黄土公路边坡坡面冲刷的水—土力学耦合机制及模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土在我国分布十分广泛,近年来随着经济建设的发展和对外开放的需要,高等级公路的修建速度加快,穿越复杂地形地貌区域的增大,随之带来的公路工程边坡问题也日益增多。由于黄土的特殊性质(大孔隙比、低压实度、弱抗水性、高透水性、湿陷性),决定了其抵抗径流冲刷特别弱的固有特性,加之公路的斜坡地形为坡面径流的冲刷提供了良好的动力条件,因此公路边坡冲刷破坏防治一直是黄土公路地区土的重要研究课题。现行《湿陷性黄土地区建筑地基规范》(GB50025-2004)首次将辽宁西部列为黄土边缘区,目前仅有少数学者对该地区的黄土进行了初步研究。为此,作者结合国家自然科学基金面上项目“辽西地区黄土边坡坡面冲刷破坏机理的研究”(No.40972171),以辽西黄土边坡为研究对象,通过土质学、土力学和水力学多学科有机结合的途径,研究黄土边坡坡面冲刷破坏的水土力学机理。
     论文共分八章,第一章介绍了选题依据与研究意义,黄土边坡坡面侵蚀破坏特征及机理研究现状,给出了论文的研究内容与技术路线。第二章为辽西黄土的工程地质特性,主要对辽西地区的黄土的分布规律和成因、黄土的物质组成、土化学特性、黄土的微观结构特征及其定量化、黄土的基本力学性质及湿陷变形规律等方面进行了深入的研究。第三章为黄土边坡坡面冲刷室内模拟试验研究。深入研究降雨条件下黄土边坡坡面冲刷破坏过程及其特性,自行研制了小型边坡降雨及观测装置,开展室内边坡降雨冲刷破坏模拟试验。主要研究不同坡度的边坡在3个降雨级别下坡面的冲刷破坏规律、降雨入渗规律、孔隙水压力变化规律、颗粒运动及坡面形态的细观变化特征。第四章主要通过现场调查与室内物理试验模拟结果,研究坡面冲刷破坏特征与影响坡面冲刷破坏的主要因子及其相互作用。第五、六章是在模型模拟试验和现场调查监测的基础上,采用SEEP/W及PFC2D进行数值分析,进一步研究坡面冲刷过程中土颗粒受力特征、降雨入渗规律,进而揭示冲刷破坏的微观机制。第七章为结合坡面侵蚀的3个动力学子过程:雨滴溅蚀及产流、径流引起的土体颗粒分离以及颗粒的输移,研究坡面颗粒启动机制,量化研究边坡侵蚀、深入分析(从微观和宏观)坡面冲刷破坏机理。第八章为结论与展望,总结本文所得到的结论及创新点,并提出进一步研究和改进的建议。
     论文紧密围绕“黄土边坡冲刷破坏的机理”这一中心问题,采用物理模拟、数值分析等方法、定性和定量相结合的途径,对黄土边坡坡面冲刷破坏的全过程特征进行了研究,基本明确了黄土边坡坡面冲刷破坏的机理,初步建立了黄土边坡冲刷破坏的计算模型,成果对深化黄土边坡冲刷破坏的研究及黄土边坡防护设计具有重要的意义。限于作者水平,许多问题尚有待于进一步研究,不当之处敬请各位专家学者批评指正。
A study of water-soil mechanics coupling mechanism and model for loess slope surface erosion on highway
     Highway slope erosion and failure is a phenomenon caused by rainfall and soils will be taken away from the slope sutface, which can destroy subgrade and cutting slope. Slope erosion will cause a plenty of soil and water loss, collapse at slope shoulder, slope erosion hydraulic drop, scouring at toe of a slope and surface erosion furrow. If the surface erosion develops further disasters such as collapses and landslides will take place, which will have adverse effect to normal operation of highway and will deteriorate ecological environment. Loess in study area has a different geological characteristics and water sensitivity from Northwest areas, thus the loess slope erosion becomes a prominent issue in Road-slope Project. By taking the slope in loess highway as the research object, by means of combining with field investigation and physical simulation, the physical composition, structure of loess and its collapsible deformation behavior are studied. The main factors influenced on slope erosion damage are analyzed and the micro mechanism of slope erosion damage from soil mechanics and hydraulics. Then water-soil mechanical and mathematical models are constructed and their corresponding slope stability analysis method is set up. This study can enrich and improve the theory of loess slope erosion damage calculation, and can provide scientific basis for the design and protection of highway slope in western Liaoning. Many main results and achievements of this staudy are obtained as follows:
     (1) Loess in study area is formed mainly by aeolian effect and water plays a secondary role. The content of silt with particle size of0.05-0.005mm were72.87%. The main mineral component is detrital minerals, and contains a certain clay minerals. Soluble salt in the region is mainly chloride and dicarbonate, contains a small amount of sulfate. In a depth of20m, there are four microscopic structure types from top to bottom:scaffold-macrospore micro-cementation structure, scaffold-macrospore-mosaic micropore semi-cementation structure, flocculated cementation structure, coagulate cementation structure. Collapsibility coefficient is in the range of0.010to0.108in Western Liaoning, mostly of the Grade Ⅰ~Ⅱ non-collapsible, locally with a collapsible, and initial moisture content has a significant impact on collapse deformation.
     (2) Three-dimensional digital images of loess microstructure surface are established by extracting gray information of SEM images. A new method of average fractal dimension calculation to determine the fractal dimension before and after collapse. The results show that the fractal dimension of loess is2.508before collapse and it is2.590after collapse. The micro-structure surface undulation increases, as well as the complexity of the pore.
     (3) Slope erosion damage features can be divided into three stages, namely, splash erosion and laminar flow erosion, gully erosion and general demolition. The procedure from rainfall erosion and failure includes a series of actions such as splash erosion, infiltration, surface erosion, rill erosion, shallow trench erosion, gully erosion, scouring erosion, collapsed and sliding. Th slope will failue from the initial splash erosion and sheet erosion under a lower intensity to medium-term gully erosion under a high intensity, and finally leading to the multi-way damage stage of collapse, overall sliding. According to the field investigation and laboratory simulation observation, cross-sectional shape of highway slope gully erosion can be divided into V-shaped, U-shaped, trapezoidal, triangular and airfoil.
     (4) The major impact factors on slope erosion are studied. The results show that as rainfall intensity increases, the slope erosion damage is getting worse in the circumstances of continuous increasing rainfall. The critical gradient range of highway slope erosion in western Liaoning is between36.5°and44°. Rainfall erosion is the most serious within the scope of critical gradient. For different slopes, succession of the flow erosion mode and gully erosion cross-section shape will be different. Erosivity will enhance with the increases of slope length and the rainfall rechange region, which would increase the runoff potential significantly. Loess in this region possess characteristics such as vertical joints and large-pore structure, strong permeability, high soluble salt content, cement dissolution failure when saturated, so the cohesion reduces significantly.
     (5) The rainwater infiltration depth gradually increases with raifall time. The rainwater saturation line on the slope is not parallel to the slope line, but presents regularity the upper superficial and the lower dark. Aided by softwares SEEP/W and PFC2D simulation, it can be concluded, from the physical experiment moisture content dynamic monitoring, that for slopes with a small angle, pore water pressure grows fast at the foot of the slope, and the water content increasing rate turns to be greater than the top of the hill. The strength among grains decreases obviously at toe, soil particles startup under multiple external forces and the toe toe begin to damage. For slopes with a larger angle, even though the development regularity of saturation line is insignificant, pore water pressure increases rapidly and the moisture content grows fast on the top. At this time the top firstly occurs damage due to soil particles was washed away by runoff. To the same slopes, saturated time of surface soils will shorten with the increase of rainfall. Meanwhile the overland flow produces rapidly, flow will expand in the slope, rainwater infiltration rate will increase, and slope erosion damage becomes heavier.
     (6) Highway slope erosion in western Liaoning can be divided into three dynamic processes, namely, raindrop splash erosion and runoff, soil particle separation caused by runoff and the particles transport. Soon after it rains, infiltration rate is larger, surface runfall will not yet produce on slope. Raindrops hit the slope surface, which was mainly dry soil, small particles are splashed. With the accumulation of infiltration, the infiltration rate begins to decrease. Until the moisture content reaches the natural water-holding capacity, it turns to the fill runoff q. Overland flow q will become a sheet flow along the slope surface, and the soil particles present layered erosion. When the flow rate q is close to qc, layer flow will no longer be able to maintain due to characteristic fluctuation of the underlying surface, and the gully erosion begins. As hillslope erosion pattern turned into rill erosion from sheet erosion, the erosion amount will be doubled or even dozens of doubling. Pooling and transport of particles is the last basic dynamic process of soil erosion. Since sediment is always pooled by the slope and transported to the toe, which process is similar to the generation and convergence of small drainage networks, we can get the entire convergence and sediment transport process with the help of river model as well as the water movement and sediment dynamics description.
引文
[1]熊山铭.公路边坡灾害成因及防治技术[J].华东公路,2011,4:69-72.[2]邓卫东,唐颂,黄华华.路堤边坡雨水渗流的模型试验研究[J].公路交通技术,2003,5:4-9.[3]颜斌,倪万魁,刘海松.降雨入渗对黄土边坡稳定性的影响[C].第2届全国岩土与工程学术大会论文集,2006:450-455.[4]吴普特,黄土坡地径流冲刷与土壤抗冲动态响应过程研究[J].土壤侵蚀与水土保持学报,1998,4(2):92-94.[5]李圃林,王常明,张立新.阜新-朝阳高速公路段黄土三轴剪切特性研究[J].水文地质工程地质,2008,(2):49-53.[6]邢玉东,朱浮声,王常明.辽西黄土的物质组成与结构特征[J].岩土工程技术,2008,22(3):155-159.[7]邢玉东,王常明,张立新,匡少华.阜新-朝阳高速公路段湿陷性黄土路基处理方法及效果[J].吉林大学学报(地球科学版),2008,38(1):98-104.[8]王常明,马栋和,林容等.辽西地区黄土的强度与本构特性,吉林大学学报(地球科学版),2010,40(5):1104-1109.[9]王常明,林容,陈多才等.辽西黄土湿陷变形特性及湿陷后微观结构变化,吉林大学学报(地球科学版),2011,41(2):471-477.[10]Donghe Ma, Changming Wang. Three-dimensional Characteristics of the Loess's microstructure and comparison before and after collapse[C].2011International Conference on Remote Sensing, Environment and Transportation Engineering,2011.[11]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000.[12]Ellison W D,Ellison O T. Soil erosion study·Part Ⅵ:Soil detachment by surface flow[J]. Agric.Eng,1947d,28:402-405.[13]Ellison W D, Ellison O T. Soil erosion study·Part Ⅰ [J]..Agric.Eng,1947a,28:145-146.[14]Ellison W D, Ellison O T. Soil erosion study·Part Ⅱ:Soil detachment by surface flow[J]. Agric.Eng,1947b,28:197-201.[15]Ellison W D, Ellison O T. Soil erosion study·Part Ⅴ:Soil detachment by surface flow[J]. Agric.Eng,1947c,28:349-351.[16]Foster G. T, Huggins L F, Meyer L D. Laboratory Study of Rill Hydraulics:I. Velocity Relationships[J].??Transactions of the American Society of Agricultural Engineers,1984,27(3):790-796.[17]Foster G. T, Huggins L F, Meyer L D. Laboratory Study of Rill Hydraulics:Ⅱ. Shear Stress Relationships[J]. Transactions of the American Society of Agricultural Engineers,1984,27(3):797-804.[18]Merritt E. The identification of four stages during micro-rill development[J]. Eatth Surface Processes and Landforms,1984,9(5):493-496.[19]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(2):99-115.[20]龚时肠.黄河流域黄土高原土壤侵蚀的特点[J].中国水土保持,1988,(9):8-10.[21]武汉水利电力学院河流泥沙工程学教研室.河流泥沙工程学[M].北京:水利电力出版社,1983.[22]常根柱,赵贵钧,韩顺学.我国北方高速公路的环境绿化与景观再造[J].公路,1998,(3):33-36.[23]郭梅.公路土质边坡损坏的水力冲刷机理研究[D].长春:吉林大学交通学院,2007.[24]罗斌,胡厚田,吕小平.南方花岗岩残积层路堑边坡坡面冲蚀研究[J].铁道工程学报,1999,63(3):82-85.[25]高速公路丛书编委会,刘书套主编.高速公路环境保护与绿化[M].北京:人民交通出版社,2001.[26]罗斌.清连公路路堑边坡坡面冲刷影响因素分析[J].路基工程,2000,89(2):11-13.[27]李志刚,吴伟,陈云鹤.高速公路路堤边坡冲刷防护临界高度初探[J].公路交通科技,2003,20(2):24-27.[28]张擎,沈波,艾翠玲.黄土路基坡面侵蚀影响因素试验研究[J].公路交通科技,2005,22(9):20-22.[29]张岩,朱清科.黄土高原侵蚀性降雨特征分析[J].干旱区资源与环境,2006,20(6):99-103.[30]王志贵.黄土路基冲蚀及防治技术研究[D].西安:西安公路交通大学,2000.[31]吴光艳,祝振华,成婧等.黄土高原南部降雨侵蚀力试验研究[J].水土保持学报,2011,25(2):33-38.[32]符素华,刘宝元.土壤侵蚀量预报模型研究进展[J].地球科学进展,2002,17(1):78-84.[33]Wischemier W H, Smith D D. Predicting rainfall erosion losses:A guide to conservation planning[M]. U. S. Dep. Agric.,Agric. Handbook.1978.[34]Elwell H A, Stocking M A. Parameters for estimating annual runoff and soil loss from agricultural lands in Rhodesia[J]. Water Resources Research,1975,11(4):601-605.[35]谢云,刘宝元,张文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11.[36]王万忠.黄土地区降雨特征与土壤流失关系的研究Ⅱ——关于侵蚀性降雨标准的问题[J].水土保持通报,1984,4(2):58-62.[37]程庆杏,吕万民,吴百林.土壤侵蚀的雨量标准研究初报[J].中国水土保持科学,2004,2(3):??90-92.[38]张岩,朱清科.黄土高原侵蚀性降雨特征分析[J].干旱区资源与环境,2006,20(6):99-103.[39]Govers G. Afield study on topographic and topsoil effects on runoff generation[J]. Catena,1991,18:91-111.[40]Bryan R B, Poesen J. Laboratory experiments on the influence of slope length on runoff, percolation and rill development[J]. Earth surface processes and landforms,1989,14:211-231.[41]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1981,1(3):13-19.[42]黎四龙,蔡强国等.坡长对径流及侵蚀量的影响[J].干旱区资源与环境,1998,(1):29-35.[43]Ⅱ.伊万诺夫B,李荒(译).坡地坡度和坡长对土壤冲刷的影响[J].水土保持科技情报,1984,(4):31-35.[44]孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究[J].水土保持学报,2001,15(2):18-24.[45]Horton R E. Erosion development of streams and their drainage basins, Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Amer. Ball,1945,56(3).[46]吴普特,周佩华.地表坡度对雨滴溅蚀的影响[J].水土保持通报,1991,11(3):8-13.[47]李亚兰,陈志新,张桥中,宋飞.田安家公路黄土边坡坡面冲刷破坏的临界坡度研究[J].公路交通科技,2005,22(9):45-47.[48]李志刚,邓学钧,陈云鹤.基于能量法的高等级公路路堤边坡冲刷临界坡度研究[J].东南大学学报(自然科学版),2003,33(3):340-342.[49]张擎,沈波,艾翠玲.黄土路基坡面侵蚀影响因素试验研究[J].公路交通科技,2005,22(9):20-22.[50]罗斌,王秉纲,王选仓.路基边坡坡面冲刷基本理论[J].公路交通科技,2002,19(4):27-29.[51]Woolhiser D A, Ligget J A. Unsteady one dimensional flow over a plane-The rising hydrograph[J]. Water Resour Res,1967,3(3):177-225.[52]Freeze R A. Mathematical models of hillslope hydrology[M]. Kirkby M J,ed. Hillsope hydrology. New York:Wiley Interscience,1978:177-225.[53]陈力,刘青泉.坡面流运动方程和有支流入汇的一维流明渠流方程形式[J].力学与实践,2001,23(4):21-24.[54]Woolhiser D A. Ligget J A. Unsteady one dimensional flow over a plane-The rising hydrograph[J]. Water Resour Res,1967,3(3):753-771.[55]李青海,粉质土路基边坡降雨稳定研究[D].长沙:湖南大学土木工程学院,2007.[56]江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究,2005,(4):1-6.[57]张科利.神经网络理论在土壤侵蚀预报方面应用的探讨[J].土壤侵蚀与水土保持学报,1995,1(1):58-63.[58]王协康,方铎.土壤侵蚀产沙量的人工神经网络模拟[J].成都理工学院学报,2000,27(2):197-200.[59]刘冰等.阜新朝阳高速公路湿陷性黄土地基处理研究[J].北方交通,2006,(5):44-46.[60]刘东生等.黄土与环境[M].北京:科学出版社,1985.[61]Kondner R L. Hyperbolic Stress Strain Response:Cohesive Soils[J]. Soil Mech Found Div,2001,(89):23-28.[62]刘乐军等.鲁中黄土粒度特征及其成因探讨[J].海洋地质与第四纪地质,2000,20(1):95-99.[63]雷祥义.秦岭黄土的粒度分析及其成因初步探讨[J].地质学报,1998,72(2):387-391.[64]朱俊杰等.陇西盆地最老的风成黄土沉积——兰州烟洞沟剖面[J].地理科学,1996,16(4):14-17.[65]钱鸿缙,王继唐等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.[66]王永焱,林在贯等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.[67]胡瑞林,李向全等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995:1-110.[68]谢和平.分形几何-数学基础与应用[M].重庆:重庆大学出版社,1995.[69]Kong L W, Luo H X, Tan L R. Fractal study on pore space distribution of red clay in China[C]//Proceedings of10th Asian Regional Conference on Soil Mechanics and Foundation Engineering. Beijing:International Academic Publishers,1995.[70]崔芳鹏,胡瑞林,刘照连等.基于Surfer平台的FLAC3D复杂三维地质建模研究[J].工程地质学报,2008,16(5):699-702.[71]Xie H, Wang J A, Stein E. Direct fractal measurement and multifractal properties of fracture surface[J]. Physics Letters A,1998,242:41-50.[72]Zhou H W, Xie H. Direct estimation of the fractal dimensions of afracture surface of rock [J]. Surface Review and Letters,2003,10(5):751-762.[73]周银军,陈立,刘欣桐等.河床表面分形特征及其分形维数计算方法[J].华东师范大学学报(自然科学版),2009,3:170-178.[74]王宝军,施斌,刘志彬等.基于GIS的黏性土微观结构的分形研究[J].岩土工程学报,2004,26(2):244-247.[75]胡展飞,傅艳蓉.基于不同初始含水率的软粘土抗剪强度的试验研究[J].上海地质,2001,77(1):??38-42.[76]徐建平,潘树林.软土力学性质随含水率变化的试验研究[J].华中科技大学学报(城市科学版),2002,19(2):10-12.[77]缪林昌,仲晓晨,殷宗泽.膨胀土的强度与含水率的关系[J].岩土力学Rock and Soil Mechanics1999,20(2):72-75.[78]张伯平,袁海智,王力.含水率对黄土结构强度影响的定量分析[J].西北农业大学学报,1994,22(1):54-60.[79]米海珍,李如梦,牛军贤.含水率对兰州黄土剪切强度特性的影响[J].甘肃科学学报,2006,18(1):78-81.[80]凌华,殷宗泽.非饱和土强度随含水率的变化[J].岩石力学与工程学报,2007,26(7):1499-1503.[81]刘祖典,郭增玉,陈正汉.黄土的变形特性[J].土木工程学报,1985,18(1):69-76.[82]黄毅,曹忠杰.单喷头变雨强模拟侵蚀降雨装置研究初报[J].水土保持研究,1997,4(4):105-110.[83]刘素媛,韩奇志,聂振刚等.SB-YZCP人工降雨模拟装置特性及应用研究[J].土壤侵蚀与水土保持学报,1998,4(2):47-53.[84]高小梅,李兆麟,贾雪等.人工模拟降雨装置的研制与应用[J].辐射防护,2000,20(1/2):86-90.[85]陈文亮,唐克丽.SR型野外人工模拟降雨装置[J].水土保持研究,2000,7(4):106-110.[86]周中,傅鹤林,刘宝琛等.土石混合体边坡人工降雨模拟试验研究[J].岩土力学,2007,28(7):1391-1396.[87]徐向舟,刘大庆,张红武等.室内人工模拟降雨试验研究[J].北京林业大学学报,2006,28(5):52-58.[88]高德彬,倪万魁,杨泓全.高速公路黄土路堑高边坡现场冲刷试验研究[J].中外公路,2007,(3):199-201.[89]徐向舟,张红武,董占地,张欧阳.SX2002管网式降雨模拟装置的试验研究[J].中国水土保持,2006,(4):8-11.[90]蔡雄飞,王济,雷丽,张浩,王诚曦.改进针管式降雨设备对中国西南地区降水的室内模拟研究——以贵州省贵阳市为例[J].安徽农业科技,2009,(8):3635-3637.[91]薛燕妮,徐向舟,王冉冉,程飞.人工模拟降雨的能量相似及其实现[J].中国水土保持科学,2007,5(6):102-105.[92]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[D].西安:长安大学公路学院,2003.[93]李志刚等.高等级公路边坡冲刷防护临界坡度的试验研究[J].公路,2003,(10):43-46.[94]李业兰,陈志新,张桥中,宋飞,田安家.公路黄土边坡坡面冲刷破坏的临界坡度研究[J].公路交通科技,2005,22(9):45-47.[95]李君兰,蔡强国,孙莉英,郑明国.坡面水流速度与坡面含砂量的关系[J].农业工程学报,2011,27(3):73-78.[96]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.[97]Itasca Consulting Group Inc.PFC2D Version4.0Particle Flow Code in2Dimensions Onlione Manual Table of Contents使用说明书.[98]于维忠.论流域产沙[J].水利学报.1985,(2):1-10.[99]王秀英,曹文洪.坡面土壤侵蚀产沙机理及数学模拟研究综述[J].土壤侵蚀与水土保持学报,1993,5(3):43-47.[100]周佩华,豆葆璋,孙清芳,刘尔铭,刘炳武.降雨能量的试验研究初报[J].水土保持通报,1981,1(1):51-60.[101]Nearing M A,Forster G. R, Lane L J, Finkner S C. A process based soil erosion model for USDA-water erosion prediction project technology. Trans. of ASAE,1989,32(5):1587-1593.[102]Elliot W J, Laflen J M. A process based rill erosion model. Trans of ASAE,1993,36(1):65-72.[103]雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报,1998,4(3):39-43.[104]钱宁,万兆慧.泥沙运动力学[M].北京:科学出版社,2003.[105]王常明.土力学[M].长春:吉林大学出版社,2002.[106]Bulygin S Y. Challenges and aporoaches for WEPP interrill erodibility measurements in the Ukranie[C]. Proceeding of soil erosion for the21st century international symposium. Honolulu, Hawaii, ASAE, St Joseph, MI USA,2001.[107]Huang C H, Bradford J M, Laflen J M. Evaluation of the detachment-transport coupling concept in the WEPP rill erosion equation[J]. Soil Sci Soc Am J,1996,60:734-739.[108]Schmid B H. On the overland modeling:can rainfall excess be treated as independent of flow depth[J]. J. of Hydro.1989,(107):1-8.[109]杨建营,赵庭宁,孙保平等.运动波理论及其在黄土坡面径流过程模拟中的应用[J].北京林业大学学报,1993,15(1):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700