新型CFB工业锅炉气固流动与热平衡、物料平衡特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内燃煤供应的日渐紧张及节能环保要求的不断加强,循环流化床(CFB)燃烧技术以其良好的燃料适应性、媲美煤粉炉的高效燃烧性能及环境友好的污染物排放特性,被越来越多的应用于大型电站锅炉领域,并朝着大容量、高参数方向迅速发展。与此同时,在国内的工业锅炉领域内,CFB燃烧技术也同样取得了长足的进步,多种各具特色的CFB工业锅炉被开发出来,并被用于新建或改造原有的层燃或鼓泡床工业锅炉。
     但受到锅炉容量尺寸及工质相变特性等因素的影响,对于小型CFB工业锅炉而言,其较低的炉膛高度减少了燃煤在炉内的一次停留及燃尽时间,而用于控制炉内热平衡的埋管蒸发面则长期工作在表观气速较高,且物料粒径较大的炉膛密相区域内,因此普遍存在燃烧效率相对较低、埋管磨损严重的问题,降低了锅炉的运行经济性和可靠性。本文以解决上述问题为出发点,首次提出了一种返料换热型CFB工业锅炉的布置方案(发明专利号:ZL200810232860.2),采用一个兼具残炭燃尽功能及埋管换热功能的返料换热器取代传统回料阀,以解决中低压CFB工业锅炉长期存在的技术难题,从而进一步提升锅炉运行的经济性和可靠性。
     本文在重庆市科委科技攻关项目及合作企业资金支持下,建立了冷模、热态及半工业燃烧试验装置,通过系统的试验及数学模型计算对返料传热型CFB工业锅炉主循环回路及其关键部件(如布风装置、返料换热器等)的气固流动特性及热平衡、物料平衡特性进行了系统研究,并成功实现了工业化应用。本文的主要内容如下:
     ①返料换热型CFB工业锅炉布局方案的提出
     通过分析我国能源背景及CFB燃烧技术发展现状,针对国内小型CFB工业锅炉长期存在的燃烧效率偏低、受热面布置不合理等技术难题,首次提出了一种返料换热型CFB工业锅炉的布置方案,并对其可行性及预期的运行效果进行了定性的论证分析。
     ②关键部件的气固流动特性及优化
     1)返料换热器的气固流动特性研究
     通过分析返料换热型CFB工业锅炉的特点,提出了一种结构简单,操作特性灵活简便,而又能够满足其性能要求的返料换热器布置方案。进而通过冷模试验,对其气固流动特性,包括:对物料循环流率的调节、系统压降分布、立管料位高度变化规律、侧向风和上回风对系统运行特性的影响等进行了深入研究。
     2)布风装置的优化研究
     分别通过试验及模拟的方法对钟罩型风帽的出口射流穿透深度及风帽阻力特性进行了系统研究。一方面基于试验数据拟合了CFB两种典型物料(炉内密相区物料、循环物料)床层内水平射流穿透深度的经验公式;而另一方面则对等流通截面积,不同结构特点的钟罩型风帽的阻力系数进行了数值计算。研究结果有助于优化返料换热型CFB工业锅炉钟罩型风帽的结构及排列布置方式。
     ③主循环回路的燃烧传热特性研究
     设计并搭建了一台半工业的CFB燃烧试验台,并对其燃烧传热特性,包括:点火启动特性,主循环回路内燃烧份额的分配及影响因素,循环物料粒径及含碳量变化特性,炉膛稀相区烟气侧及返料换热器灰侧传热系数的变化特性等进行了系统的试验研究,以了解主循环回路各区域内热平衡及物料平衡的建立过程。
     ④返料换热器内的热平衡及物料平衡特性研究
     沿返料换热器换热仓内物料横向流动方向建立了描述床内气固流动、焦炭燃烧、物料磨蚀及埋管换热过程的小室模型,通过求解各小室内的物料平衡及热平衡方程,得到了描述换热仓内床层温度分布、物性参数变化及燃烧、传热功率分布的特性曲线。通过对比模型计算结果及试验结果实现了对模型的验证,并通过改变模型中物料循环流率M cir及水冷换热面积Ahs的取值,分析了二者对各小室乃至整个换热仓内热平衡及物料平衡建立过程的影响。
     ⑤工业应用及工业试验研究
     在试验及模型研究的基础上,成功设计并投运了一台11t/h的返料换热型CFB工业锅炉。对其点火特性,负荷变化对燃烧份额及传热份额分配的影响进行了工业试验;尤其对锅炉满负荷运行性能及低负荷条件下的埋管逆向传热现象进行了分析,基于锅炉水循环系统的布置方式,以保证低负荷条件下的水循环动力对锅炉的低负荷性能进行了估算和探讨。
With increases of the domestic coal consumption and strengthening requirementsof energy saving and environment protection, circulating fluidized bed (CFB)combustion technology is more and more applied in large power plant boiler field, andis being developed in the directon of larger capacity and higher parameters, because ofits great fuel adaptability、efficient combustion performance which can be compared topulverized coal boiler and the environment-friendly pollutant emission characteristics.Meanwhile, in the field of domestic industrial boilers, CFB combustion technology alsohas made considerable progress, and various CFB industrial boilers with differentfeatures have been developed for replacing or reconstructing the former bubblingfluidized bed boilers and grated-fired boilers.
     Impacted by the boiler dimentison and the phase transition characteristics of worksubstance, the buring time of coal in the riser isn’t adequate, and the evaporatingimmersed tubes are always installed in the emulsion zone with higher fluidizingvelocity and larger particle size. As results, the boiler combustion efficiency is relativelylower, and the erosion problem of the immersed tubes is serious. The economicalefficiency and reliability of the CFB industrial boiler are both reduced consequently. Inthis paper, for solving the above problems, the CFB industrial boiler with recycle heatexchanger (Patent No.: ZL200810232860.2), in which the raditioanl recycle valve wasreplace by a recycle heat exchanger (RHE) with the functions of carbon burnout andheat transfer from circulating solids to evaporating immersed tubes, was put forward forsolving the existent problems of the CFB industrial boilers with lower operatingpressure, and hence increasing the boilers’ economical efficiency and reliability.
     Under the support of the research fund of Chongqing Science and TechnologyCommission and cooperative enterprise, the correlative cold and hot test rig, as well as asemi-industrial combustion test rig was built for carrying out the experimental studies,and corresponding mathematical models was also established. By employing the aboveresearch methods, the gas-solids flow characteristics and the heat balance, materialbalance characteristics of the main circulating loop and its key components (such as airdistributior and recycle heat exchanger, etc.) had been systemlly investigated, and a11t/h CFB industrial boiler with RHE was successuffly put into operation finally. Maincontents of this paper are listed as follows:
     ①Proposition of the CFB boiler with recycle heat exchanger(RHE)
     According to the national energy background and the development status of CFBcombustion technology, the CFB boiler with recycle heat exchanger was put forward forthe first time to solve the problems existing in the small-scale CFB industrial boiler,such as the lower combustion efficiency and unconscionable arrangement of heattransfer surface, etc.. The feasibility and expected operating performance of this type ofCFB industrial boiler were also qualitatively analyzed.
     ②Gas-solid flow characteristics and optimization of key components
     1) Gas-solid flow characteristics of recycle heat exchanger
     The required performance of recycle heat exchanger (RHE) was proposed byanalyzing the inherent features of CFB industrial boiler with RHE. The one with novelconfiguration was put forward and its gas-solids flow characteristics, such as theregulation of solids circulating rate, the system pressures distribution, the variation ruleof solids height in the standpipe, and the impacts of vertical air into the standpip and theup-return air from the recycle chamber, were systemely investigated in a cold test rig.
     2) Air distributor optimization
     The bell type blast cap’s outlet horizontal jet penetration characteristics andresistance characteristics were investigated in experimental and modeling approachesrespectively. On one hand, regression analysis towards experimental data acquired incoarse solids bed (corresponding to solids in the furnace) and fine solids bed(corresponding to solids in the external circulation loop) were carried out respectivelyfor extracting correlations predicting the horizontal jet penetration depth in static bed;and on the other hand, the resistance coefficients of the bell type blast caps withdifferent inner structures were numerical calculated. The study results were able to beemployed for optimazing the bell type blast caps installed in the small-scale CFBindustrial boiler
     ③Study on combustion and heat transfer characteristics of main circulating loop
     A semi-industrial combustion test rig was designed and built for investigating thecombustoion and heat transfer characteristics of the CFB main circulating loop forlearing the establishment processes of the systems’ heat balance and material balance.The major studies were conducted in the following aspects: the combustion fractionsdistribution in the main circulating loop, the changes of mean diameter and carboncontent of the circulating solids, the heat transfer coffecients in the riser dilution zoneand in the RHE.
     ④Study on heat balance and material balance characteristics of RHE
     In the heat transfer chamber of the RHE, a small room model was established fordescribing the mechanisms of gas-solids flow、carbon combustion、solids erosion andheat transfer from the circulating solids to the immersed tubes. By solving the equationsof heat balance and material balance of each small chamber, the distributions of bedtemperature、gas component、solids physical parameters、combusiton and heat transferpowers along the solids horizontal moving direction were acquired, and the model wasalso validated by comparing the calculating values and test values. By regulating thegiven values ofM cirandAhs, the impacts of them on the heat and material balances ineach small chamber and the whole heat transfer chambers were stuied.
     ⑤Industrial application and industrial experiments
     Based on the experimental and modeling investigation, an11t/h CFB industrialboiler with RHE was successfully put into operation. Its ignition characteristics, as wellas the load impacts on the combustion and evaporation fractions distribusions in themain circulating loop, were investigated. The boiler performance at full load, as well asthe phenomenon of heat transfer from the immersed tubes to the circulating solids atlower load was specially investigated. And based on the arrangement of watercirculation system, the low load operating performance of the boiler, at which thecirculating force of the water could be ensured, was estimated and discussed.
引文
[1] Enerdata. Global Energy Statistical Year book2011-Total energy consumption[EB/OL].http://yearbook.enerdata.net/2010-energy-consumption-data.html.
    [2]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [3]贾承造.我国能源前景与能源科技前沿[J].高校地质学报,2011,17(2):151-160.
    [4] Fiore A.M., Naik V., Spracklen D.V., et al. Global air quality and climate[J]. Chemical SocietyReviews,2012,41(19):6663-6683.
    [5] Driscoll C., Whitall D., Aber J.. Nitrogen pollution: Sources and consequences in the USnortheast[J]. Environment,2003,45(7):8-10.
    [6] Wettestad J.. Clearing the air–Europe tackles transboundary pollution[J]. Environment,2002,44(2):32-40.
    [7] Enerdata. Global Energy Statistical Year book2011-coal and lignite domestic consumption
    [EB/OL].http://yearbook.enerdata.net/2010-energy-consumption-data.html#/coal-and-lignite-world-consumption-in-2010.html.
    [8]孙孝仁,孙怡玲.2020年世界能源前景[J].科技情报开发与经济,2000,10(2):15-19.
    [9]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [10]何心良.我国工业锅炉使用现状与节能减排对策探讨[J].工业锅炉,2010,1(3):1-8.
    [11]赵钦新,王善武.我国工业锅炉未来发展分析[J].工业锅炉,2007,1(1):1-9.
    [12]孙德刚.燃煤工业锅炉现状及其节能减排途径[J].节能,2010,1(6):65-67.
    [13]王善武.中国工业锅炉行业现状分析及前景展望[J].工业锅炉,2004,1(1):1-9.
    [14]丁波.我国工业锅炉的现状及节能途径[J].节能科技,2011,1(2):52-53.
    [15]赵钦新,周屈兰.工业锅炉节能减排现状、存在问题及对策[J].工业锅炉,2010,1(1):1-6.
    [16] Venalainen,L. Supercritical circulating fluidized bed technology for lagisza460MWe powerplant[C]. Proceedings of the International Conference on Life Management and Maintenancefor Power Plants. Finland: Helsinki,2004.
    [17] Sculy L.I., Lemasle J.. Baima: China's first large-scale CFB [circulating fluidized beds][J].Modern Power System,2004,24(1):26-27.
    [18]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电,2004,33(9):1-3.
    [19]骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [20]岳光溪.循环流化床燃煤技术在我国的发展与前景[J].电力设备,2008,9(5):104-106.
    [21]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998.
    [22] Basu P, A Fraser S. Circulating Fluidized Bed Boiler-Design and Operations[M]. USA:Butterwoths–Heinemann-Reed Publishing,1991.
    [23]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].北京:中国水利水电出版社,2004.
    [24]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    [25] Ding J, Lyczkowski R.W.. Three dimensional kinetic theory modeling of hydrodynamic anderosion in fluidized beds[J]. Powder Technology,1992,73(2):127-138.
    [26]景永伟,刘少光.流化床锅炉水冷壁冲蚀磨损特性及防磨措施[J].动力工程,2005,25(5):747-755.
    [27]马增益,严建华,潘国清,等.循环流化床床内受热面磨损特性的试验研究[J].动力工程,2000,20(3):674-677.
    [28] Gui N., Fan J.R., Cen K.F.. Effect of local disturbance on the particle–tube collision inbubbling fluidized bed[J]. Chemical Enignering Science,2009,64(15):3486-3497.
    [29]孟洛伟.大型循环流化床锅炉降低厂用电率的措施[J].节能技术,2007,25(1):90-93.
    [30] Duan Y.F.. An Innovative Vibration Fluidized Bed Ash Cooler[C]. Proceedings of the15thInternational Conference on Fluidized Bed Combustion, USA: Savannah,1999.
    [31] Zeng B., Lu X. F., Liu H. Z.. Industrial Application Study on New-type Mixed-flow FluidizedBed Bottom Ash Cooler[C]. Proceedings of the20th International Conference on FluidizedBed Combustion, China: Xi’an,2009.
    [32] Zhang M., Bie R.S., Xue Q.G.. Fluidized bed ash cooler used in a circulating fluidized bedboiler: An experimental study and application[J]. Powder Technology,2010,201(2):114-122.
    [33] Lundqvist R.G.. Designing Large-scale Circulating Fluidized Bed Boilers[J]. PowerTechnology,2003,83(10):41-47.
    [34]樊旭,张炳,赵泽光.循环流化床大型化的若干问题及解决方案的优劣比较[J].锅炉制造,2004,27(4):32-33.
    [35]曾庭华,方健,刘义,等.300MW循环流化床锅炉深度脱硫的实践[C].循环流化床锅炉技术2010年会论文集,长沙,2010.
    [36] Chen J. H., Lu X. F.. Progress of petroleum coke combusting in circulating fluidized bedboilers–A review and future perspectives[J]. Resources, Conservation and Recycling,2007,49(3):203-216.
    [37]马驰,施涵.中国能源领域若干重大科技进展(之三)——国产循环流化床锅炉的大型化[J].能源研究与利用,2002,1(3):4-7.
    [38]行业报告:世界火电设备发展态势分析[EB/OL]. http://ccn.mofcom.gov.cn/spbg/show.php?id=4742&ids=%BB%FA%D0%B5%B5%E7%D7%D3,2006-11-02.
    [39] Robertson A., Goidich S., Fan Z..1300F800MW USC CFB Boiler Design Study[C].Proceedings of the20th International Conference on Fluidized Bed Combustion, China: Xi’an,2009.
    [40] Yue G.X., Yang H.R., Lu J.F., et al. Latest development of CFB boilers in China[C].Proceedings of the20th International Conference on Fluidized Bed Combustion, China: Xi’an,2009.
    [41]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术,2002,33(7):1-6.
    [42]钟辉,王晓严.循环流化床燃烧技术的发展[J].发电设备,2005,19(2):130-134.
    [43]蒋敏华,肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009.
    [44]于龙.哈锅循环流化床锅炉的发展历程[J].锅炉制造,2005(3):1-2.
    [45]牛天况,顾凯棣,朱国桢,等.上海锅炉厂有限公司循环流化床锅炉技术发展的现状[J].锅炉技术,2000,31(6):1-6.
    [46]潘昕,孟洛伟,江建忠.东锅自主开发型300MW循环流化床锅炉运行分析及完善[J].电力建设,2010,31(5):108-110.
    [47]杨石,杨海瑞,吕俊复,等.新一代节能型循环流化床锅炉燃烧技术[J].动力工程,2009,29(8):728-732.
    [48]刘德昌,吴正舜,张世红等.我国循环流化床锅炉的发展现状及建议[J].动力工程,2003,23(3):2377-79.
    [49]马怀新.从国情出发,适应节能减排大势,自主创新研发我国超临界600MWe循环流化床锅炉[C].循环流化床锅炉技术2010年会论文集,中国:长沙,2010.
    [50]吴正舜,陈汉平等.利用循环流化床燃烧技术对旧锅炉的改造[J].节能改造,2000,1(2):31-35.
    [51]薛晓垒,卢啸风,刘汉周,等.我国中小型循环流化床工业燃煤锅炉存在的问题及分析[J].工业锅炉,2010,119(1):13-16.
    [52]陈汉平,黄琳,林志杰,等.循环流化床下排气旋风分离器分离机理的研究[J].华中理工大学学报,1995,23(3):111-116.
    [53]曹柏林,宋泽.三漩涡内分离循环流化床锅炉[P].中国, CN1047378,1990-11-28.
    [54]何相助,陈彩东,曹柏林.高、低混合流速循环流化床锅炉[P].中国, CN2527860,2002-12-25.
    [55]黄世汉.循环双流化床锅炉[P].中国, CN1188871,1998-07-28.
    [56]鲁佳易,卢啸风,王虎,等.引进300MW循环流化床锅炉后燃特性试验研究[J].中国电机工程学报,2012,32(8):12-18.
    [57] Lu J.Y., Lu X.F., He H.H., et.al. Combustion characteristics of the external circulation loop onBaima’s300MWe circulating fluidized bed boiler[J]. Energy Fuels,2011,25(8):3456-3464.
    [58] Yue G.X., Yang H.R., Zhang H.. Post Combustion in Circulating Fluidized Bed Boilers[C].19th International Conference on Fluidized Bed Combustion, Austria: Vienna,2006.
    [59] Li S. H., Yang H.R., Zhang H., et al. Post Combustion and Its Influences in135MW CFBBoilers [J]. Energy Fuels,2009,23(9):4311–4317.
    [60]冯冰潇,缪正清,潘家泉,等.循环流化床锅炉3种典型布风板风帽阻力特性试验[J].动力工程,2008,28(1):24-27.
    [61]赵建英,胡俊峰,张国辉,等.钟罩式风帽在DG450t/h循环流化床锅炉的应用[J].河北电力技术,2008,27(2):15-17.
    [62] Yang H.R., Huang Z.M., Yue G.X., et al. Characteristics of a Float Nozzle Designed forCirculating Fluidized Bed Boilers[J]. Chemical Engineering and Technology,2007,30(10):1398-1400.
    [63]赵弦,包绍麟,贺军.内嵌逆流柱形风帽的冷态模化试验和三维流场的数值模拟[J].锅炉技术,2005,36(3):32-37.
    [64]冯冰潇.循环流化床布风板风帽特性及炉膛传热的研究[D].上海:上海交通大学硕士学位论文,2007.
    [65] Guo, Q, Werther J.. Flow Behaviors in a Circulating Fluidized Bed with Virious Bubble CapDistributors[J]. Industrial and Engineering Chemistry Research,2004,43(7):1756-1764.
    [66] Guo, Q, Werther J.. Influence of a gas maldistribution of distributor design on thehydrodynamics of a CFB riser[J]. Chemical Engineering and Processing,2008,47(2):237-244.
    [67]杨雪平. CFB炉膛风帽区域与回料阀内两相流动特性的研究[D].上海:上海交通大学硕士学位论文,2009.
    [68]赵弦,循环流化床布风板的冷态模化试验及数值模拟[D].北京:中国科学院硕士学位论文,2005.
    [69] Shakhova N.A., Minaev G.A.. Aerodynamics of a jet in a fluidized bed[J]. Journal ofEngineering Physics and Thermophysics,1970,19(5):1368-1375.
    [70] Shakhova N.A., Minaev G.A.. An engineering method of calculation a jet in a fluidized bed[J].Journal of Engineering Physics and Thermophysics,1970,19(6):1496-1503.
    [71] Hong R.Y., Li H.Z., Li H.B., et al. Studies on the inclined jet penetration length in a gas-solidfluidized bed[J]. Powder Technology,1997,92(3):205-212.
    [72] Chyang C.S., Chang C.H., Chang J.H.. Gas discharge modes at a single horizontal nozzle in atwo-dimensional fluidized bed[J]. Powder Technology,1997,90(1):71-77.
    [73]钟文琪,章名耀.喷动流化床射流穿透深度试验研究[J].东南大学学报(自然科学版),2005,35(1):29-34.
    [74] Kimura T., Horiuchi K, Watanabe T, et al. Experimental study of gas and particle behavior inthe grid zone of a jetting fluidized bed cold model[J]. Powder Technology,1995,82(2):135-143.
    [75] Raghunathan K., Mori H., Whiting W.B.. A Technique for Measurement of Jet Penetration inHot Fluidized bes with a Modified Pitot-Tube Probe[J]. Industrial&Engineering ChemistryResearch,1988,27(6):1011-1016.
    [76] Guo Q.J., Yue G.X., Zhang J.Y., et al. Hydrodynamic characteristics of a two-dimensionaljetting fluidized bed with binary mixtures[J]. Chemical Engineering Science,2001,56(15):4685-4694.
    [77] Yang W.C.. Comparison of jetting phenomena in30-cm and3-m diameter semicircularfluidized beds[J]. Powder Technology,1998,100(2-3):147-160.
    [78] Vaccaro S., Musmarra D., Petrecca M.. A technique for measurement of the jet penetrationheight in fluidized beds by pressure signal analysis[J]. Powder technology,1997,92(3):223-231.
    [79] Wen C.Y., Deole N.R., Chen L.H.. A study of Jets in a3-dimensional gas-fluidized bed[J].Powder Technology,1982,31(2):175-184.
    [80] Yutani N., Ho T.C., Fan L.T.. Statistical study of the grid zone behavior in a shallow gas-solidfluidized bed using a mini-capacitance probe[J]. Chemical Engineering Science,1983,38(4):575-582.
    [81] Wang F., Zhao Y., Qussai M., et al. Horizontal gas and gas/solid jet penetration in a gas-solidfluidized bed[J]. Chemical Engineering Science,2010,65(11):3394-3408.
    [82] Abrahamsen, A.R., Geldart, D.. Behavior of gas fluidized beds of fine powders. Part I.Homogeneous expansion[J]. Powder Technology,1980,26(1):35–46.
    [83] Hong R.Y., Li H.Z., Cheng M.Y., et al. Numerical simulation and verification of a gas-solidjet fluidized bed[J]. Powder Technology,1996,87(1):73-81.
    [84] Vaccaro S., Musmarra D., Petrecca M.. Evaluation of the jet penetration depth in gas-fluidizedbeds by pressure signal analysis[J]. International Journal of Multiphase Flow,1997,23(4):683-698.
    [85] Zenz F.A.. Bubble formation and grid design[J]. IChemE Symposium Series,1968,30(1):136-139.
    [86] Merry J.. Penetration of a horizontal gas jet into a fluidized bed[J]. Transactions of theInstitution of Chemical Engineers and the Chemical Engineer,1971,49(1):189-194.
    [87] Benjelloun F., Liegeois R., Vanderschuren J.. Penetration length of horizontal gas jets intoatmospheric fluidized beds[C]. Proceedings of the8th Engineering Foundation Conference onFluidization, USA: Orlando,1995.
    [88] Hong R.Y., Li H.B., Ding J.M., et al. A correlation equation for calculating inclined jetpenetration length in a gas-solid fluidized bed[J]. China Particuology,2005,3(5):279-285.
    [89]罗灵爱,陆惠林,秦裕琨.流化床水平射流穿透深度[J].哈尔滨工业大学学报,1987,9(8):77-82.
    [90] Li T.W., Pougatch K., Salcudean M., et al. Numerical simulation of horizontal jet penetrationin a three-dimensional fluidized bed[J]. Powder Technology,2008,184(1):89-99.
    [91]《四川白马300MW循环流化床示范工程总结》编委会.四川白马300MW循环流化床示范工程总结[M].北京:中国电力出版社,2007.
    [92]陈娟.循环流化床气固流动关键部件冷模试验研究[D].重庆:重庆大学硕士学位论文,2011.
    [93]王文仲.循环流化床锅炉风帽及布风板的实验与数值模拟研究[D].北京:中国科学院硕士学位论文,2009.
    [94]王文仲,吕清刚,贺军,等.内嵌逆流式柱型风帽的实验与数值模拟研究[J].锅炉技术,2011,42(3):39-42.
    [95] Hoffmann A.C., Stein L.E.,彭维明,等.旋风分离器:原理、设计和工程应用[M].北京:化学工业出版社,2004.
    [96]刘汉周,卢啸风,唐家毅.300MW循环流化床锅炉分离器入口烟道气固流动特性研究[J].中国电机工程学报,2009,29(32):6-11.
    [97]唐家毅,卢啸风,赖静,等.循环流化床锅炉旋风分离器入口烟道内气固流动特性的试验研究[J].动力工程,2009,29(4):348-352.
    [98] Bernardo S, Mori M, Peres A P, et al.3-D computational fluid dynamics for gas andgas-particle flows in a cyclone with different inlet section angles[J]. Powder Technology,2006,162(3):190-200.
    [99] Fuping Qian, Yanpeng Wu. Effects of the inlet section angle on the separation performance ofa cyclone[J]. Chemical Engineering Research and Design.2009,87(12):1567-1572.
    [100] Ehteram M.A., Tabrizi H.B., Mesbah M., et al. Experimental study on the effect of connectingducts on demisting cyclone efficiency[J]. Experimental Thermal and Fluid Science,2012,39(1):26-36.
    [101]杨成禹.大型CFB锅炉旋风分离器的冷模试验研究[D].重庆:重庆大学硕士学位论文,2006.
    [102] Raoufi A, Shams M, Farzaneh M, et al. Numerical simulation and optimization of fluid flowin cyclone vortex finder[J]. Chemical Engineering and Processing,2008,47(1):128-137.
    [103]彭雷,李军,王国鸿.排气管偏置对CFB锅炉旋风分离器性能的影响[J].热能动力工程,2004,19(2):153-156.
    [104] Wang, Q.H., Luo Z.Y., Fang M.X., et al. Development of a new external heat exchanger for acirculating fluidized bed boiler[J]. Chemical Engineering and Processing,2003,42(4):327-335.
    [105]王勤辉,施正伦,程乐鸣,等.非机械阀控制外置式换热器的试验研究[J].动力工程,2001,21(4):1324-1331.
    [106]孙献斌,李志伟,时正海,等.循环流化床锅炉紧凑式分流回灰换热器的试验研究[J].中国电力,2006,39(7):27-30.
    [107] Xiong B., Lu X. F., Amano R.S., et al. Gas-solid flow in an integrated external heat exchangerfor CFB boiler, Powder Technology,2010,202(1-3):55-61.
    [108]熊斌.新型循环流化床锅炉结构布置及气固流动特性的研究[D].重庆大学博士学位论文,重庆大学动力工程学院,2009.
    [109] Hoffmann A.C., Stein L.E.,彭维明,等.旋风分离器:原理、设计和工程应用[M].北京:化学工业出版社,2004.
    [110] Shin M.S., Kim H.S., Jang D.S., et al. A numerical and experimental study on a highefficiency cyclone dust separator for high temperature and pressurized environments[J].Applied Thermal Engineering,2005,25(11-12):1821-1835.
    [111] Surmen A., Avci A., Karamangil M.I.. Prediction of the maximum-efficiency cyclone lengthfor a cyclone with a tangential entry[J]. Powder technology,2011,207(1-3):1-8.
    [112] Safikhani H, Akhavan M, Shams M, et al. Numerical simulation of flow field in three types ofstandard cyclone separators[J]. Advanced Powder Technology,2010,21(4):435-442.
    [113] Zhu Y.F., Lee K.W.. Experimental study on small cyclones operating at high flowrates[J].Journal of Aerosol Science,1999,30(10):1303-1315.
    [114] Lee J.W., Yang H.J., Lee D.Y.. Effect of the cylinder shape of a long-coned cyclone on thestable flow-field establishment[J]. Powder Technology,2006,165(1):30-38.
    [115] Stairmand C.J..The Design and Performance of Cyclone Separators[J]. Transactions of theInstitution of Chemical Engineers and the Chemical Engineer.1951,29(1):356-383.
    [116]黄兴华,王道连,王如竹,等.旋风分离器中气相流动特性及颗粒分离效率的数值研究[J].动力工程,2004,24(3):436-441.
    [117] Bryant H.S., Silverman R.W., Zenz F.A.. How dust in gas affects cyclone pressure-drop[J].Hydrocarbon processing,1983,62(6):87-90.
    [118] Chen J H, Lu X F, Liu H Z, et al. Effect of the Bottom-contracted and Edge-sloped Vent-pipeon the Cyclone Separator Performance[J]. Chemical Engineering Journal,2007,129(1-3):85-90.
    [119] Surmen A., Avci A., Karamangil M.I.. Prediction of the maximum-efficiency cyclone lengthfor a cyclone with a tangential entry. Powder technology,2011,207(1-3):1-8.
    [120] Zenz J.A., Effect of Design and Operating Parameters on Cyclone Performance for CFBBoilers[C]. Proceeding of4th International Conference on CFB, USA: Pennsylvania,1993.
    [121]姜江,金晶,屈星星,等.排气管偏置对传统上排气旋风分离器性能影响研究[J].洁净煤技术,2009,15(1):78-81.
    [122] Basu P., Chandel M., Bulter J., et al. An investigation into the operation of the twin-exit loopseal of a circulating fluidized bed boiler in a thermal power plant and its design implication[J].Journal of Energy Resources Technology.2009,131(4):1-8.
    [123] Basu P., Cheng L.. An analysis of loop seal operations in a circulating fluidized bed[J].Chemical Engineering Research&Design.2000,78(7):991-998.
    [124] Ergun S.. Fluid flow through packed columns[J]. Chemical Engineering Progress.1952,48(2):89-94.
    [125] Knowlton T.M., Hirsan I.. L-valves characterized for solids flow[J]. Hydrocarbon Processing,1978,57(3):149-156.
    [126]王擎,孙键,骆仲泱,等.环流料封阀水平孔口流动阻力特性[J].化工学报,1999,50(5):598-605.
    [127] Johansson A., Johansson F., Andersson B.A.. The performance of a Loop Seal in a CFBBoiler[J]. Journal of Energy Resource Technology,2006,128(2):135-142.
    [128] Kim S.W., Namkung W., Kim S.D.. Solid recycle characteristics of loop-seals in a circulatingfluidized bed[J]. Chemical Engineering and Technology,2001,24(8):843-849.
    [129] Han X.X., Cui Z.G., Jiang X.M., et al. Regulating characteristics of loop seal in a65t/h oilshale-fired circulating fluidized bed boiler[J]. Powder Technology,2007,178(2):114-118.
    [130] Kim S.W., Kim S.D., Lee D.H.. Pressure Balance Model for Circulating fluidized beds with aLoop-seal[J]. Industrial&Engineering Chemistry Research,2002,41(20):4949-4956.
    [131] Seo M.W., Nguyen T.D.B., Lim Y., et al. Solid circulation and loop-seal characteristics of adual circulating fluidized bed: Experiments and CFD simulation[J]. Chemical EngineeringJournal,2011,168(2):803-811.
    [132] Chan C.W., Seville J., Fan X.F., et al. Particle motion in L-valve as observed by positronemission particle tracking[J]. Powder Technology,2009,193(2):137-149.
    [133] Kim J H, Shakourzadeh K.. Analysis and modelling of solid flow in a closed loop circulatingfluidized bed with secondary air injection[J]. Powder Technology,2000,111(3):179-185.
    [134] Cho Y J, Namkung W, Kim S D, et al. Effect of secondary air injection on axial solid holdupdistribution in a circulating fluidized bed[J]. Journal of Chemical Engineering of Japan,1994,27(2):158-164.
    [135] Namkung W, Kim S D. Radial gas mixing in a circulating fluidized bed[J]. PowderTechnology,2000,113(1-2):23-29.
    [136]刘佳.循环流化床锅炉二次风射流特性的冷态试验研究与数值模拟[D].重庆:重庆大学硕士论文,2007.
    [137]陈继辉.大型CFB锅炉气固流动关键技术研究[D].重庆:重庆大学博士学位论文,2008.
    [138] Zhang W., Johnsson F., Leckner B.. Fluid-dynamic boundary layers in CFB boilers[J].Chemical Engineering Science,1995,50(2):201-210.
    [139]荆有印,王保生,齐永霞.循环流化床锅炉循环倍率的通用数学模型[J].动力工程,2003,23(3):2380-2391.
    [140] Lee J.M., Kim J.S., Kim J.J.. Characteristics of solid hold up and circulation rate in the CFBreactor with3-loops[J]. Korean Journal of Chemical Engineering,2001,18(6):1000-1004.
    [141] Issangya A.S., Grace J.R., Bai D.R.. Further Measurements of Flow Dynamics in aHigh-Density Circulating Fluidized Bed Riser[J]. Powder Technology,2000,111(1-2):104-113.
    [142] Lints M.C., Glicksman L.R.. Parameters governing particle to wall heat transfer in acirculating fluidized bed, in: A.A. Avidan (Ed.), Circulating Fluidized Bed Technology IV.AIChE, New York,1994
    [143]金晓钟.循环流化床锅炉热量释放规律的试验及模型研究[D].北京:清华大学博士论文,1999.
    [144] Wischnewski R., Ratschow L., Hartge E-U, et al. Reactive gas–solids flows in largevolumes—3D modeling of industrial circulating fluidized bed combustors [J]. Particuology,2010,53(8):67–77.
    [145]王勤辉.循环流化床锅炉整体数学模型及试验[D].杭州:浙江大学博士论文,1997.
    [146]华玉龙.循环流化床锅炉流动、传热和燃烧模型[D].武汉:华中科技大学博士论文,2005.
    [147] Toomey R.D., Johnstone H.F.. Gaseous fluidization of solid particles[J]. ChemicalEngineering Progress,1952,48(5):220-226.
    [148] Grace J. R.. Contacting modes and behaviour classification of gas-solid and other two-phasesuspensions[J]. Canada Journal Chemical Engineering,1986,64(3):353-363.
    [149] Darton R.C., LaNauze R. D., Davidson J. F., et al. Bubble-growth due to coalescence influidized beds[J]. Transactions of the Institution of Chemical Engineers,1977,55(4):274–80.
    [150] Clift R., Grace J.R.. Continuous bubbling and slugging[M]. USA: Engineering Fluidization,1985.
    [151] Davidson J.F., Harrison D.. Fluidised particles[M]. USA: Cambridge University Press,1973.
    [152]雍玉梅.循环流化床锅炉大型化的数值模拟[D].北京:中国科学院博士论文,2004.
    [153]刘鸿.循环流化床锅炉炉内传热特性研究及仿真[D].杭州:浙江大学博士论文,2007.
    [154] Ross I.B., Davidson J.F.. Combustion of carbon particles in a fluidized bed[J]. Transaction ofChemical Engineering,1982,60(1):108-114.
    [155] Basu P.. Burning rate of carbon in fluidized beds[J]. Fuel,1977,56(4):390-392.
    [156] Basu P., Broughton J., Elliott D.E.. Combustion of single coal particles in fluidized beds[C].Proceedings of fluidized bed combustion conference, Vol.1. London: Institute of FuelSymposium Series, UK: London,1975.
    [157] Arthur J.R.. Reactions between carbon and oxygen[J]. Transactions of the Faraday Society,1951,47(1):164-178.
    [158]何宏舟,骆仲泱,杨翔翔,等.粒径对无烟煤颗粒在循环流化床锅炉燃尽影响的研究[J].动力工程,2004,24(3):331-335.
    [159]何宏舟. CFB锅炉洁净燃烧福建无烟煤的理论与试验研究[D].杭州:浙江大学博士论文,2005.
    [160]王智微,孙宝红,王立双,等.循环流化床燃烧室内细焦碳颗粒的燃尽特性分析[J].动力工程,2002,22(2):1697-1699.
    [161]雍玉梅,吕清刚,那永洁.煤种对循环流化床焦炭燃烧速率的影响[J].燃烧科学与技术,2005,11(1):47-51.
    [162] Field M.A., Gill D.W., Morgan B.B., et al.. Combustion of pulverized coal, BCURA,Leatherhead,1967.
    [163] Nawaz Z., Tang X.P., Wei X.B., et al.. Attrition behavior of fine particles in a fluidized bedwith bimodal particles: Influence of particle density and size ratio[J]. Korean Journal ofChemical Engineering,2010,27(5):1606-1612.
    [164] Park Y.S., Kim H.S., Shun D.W., et al.. Attrition Characteristics of Alumina Catalyst forFluidized Bed Incinerator[J]. Korean Journal of Chemical Engineering,2000,17(3):284-287.
    [165] Cammarota A., Chirone R., Slatino P., et al.. Attrition phenomena during fluidized bedcombustion of granulated and mechanically dewatered sewage sludges[J]. Proceedings of theCombustion Institute,2005,30(2):3017-3024.
    [166] Pis J.J., Fuertes A.B., Artos V., et.al. Attrition of coal ash particles in a fluidized bed[J].Powder Technology,1991,66(1):41-46.
    [167]乐家林,叶伟洁,程乐鸣,等.工业锅炉设计计算方法[M].北京:中国标准出版社,2005.
    [168]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].北京:科学技术出版社,2003.
    [169]徐洋,朱国桢.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004.
    [170]季炫宇,卢啸风,何洪浩,等.返料换热型循环流化床工业锅炉燃烧传热特性[J].燃烧科学与技术,2012,18(6):545-549.
    [171] Ji X.Y., Lu X.F., Xue X.L., et al. Development on a small scale industrial CFB boiler with anevaporating loop seal[J]. Applied Thermal Engineering,2012,36(1):464-471.
    [172] Rasouli S., Golriz M.R., Hamidic A.A., et al. Effect of annular fins on heat transfer of ahorizontal immersed tube in bubbling fluidized beds[J]. Powder Technology,2005,154(1):9-13.
    [173] Ma Y., Zhu J.X.. Heat transfer between gas-solid suspension and immersed surface in anupflow fluidized bed (riser)[J]. Chemical Engineering Science,2000,55(5):981-989.
    [174]杨海瑞.循环流化床锅炉物料平衡研究[D].北京:清华大学博士学位论文,2003.
    [175] Yue G. X., Wang L., Li Y., et al. Ash size formation characteristics in CFB coal combustion[C].Proceedings of the12th International Conference on Fluidized Bed Combustion,1993:110-115.
    [176]西安热工所有限公司. DL/T964-2005[S].循环流化床锅炉性能试验规程,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700