巯基乙酸辅助水热法制备硫化物纳米结构及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技是21世纪非常重要的、将对人类的生存和发展产生显著影响的科技领域。纳米结构无论从基础研究的角度来说,还是从性能与应用的角度来看,都有着特殊重要的意义,可以说纳米结构的合成和组装是整个纳米科技的基础。由于硫族化合物具有特殊的光电性质,因此研究其纳米结构的合成与组装具有十分重要的意义。
     本文在传统水热和溶剂热方法的基础上,提出了巯基乙酸辅助水热合成新工艺技术,并用其成功合成了SnSx、PbS和CuS的各种纳米结构。同时利用X射线衍射、透射电镜、扫描电镜、拉曼光谱等测试手段对每一种结构进行了表征和分析。研究了温度、时间、硫源等各种因素对这些硫化物纳米结构及其物相的影响,从而得到了制备各种纳米结构硫化物的最佳条件。并且对于某些结构的形成机理进行了初步探讨。
     实验表明,利用巯基乙酸辅助水热合成技术可以制备SnS_2纳米带、SnS_2叶片状结构和SnS薄片状结构。在SnSx纳米结构的制备过程中,锡硫配比、反应温度和硫源是影响产物纳米结构和物相的主要因素。当反应温度200℃和反应时间48小时保持不变时,锡硫摩尔比为1:4可以得到SnS_2纳米带;锡硫摩尔比为1:10则为SnS薄片状结构;而摩尔比低于1:4时,产物中还有SnO_2颗粒存在。若保持锡硫摩尔比为1:4,在160℃下反应24小时,得到的产物为SnS_2叶片状结构。
     通过巯基乙酸辅助水热合成技术还可以制备PbS星状结构和PbS纳米棒。以醋酸铅和硫脲为先驱体,pH值大于10,在200℃下反应24小时,是制备PbS星状结构的最佳条件;改变硫源或体系pH值小于7时,所得产物均为PbS纳米颗粒。以硫酸铅和硫化钠为先驱体,在200V下反应24小时,是制备PbS纳米棒的最佳条件;当用其它可溶性铅盐取代硫酸铅为铅源时,产物都为PbS纳米颗粒。
     通过巯基乙酸辅助水热合成技术,以硫代乙酰胺为硫源,可以制备CuS亚
    
    浙江大学硕士学位论文吉宇杰
    2004年3月
    微米空心球结构。扫描和透射电镜照片显示,这是一种由纳米颗粒组成的球状空
    心结构,X射线衍射和能谱分析表明该结构是由CuS晶体组成的。在制备CuS
    亚微米空心球结构过程中,硫源对所得产物的微观形貌和物相结构起着非常重要
    的作用。
Nanotechnology will be a strategic branch of science and engineering for the next century, one that will dramatically impact on the health, wealth, and security of the world's people. As the basis of the whole nanotechnology, nanostructures have significant effect on theories and applications. Also, owing to their distinguished optical and electronic properties, the synthesis of sulfide nanostructures has been a primary focus.
    In this paper, we reported a thioglycolic acid (TGA) assisted hydrothermal method to prepare sulfide nanostructures, such as SnSx, PbS and CuS. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and so on. The effects of reaction conditions including reaction temperature, time, and sulfur source on nanostructures and phase of the resulting products were studied. Furthermore, the mechanism of some sulfide structures was preliminary presented.
    Belt-like, leaf-like, and sheet-like SnSx (x=l,2) nanostructures were synthesized by thioglycolic acid assisted hydrothermal process using different ratio of sulfur and tin, temperature, and sulfur source. Keeping the temperature at 200 癈 for 48h, that the ratio of sulfur and tin was 1:4 could obtain the SnS2 nanobelts, and that the ratio was 1:10 could obtain the sheet-like SnS crystals. Moreover, using the ratio of 1:4 at 160C for 24h could obtain the leaf-like SnS2 nanostructures.
    Star-shaped and rod-like PbS nanostructures were also synthesized by thioglycolic acid assisted hydrothermal process. When using Pb(Ac)2 and thiourea as reactants, keeping pH value more than 10, the autoclave was maintained at 200C for 20h, the products were well crystallized star-shaped PbS nanostructures. Moreover, in our work, it was found that the PbS nanoparticles were formed by using other sulfur
    
    
    
    
    source or a pH value less than 7 in the hydrothermal method. When using PbSO4 and Na2S as reactants, the autoclave was maintained at 200C for 20h, the products were PbS nanorods.
    Using thioacetamide as sulfur source, CuS submicrometer hollow spheres consisting of nanoparticles were fabricated by thioglycolic acid assisted hydrothermal process. Furthermore, in this experiment, sulfur source played important role on the morphology and phase of products.
引文
?
    
    
    [1] 张立德,牟季美,纳米材料与纳米结构,科学出版社,2001,59.
    [2] R. Birringer, H. Gleiter, H.P. Klein, P. Marquardt, Nanocrystalline materials - an approach to a novel solid structure with gas-like disorder, Phys. Lett. A., 1984,102 (8): 365-369.
    [3] 巩雄,张桂兰,汤国庆,陈文驹,纳米晶体材料研究进展,化学进展,1997,9(4):349-360.
    [4] 李新勇,李树本,纳米半导体研究进展,化学进展,1996,8(3):231-239.
    [5] S. Iijima, Helical microtubules of graphite carbon, Nature, 1991, 354: 56-58.
    [6] J. Sha, J. J. Niu, X. Y. Ma, J. Xu, X. B. Zhang, Q. Yang, D. R. Yang, Silicon
    
    nanotubes, Adv. Mater., 2002, 14:1219-1221.
    [7] S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. H. Choi, H. K. Kang, C. W.Yang, Y. H. Lee, Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy, Adv. Mater., 2003, 15:1172-1176.
    [8] H. Zhang, D. R. Yang, Y. J. Ji, X. Y. Ma, J. Xu, D. L. Que, Selenium nanotubes synthesized by a novel solution approach, J. Phys. Chem. B, 2004, 108:1179-1182.
    [9] B. Mayers, Y. Xia, Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds, Adv. Mater., 2002, 14:279-282.
    [10] Y. D. Li, J. W. Wang, Z. X. Deng, Y. Y. Wu, X. M. Sun, D. P. Yu, P. D. Yang,Bismuth nanotubes: A rational low-temperature synthetic route, J. Am. Chem.Soc., 2001, 123:9904-9905.
    [11] N. G. Chopra, R. J. Luyken, K, Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie,A. Zettel. Boron nitride nanotubes, Science, 1995,269: 966-967.
    [12] Y. Zhang, H. Gu, K. Suenaga, S. Iijima, Heterogeneous growth of B-C-N nanotubes by laser ablation, Chem. Phys. Lett., 1997, 279: 264-269.
    [13] M. Remskar, Z. Skraba, R. Sanjines, F. Levy. Syntactic coalescence of WS_2 nanotubes, Appl. Phys. Lett., 1999, 74: 3633-3635.
    [14] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS_2 nested inorganic fullerenes and nanotubes, Science, 1995,267: 222-225.
    [15] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir, 1998, 14:3160-3163.
    [16] J. F. Xu, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, R. Nesper, Nonlinear optical transmission in VO_x nanotubes and VO_x nanotube composites, Appl, Phys.Lett., 2002, 81: 1711-1713.
    [17] A. M. Morales, C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279:208-211.
    [18] T. Hanrath, B. A. Korgel, Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals, J. Am. Chem. Soc., 2002, 124:1424-1429.
    
    
    [19] W. Wang, C. Xu, G. Wang, Y. Liu, C. Zheng, Synthesis and Raman scattering study of rutile SnO_2 nanowires, Appl. Phys. Lett., 2002, 92: 2740-2742.
    [20] J. K. Jian, X. L. Chen, W. J. Wang, L. Dai, Y. P. Xu, Growth and morphologies of large-scale SnO_2 nanowires, nanobelts and nanodendrites, Appl. Phys. A, 2003,76: 291-294.
    [21] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R.Russo, P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science,2001, 292: 1897-1899.
    [22] H. W. Seo, S. Y. Bae, J. Park, H. Yang, Strained gallium nitride nanowires, J.Chem. Phys., 2002, 116: 9492-9499.
    [23] J. Zhang, L. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, Y. Wang, Fabrication and photoluminescence of ordered GaN nanowire arrays, J. Chem. Phys., 2001,115: 5714-5717.
    [24] J. R. Kim, H. M. So, J. W. Park, J. J. Kim, J. Kim, C. J. Lee, S. C. Lyu, Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition, Appl. Phys. Lett., 2002, 80: 3459-3461.
    [25] X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, Z. Qiao,Straight and smooth GaN nanowires, Adv. Mater., 2000, 12: 1432-1434.
    [26] C. C. Chen, C. C. Yeh, C.H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J.Y. Peng, Y. F. Chen, Catalytic growth and characterization of gallium nitride nanowires, J. Am. Chem. Soc., 2001, 123: 2791-2798.
    [27] Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, A simple method to synthesize Si_3N_4 and SiO_2 nanowires from Si or Si/SiO_2 mixture, J. Crys. Growth,2001, 233: 803-808.
    [28] X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. R Sun, J. J. Du,Simultaneous growth of α-Si_3N_4 and β-SiC nanorods, Mater. Res. Bullet., 2001,36: 847-852.
    [29] Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang, G. E. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor, Chem. Mater., 1998, 10: 2301-2305.
    
    
    [30] C. C. Chen, C. Y. Chao, Z. H. Lang, Simple solution-phase synthesis of soluble CdS and CdSe nanorods, Chem. Mater., 2000, 12: 1516-1518.
    [31] Y. Wang, G. Meng, L. Zhang, C. Liang, J. Zhang, Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence, Chem. Mater., 2002, 14:1773-1777.
    [32] J. J. Urban, W. S. Yun, Q. Gu, H. Park, Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate, J. Am. Chem. Soc.,2002, 124: 1186-1187.
    [33] S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. E Chou, C. Nguyen, G. Cao,Electrophoretic growth of lead zirconate yitanate nanorods, Adv. Mater., 2001, 13:1269-1272.
    [34] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science,2001, 291:1947-1949.
    [35] Z. R. Dai, Z. W. Pan, Z. L.Wang, Gallium oxide nanoribbons and nanosheets, J.Phys. Chem. B, 2002, 106: 902-904.
    [36] J. Zhang, L. Zhang, Graphite/hydrogen reduction route to Ga_2O_3 nanobelts, Solid State Commtm., 2002, 122: 493-496.
    [37] G. Gundiah, A. Govindaraj, C. R. Rao, Nanowires, nanobelts and related nanostructures of Ga_2O_3, Chem. Phys. Lett., 2002, 351: 189-194.
    [38] B. D. Bao, Y. F. Chen, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation, Appl. Phys. Lett., 2002, 81:757-759.
    [39] Z. R. Dai, Z. W. Pan, Z. L. Pan, Ultra-long single crystalline nanoribbons of tin oxide, Solid State Commun., 2001, 118: 351-354.
    [40] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang, Tin oxide nanowires, nanoribbons,and nanotubes, J. Phys. Chem. B, 2002, 106: 1274-1279.
    [41] J. Q. Hu, X. L. Ma, N. G. Shang, N. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee.Large-scale rapid oxidation synthesis of SnO_2 nanoribbons, J. Phys. Chem. B,2002, 106: 3823-3826.
    [42] K. Suenaga, C. Clliex, N. Kemoncy, A. Loiseau, H. Pascard, E Willaime,Synthesis of nanoparticles and nanotubes with well-separated layers of boron
    
    nitride and carbon, Science, 1997, 278:208
    [43] G. W. Meng, L. D. Zhang, C. M. Mo, S. Y. Zhang, Y. Qin, S. P. Feng, Preparation of beta-SiC nanorods with and without amorphous SiO_2 wrapping layers, J. Mater.Res., 1998, 13:2533-2538.
    [44] Y. Zhang, K. Suenage, C. Colliex, S. Iijima, Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science, 1998, 281:973 -975.
    [45] X. F. Duan, C. M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. Soc., 2000, 122: 188-189.
    [46] X. F. Duan, J. F. Wang, C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76:1116-1118.
    [47] X. F. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires, Adv. Mater., 2000, 12: 298-302.
    [48] M. S. Gudiksen, C. M. Lieber, Diameter-selective synthesis of semiconductor nanowires, J. Am. Chem. Soc., 2000, 122: 8801-8802.
    [49] M. S. Gudiksen, J. F. Wang, C. M. Lieber, Synthesic control of the diameter and length of single crystal semiconductor nanowires, J. Phys. Chem. B, 2001, 105:4062-4064.
    [50] Y. Cui, L.J. Lauhon, M.S. Gudiksen, J.F. Wang, C.M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires, Appl. Phys. Lett., 2001, 78:2214-2216.
    [51] R. S. Wagner, W. C. Ellis, Vapor-liquid-solid mechamism of single crystal growth,Appl. Phys. Lett., 1964, 4: 89-90.
    [52] S. Q. Feng, D.P. Yu, H. Z. Zhang, Z. G. Bai, Y. Ding, The growth mechanism of silicon nanowires and their quantum confinement effect, J. Cryst. Growth, 2000,209: 513-517.
    [53] E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, 1975, 31:20-30.
    [54] H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, S. Q. Feng, Dependence of the silicon nanowire diameter on ambient pressure, Appl.Phys. Lett., 1998, 73:
    
    3396-3398.
    [55] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, S. T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett., 1998,72: 1835-1837.
    [56] D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z.Zhang, S. Q. Feng, Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Sol. Stat. Commun., 1998, 105: 403-407.
    [57] N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, SiO_2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett., 1998, 73: 3902-3904.
    [58] Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, S. T. Lee, Germanium nanowires sheathed with an oxide layer, Phys. Rev. B, 2000, 61:4518-4521.
    [59] X. T. Zhou, N. Wang, H. L. Lai, H.Y. Peng, I. Bello, C. S. Lee, S. T. Lee,β-SiC nanorods synthesized by hot filament chemical vapor deposition, Appl. Phys.Lett., 1999, 74: 3942-3944.
    [60] H. Y. Peng, X. T. Zhou, N. Wang, Y. E Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S.T. Lee, Bulk-quantity GaN nanowires synthesized from hot filament CVD, Chem.Phys. Lett., 2000, 327: 263-270.
    [61] W. S. Shi, Y. F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Synthesis and microstrueture of gallium phosphide nanowires, J. Vac. Sci. & Tech. B, 2001, 19:1115-1118.
    [62] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, S. T. Lee, Si nanowires grown from silicon oxide, Chem. Phy. Lett., 1999, 299: 237-242.
    [63] R. Q. Zhang, T. S. Chu, H. F. Cheung, N. Wang, S. T. Lee, Mechanism of oxide-assisted nucleation and growth of silicon nanostructures, Mater. Sci. & Eng.C, 2001, 16: 31-35.
    [64] Y. J. Zhang, N. L. Wang, S. E Gao, R. R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, A simple method to synthesize nanowires, Chem. Mater., 2002, 14: 3564-3568.
    [65] Z. L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxidesfrom materials to nanodevices, Adv. Mater., 2003, 15: 432-436.
    [66] S. S. Brenner, G. W, Sears, Mechanism of whisker growth Ⅲ Nature of grow sites,Acta Mater., 1956: 268-270.
    
    
    [67] Z. R. Dai, Z. W. Pan, Z. L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Adv. Func. Mater., 2003, 13: 9-24.
    [68] Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires, J.. Am. Chem. Soc., 2002,124: 1817-1822.
    [69] J. M. Blakely, K. A. Jackson, Growth of crystal whiskers, J. Chem. Phys., 1962,37: 428-430.
    [70] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W.Qian, G. C. Xiong, H. T. Zhou, S. Q. Feng, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett., 1998, 72: 3458-3460.
    [71] Y. J. Xing, Z.H. Xi, D.P. Yu, Q.L. Hang, H.F. Yan, S. Q. Feng, Z. Q. Xue, Growth of silicon nanowires by heating Si substate, Chin. Phys. Lett., 2002, 19: 240-242.
    [72] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q.Feng, Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism,Chem. Phys. Lett., 2000, 323: 224-228.
    [73] Y. Zhang, H. B. Jia, X. H. Luo, X. H. Chen, D. R Yu, R. M. Wang, Synthesis,microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chem.B, 2003, 107: 8289-8293.
    [74] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y.Song, S. L. Zhang, D. P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett., 2003, 83: 1689-1691.
    [75] C. R. Martin, Nanomaterials: a membrane-based synthetic approach, Science, 1994, 266: 1961-1966.
    [76] S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, Y. W. Du, Preparation and magnetic property of Fe nanowires array, J. Magn. Magn. Mater., 2000, 222:97-100.
    [77] G. H. Pontifex, R Zhang, Z. Wang, T. L. Haslett, D. Alnawlawi, M. Moskovits,STM imaging of the surface of small metal particles formed in anodic oxide pores,J. Phys. Chem., 1991, 95: 9989-9993.
    [78] C. A. Foss, G. L. Hornyak, J. A. Stackert, C. R. Martin,, Optical properties of
    
    composite membranes containing arrays of nanoscopic gold cylinders, J. Phys.Chem., 1992, 96: 7497-7499.
    [79] C. J. Brumilik, C. R. Martin, Template synthesis of metal microtubules, J. Am.Chem. Soc., 1991, 113: 3174-3175.
    [80] G. Che, S. A. Miller, E. R. Fisher, C. R. Martin, An Electrochemically Driven Actuator Based on a Nanostructured Carbon Material, Anal. Chem., 1999, 71:3187-3191.
    [81] D. Routkevitch, T. Bigioni, M. Moskavits, J. M. Xu, Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates, J. Phys.Chem., 1996, 100: 14037-14047.
    [82] H. Q. Cao, Z. Xu, H. Sang, D. Sheng, C. Y. Tie, Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules,Adv. Mater., 2001, 13: 121-123.
    [83] H. Q. Cao, C. Y. Tie, Z. Xu, J. M. Hong, H. Sang, Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior, Appl. Phys. Lett.,2001, 78: 1592-1594.
    [84] H. Q. Cao, Z. Xu, D. Sheng, J. M. Hong, H. Sang, Y. W. Du, An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior,2001, 11 : 958-960.
    [85] 胡征,王喜章,吴强,陈懿,一种BN纳米管及其制法,中国发明专利,申请号01113556.5,2001.
    [86] J. S. Suh, J. S. Lee, Highly ordered two-dimensional carbon nanotube arrays,Appl. Phys. Lett., 1999, 75: 2047-2049.
    [87] X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Phillipp, F. Phillipp,Synthesis of ordered single crystal silicon nanowire arrays, Adv. Mater., 2001, 13:1238-1241.
    [88] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, L. D. Zhang, Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes,Mater. Sci. & Eng. A, 2000, 286: 165-168.
    [89] J. J. Niu, J. Sha, X. Y. Ma, J. Xu, D. R. Yang, Array-orderly single crystalline
    
    silicon nano-wires, Chem. Phys. Lett., 2003, 367: 528-532.
    [90] Q. Yang, J. Sha, J. Xu, Y. J. Ji, X. Y. Ma, J. J. Niu, H. Q. Hua, D. R. Yang, Aligned single crystal boron nanowires, Chem. Phys. Lett., 2003, 379: 87-90.
    [91] H. Zhang, X. Y. Ma, J. Xu, J. J. Niu, J. Sha, D. R. Yang, Directional CdS nanowires fabricated by chemical bath deposition, J. Cryst. Growth, 2002, 246: 108-112.
    [92] H. Zhang, X. Y. Ma, J. Xu, J. J. Niu, D. R. Yang, Arrays of ZnO nanowires fabricated by a simple chemical solution route, Nanotechnology, 2003, 14: 423-426.
    [93] X. Y. Ma, H. Zhang, J. Xu, J. J. Niu, Q. Yang, J. Sha, D. R. Yang, Synthesis of La_(1-x)Ca_xMnO_3 nanowires by a sol-gel process, Chem. Phys. Lett., 2002, 363: 579-582.
    [94] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, C. M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 1995, 375: 769-772.
    [95] E. W. Wong, B. W. Maynor, L. D. Burns, C. M. Lieber, Growth of metal carbide nanotubes and nanorods, Chem. Mater., 1996, 8: 2041-2046.
    [96] W. Q. Han, S. S. Fan, Q. Q. Li, Y. D. Hu, Synthesis of gallium nitride nanorods through a carbon Nanotube-confined reaction, Science, 1997, 277: 1287-1289.
    [97] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391: 775-778.
    [98] S. H. Yu, Y. S. Wu, J. Yang, Z. H. Han, Y. Xie, Y. T. Qian, X. M. Liu, A novel solventothermal synthetic route to nanocrystalline CdE(E=S, Se, Te) and morphological control, Chem. Mater., 1998, 10: 2309-2312.
    [99] Q. Y. Lu, J. Q. Hu, K. B. Tang, Y. T. Qian, G. Zhou, X. M. Liu, J. S. Zhu, Growth of SiC nanorods at low temperature, Appl. Phys. Lett., 1999, 75: 507-509.
    [100] X. Wang, J. Lu, Y. Xie, G. Du, Q. Guo, S. Zhang, A novel route to Multiwalled carbon nanotubes and carbon nanorods at low temperature, J. Phys. Chem. B, 2002, 106: 933-937.
    [101] D. B. Yu, D. B. Wang, Z. Y. Meng, J. Lu, Y. T. Qian, Synthesis of closed PbS nanowires with regular geometric morphologies, J. Mater. Chem., 2002, 12: 403-405.
    [102] H. W. Liao, Y. F. Wang, X. M. Liu, Y. D. Li, Y. T. Qian, Hydrothermal
    
    preparation and characterization of luminescent CdWO_4 nanorods, Chem. Mater., 2000, 12: 2819-2821.
    [103] Y. Xie, P. Yan, J. Lu, W. Wang, Y. T. Qian, A safe low temperature route to InAs nanofibers, Chem. Mater., 1999, 11: 2619-2622.
    [104] 董亚杰,李亚栋,一维纳米材料的合成、组装与器件,科学通报,2002,9:641-649.
    [105] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai, Nanotube moleculer wires as chemical sensors, Science, 2000, 287: 622-625.
    [106] Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 2001, 293: 1289-1292.
    [107] A. Maiti, J. A. Rodriguez, M. Law, R Kung, J. R. McKinney, P. D. Yang, SnO_2 nanoribbons as NO_2 sensors: insights from first principles calculations, Nano Lett., 2003, 3: 1025-1028.
    [108] M. H. Huang, S. Mao, H. N. Feick, H. Q. Yma, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292: 1897-1899.
    [109] H. J. Choi, J. C. Johnson, R. He, S. K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, P. D. Yang, Self-organized GaN quantum wire UV lasers, J. Phys. Chem. B, 2003, 107: 8721-8725.
    [110] X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers, Nature, 2003, 421: 241-245.
    [111] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409: 66-69.
    [112] P. G. Collins, M. S. Arnold, R Avouris, Engineering carbon nanotubes and Nanotube circuits using electrical breakdown, Science, 2001, 292: 706-709.
    [113] X. F. Duan, C. M. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, J. L. Goldman, High-performance thin-film transistors using semiconductor nanowires and nanoribbons, Nature, 2003, 425: 274-278.
    
    
    [114] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 2001, 294: 1313-1317.
    [115] Y. Huang, X. F. Duan, Y. Cui, C. M, Lieber, Gallium nitride nanowire nanodevices, Nano Lett., 2002, 2: 101-104.
    [116] G. Y. Tseng, J. C. Ellenbogen, Nanotechnology- Toward nanocomputers, Science, 2001, 294: 1293-1294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700