研究[J]_润滑与密封.2005,(6):195~199
    [66]金学松,温泽峰,张卫华.两种型面轮轨滚动接触应力分析[J].机械工程学报.2004,40(2):5~10
    [67]张澎湃,井秀海.轮轨接触应力的有限元计算[J].铁道车辆.2007,45(6):4~8
    [68]王成国,王永菲,李海涛等.高速轮轨接触几何关系的比较分析[J].铁道机车车辆.2006,26(4):1~5
    [69]王文健,郭俊,刘启跃.轨道结构参数对轮轨滚动接触应力影响[J].机械工程学报.2009,45(5):39~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700