铁催化还原氮氧化物的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO是煤燃烧过程中产生的主要污染气体之一,对人类健康和环境有严重的危害,因此研究NO的有效控制技术具有重要的学术价值和现实的工程实践参考价值。作者提出了一种基于铁直接催化脱除NO气体的有效方法,并进行了详细的实验研究和机理分析。
     首先概述了当前脱硝技术的研究进展,并着重介绍了再燃和选择性催化还原两种代表性的脱硝技术,同时指出了它们存在的问题和当前研究热点,前人在铁及其氧化物在NO脱除方面的研究工作做了讨论。在此基础上,提出了本课题的研究目的和研究方法。
     本文采用了铁丝卷作为催化脱除NO的铁样品。实验在一个陶瓷管反应器中以氮气为基础的NO体积浓度在0.05%-0.1%的模拟烟气进行。陶瓷管内径2.5cm,由程序控温的电加热炉加热。加热段长度为30cm,烟气流量为1.5L/min。在实验中,使用了几组不同长、宽尺寸的铁丝卷,铁丝卷网孔的大小为6mm×6mm,铁丝直径0.5mm。铁丝网首先卷成直径略小于陶瓷管内径的卷,然后水平放在加热段的中央。实验温度为300℃~1200℃。对CO,CO2和O2等不同气体对铁脱硝效果的影响特性进行了测试。出口烟气的变化通过一个在线气体分析仪(型号:ECOM-J2KN,德国产)监测。铁样品实验前后的表面微观结构和组分的变化通过XRD和扫面电镜进行了分析。
     本文研究结果得出的主要结论如下:
     (1)通过在惰性氛围中铁催化还原NO的实验研究,表明铁对NO有很好的催化还原效果,并确定在实验条件下由长×宽=160mm×80mm的铁丝网卷成的铁丝卷对NO的催化还原效果最佳,680℃以上时NO脱除效率可达95%。
     (2)通过在还原性氛围中铁催化还原NO的实验研究,表明CO能够很好的促进铁对NO的催化还原。在1000ppm氛围中,600℃时铁对NO的催化还原效率可达到95%,相比惰性氛围,温度下降了180℃;同时表明CO浓度越高,对铁催还还原NO效果越好。
     (3)通过在氧化性氛围中铁催化还原NO的实验研究,表明02能够强烈的抑制铁对NO的催化还原,氧气浓度越高这种抑制作用越强烈。1050℃时,惰性氛围中铁对NO的脱除效率高达99%,氧气浓度为0.5%时铁对NO的脱除效率为90%,氧气浓度为1%时铁对NO的脱除效率为80%,氧气浓度为2%铁对NO的脱除效率降至60%,氧气浓度为4%时NO脱除效率更是降至35%。
     (4)通过在CO2氛围中铁催化还原NO的实验研究,发现CO2对铁催化还原NO有一定的抑制作用,但温度高于700℃时,CO2的抑制作用已经不明显。
     (5)在模拟烟气(16.8%CO2,1%-2%O2,0.05%NO)条件下,铁丝卷在一定温度时,脱除NO的效率可超过90%。结果表明,在CO浓度为4%、O2浓度为1%时,铁对NO的催化还原效果最佳,650℃C时NO脱除效率可达90%以上。
     最后,本文通过扫描电镜(SEM)技术和X衍射(XRD)技术研究反应后铁样品的表面微观形态和组分变化。测试结果表明,在惰性和还原性气氛中,铁样品表面多孔、蓬松的结构,有助于铁对NO的吸附,使NO能够渗入铁样品内层,促进铁对NO的脱除;相反,在氧化性和模拟烟气氛围中,铁样品表面致密、光滑的表面结构则不利于铁对NO的催化还原。XRD测试结果表明,在惰性、氧化性和模拟烟气氛围中铁均被氧化为Fe+2Fe2+3O4、Fe2O3,而在还原性气氛中铁被氧化成FeO,CO2氛围中铁被氧化为FeO.Fe+2Fe2+3O4、Fe2O3。
Nitrogen oxide (NO) is a major pollutant emission from coal-fired boilers, which is very harmful to human health and the environment. It is very important to study effective and low cost technologies of NO reduction from the point of view of both academic understanging and industrial application. In this thesis, the author proposed a novel method to reduce NO emission which is based on iron catalysis and conducted detailed experimental tests and mechanism analysis.
     First, recent development of NO control technologies was comprehensively reviewed based on literature research. Two typical methods, e.g., reburning and selective catalysis reduction (SCR) were particularly introduced. The shortcomings and the hot topics related to reburning and SCR were discussed in detail. The previous research work on NO reduction by iron and its oxides were discussed and the present research methods were then proposed.
     In this thesis, Iron mesh rolls were selected as iron samples to catalytically reduce NO. Experiments were carried out in a ceramic tube reactor with a simulated flue gas consisting 0.05%-0.1%NO in a nitrogen base. A one-dimensional ceramic tube of inner diameter of 2.5 cm was used as the reactor and was electrically heated in the temperature programmed furnace. The total heated length of the reactor was 30 cm. The flow rate of the flue gas was 1.5 L/min. Several groups of iron meshes with different length and width were used in the tests. The size of the basic mesh unit was 6mm X 6mm and the diameter of the mesh wire was 0.5 mm. The mesh was first rolled into a mesh roll a little thinner than the tube inner diameter and then the mesh roll was horizontally set in the center of the heated tube. The tests were conducted in the temperature range of 300℃to 1200℃. The effect of different gas agents including CO, CO2 and O2 were examined. An online analyzer (ECOM-J2KN, Germany) was used to monitor the gas species. The surface micro-structure and component changes of the rion samples were analyzed by X-ray diffraction (XRD) and scanning electrical microscope (SEM) methods.
     The following main conclusions can be drawn from the results.
     (1) In inert atmosphere, the results showed that iron mesh roll was very effective to catalytically reduce NO to N2. The sample with a size of length X width =160mm×80mm had the best effect under the experimental conditions. NO removal efficiency was higher than 95% above 680℃.
     (2) CO can promote the NO catalytic reduction by iron. When 0.1% CO was fed into the reactor, the NO reduction efficiency by iron approached 95% at 600℃, 180℃temperature drop for the similar NO reduction efficiency compared to that in inert atmosphere. Results showed that the higher the concentration of CO, the higher NO reduction efficiency by iron became.
     (3) Experimental results demonstrated that O2 had a negative effect on NO reduction by Iron, At 1050℃, NO removal efficiency was about 99% in inert atmosphere, while it dropped to be 90% when 0.5% O2 was fed into the reactor. As oxygen concentration was 1%, NO removal efficiency dropped to 80%, when oxygen concentration was 2%, NO removal efficiency dropped to 60%, when oxygen concentration is 4%, NO removal efficiency dropped to 35%.
     (4) Results showed that CO2 had a negative effect on NO catalytic reduction, but negative effect will be negalected when the temperature is higher than 700℃.
     (5) In simualtied flue gas consisting 16.8% CO2, 1%-2% O2 and 0.05% NO, iron mesh roll was also effective to reduce more than 90% NO at certain temperature conditions. The results showed that when the CO concentration was 4%,02 concentration was 1%, the NO removal efficiencywas up to 90% above 650℃.
     Finally, author tested the oxide Iron by scanning electron microscopy (SEM) techniques and X-ray diffraction (XRD) technique. SEM Test results showed that the porous, fluffy surface structure of the iron mesh roll formed in inert and reducing atmosphere helped iron absorption of NO, so NO can penetrate into the inner layer of iron samples easily, and promoted NO removal by Iron; on the contrary, the dense, smooth surface structure of the iron mesh roll formed in oxidizing and simulated gas atmosphere was harmful to the catalytic reduction of NO by iron. XRD results showed that iron was oxidized to Fe+2Fe2+3O4 and Fe2O3, in an inert, oxidizing and simulated gas atmosphere, FeO in the reducing atmosphere, and FeO, Fe+2Fe2+3O4 and Fe2O3 in CO2 atmosphere, respectively.
引文
[1]卢向前,张学青.能源:在经济增长与环境保护中寻找平衡—解读《BP世界能源统计2007》[J].国际石油经济,2007,(7):20-28
    [2]王立敏.供需失衡挑战能源安全—《BP世界能源统计2008》解析[J].国际石油经济,2008,(7):42-48
    [3]韩才元,徐明厚,周怀春等.煤粉燃烧[M].北京:科学出版社,2001,1-3
    [4]刘忠.煤粉及煤焦再燃还原NO的实验与化学动力学机理研究[D].保定:华北电力大学2003
    [5]中华人民共和国国家统计局.中国统计年鉴2002[M].北京:中国统计出版社,2001
    [6]曾汉才,姚斌,程俊峰等.关于我国大型锅炉NOx排放评价及其排放标准修订的建议[J].锅炉制造,2001,50(4):14
    [7]王金南,陈罕立.关于全国氮氧化物排放总量控制的若干思考[A].全国氮氧化物污染控制研讨会[C].2003:356-361
    [8]毛剑雄,毛健全,赵树民等.煤的清洁燃烧[M].北京:科学出版社,1998:209-296
    [9]赵惠富.污染气体NOx的形成和控制[M].北京:科学出版社,1993:1-17
    [10]国家环境保护总局.火电厂大气污染物排放标准(GB13223-2003)[S],2003
    [11]朱立中,张建英.环境化学[M].杭州:杭州大学出版社,1994:79-80
    [12]吴丹,王式功,尚可政.中国酸雨研究综述[M].干旱气象,2006,24(2):70-76
    [13]王美秀.酸雨问题概述[J].内蒙古教育学院学报(自然科学版),1999,12(2):25-27
    [14]Solum M S, Pugmire R J, Grant D M,et al..15N CPMA NMR of the Argonne Premium Coals. Energy and Fuels,1997,11:491-494
    [15]Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of Nitrogen Forms in Aregonne Premium Coal. Energy and Fuels,1994,8:896-906
    [16]苏亚欣,毛玉如,徐璋.燃煤氮氧化合物排放控制技术[M].北京:化学工业出版社,2005
    [18]Bassilakis B, Zhao Y, Solomon P R, et al..Sulfur and Nitrogen Evolution in the Argonne Coals:Experiments and Modeling. Energy and Fuels,1992,7:710-720
    [19]Kambaba S, Takarada T,Yamamoto Y, et al.. Relation between Functional Forms of Coal Nitrogen and Formation of NOx Precursors during Rapid Paralysis. Energy and Fuels, 1993,7:1013-1020
    [20]曾汉才.燃烧与污染[M].武汉:华中理工大学出版社,1990
    [21]毛健雄,毛健全,赵树民.煤的洁净燃烧技术[M].北京:科学出版社,1998
    [22]W X Wang, S D Brown, C J Hindmarsh, et al.. NOx release and reactivity of chars from a wide range of coals during combustion. Fuel,1994,73:1381-1388
    [23]Visona S P, Stanmore B R. Modeling NO Formation in a Swirling Pulverized Coal Flame[J]. Chemical Engineering Science,1998,53(11):2013-2027
    [24]Stanmore B R, Visona S P. Prediction of NO Emission from a Number of Coal-fired Power Station Boilers. Fuel Processing Technology,2000,64:25-26
    [25]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社,1996
    [26]新井纪男.燃烧生成物的发生与抑制技术[M].赵黛青等译.北京:科学出版社,2001
    [27]Burdett N. A, The effect of Air Staging on NOx Emissions from a 500MW Down-Boiler, Journal of Institute of Energy,1987,9
    [28]Chen S. L, et al. NOx formation from different coal types in a bench scale reactor under excess air and staged combustion condition, Energy and Environmental Research Gorperation, 1981
    [29]Spliethoff H. et al. Low-NOx combustion for pulverized coal a comparison of air staging and reburning, inst. Conf. combust. Emiss. Control Proc. Inst. Energy Conf.2nd,1995,61-70
    [30]郑海红,王冉阳,任建兴.空气分级燃烧降低NOx燃煤电站锅炉生成的技术分析[J].上海电力学院报,2006,22(1):29-32
    [31]邱广明,张慧娟,阎志勇,刘启旺,王林江.燃煤锅炉低NOx燃烧技术研究[J].环境保护,2000,(4):10-12
    [32]钱琛林.空气分级低NOx燃烧技术的研究与应用[J].上海电力,2010,(1):3840
    [33]程兆峰.低NOx燃烧技术管窥[J].东方锅炉,1988,(4)
    [34]高晋生,沈本贤.煤燃烧中的来源和抑制其生成的有效措施[J].煤炭转化,1994,17(3):53-57
    [35]施建新.锅炉烟气再循环技术的节能减排效果浅探[J].宁波节能,2009,(4):27-28
    [36]黄蔚雯,蔡培.煤粉浓淡燃烧的特性分析[J].现代电力,2001,18(2):18-23
    [37]秦裕琨,孙绍增,吴少华.浓缩煤粉技术的发展[J].燃烧科学与技术,1995,1(1):43-48
    [38]辛国华,胡荫平,雷辉光,陈柏军.浓淡燃烧技术的研究[J].动力工程,1994,14(5):29-33
    [39]刘贵苏,陈世英.宽调节比燃烧技术的研究[J].中国电机工程学报,1996,(1):54-58
    [40]郭晓宁.PM型燃烧器设计分析及其在低灰熔点无烟煤煤粉炉炉膛布置中的应用[J].电站系统工程,1993,(9):14-22
    [41]吴生来,郝振亚.德国低NOx煤粉燃烧器[J].热力发电,1997,(5):51-61
    [42蒋啸,池作和,周吴等.撞击式可调浓度浓缩燃烧技术的应用研究[J].热力发电,1998,(2):4-7
    [43]董若凌,周俊虎,岑可法.基于锅炉低NOx再燃技术中再燃燃料选择的讨论[J].热能动力工程,2005,20(3):226-229
    [44]Kicherer A, Spliethoff H, Maier, H, et al.. The effect of different reburning fuels on NOx reduction. Fuel,1994,73 (9):1443-1446
    [45]Moyeda D K, Li B, Maly P et al.. Experimental/Modeling studies of the use of coal-based reburning fuels for NOx control. In Pittsburgh Coal Conference, Bioenergy'94,1994,1:123-130
    [46]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog. Energy Combust. Sci.,1989,15:287-337
    [47]Molina A, Eddings E C, Pershing D W,, et al. Nitric oxide destruction during coal and char oxidation under pulverized-coal combustion conditions. Proc Combust Inst,2002,29:2275-2281.
    [48]Yaxin Su, Benson B.Gathitu, et al. Effient and cost effective reburing using common wastes as fuel and additives[J]. Fuel,2010,89:2569-2582
    [49]苏亚欣,张先中等.废轮胎的能源资源化新思路—用于再燃脱硝的探讨[J].能源工程,2005,9(4):17-21
    [50]苏亚欣,邓文义等.废轮胎的燃料特性及用于燃煤锅炉再燃脱硝[J].化工进展,2011,30(3):642-648
    [51]姬鹏,韩向新,姜秀民.干化污泥燃烧特性的研究[J]。热能动力工程,2009,24(4):533-537
    [52]路春美,高攀等.生物质再燃脱硝特性研究[J].热能动力工程,2008,23(4):429-433
    [53]Vitali Lissianski, Peter M.Maly, et al. Utilization of Iron Additives for advanced control of nox emissions from stationsry combustion sources[J]. Ind. Eng. Chem. Res.2011, (40):3287-3293
    [54]Vitali Lissianski, Vladimir M. Zamansky, et al. Effect of metal-containing additives on NOx reduction in combustion and reburing[J]. Combustion and Flame,2011,3(125):1118-1127
    [55]Chen W-Y, Gathitu B B. Design of mixed fuel for heterogeneous reburning [J]. Combustion and Flame,2001,125:1118-1127.
    [56]苏亚欣,Gathitu B B, Chen W-Y.废轮胎再燃实验研究[J].安全与环境学报,2011,11(1):65-69.
    [57]苏亚欣,Gathitu B B, Chen W-Y. Fe2O3控制再燃脱硝中间产物HCN的实验研究[J].环境科学学报,2011,31(6):1181-1186
    [58]Rengui Guan, Wen Li, et al. The release of nitrogen species during pyrolysis of model chars loaded with different additives[J]. Fuel Processing Technology,2004,85:1025-1037.
    [59]匡江红,丁土发.低负荷稳燃直流燃烧器攻关技术的研究[J].动力工程,2000,20(2):611-614
    [60]肖琨,栾涛,程林.层柱粘土催化剂在SCR烟气脱硝中的麻用[J].能源环境保护,2007,21(2):4-8
    [61]张先中.废轮胎脱销性能的研究[D].上海:东华大学环境学院,2006
    [62]吕洪坤,杨卫娟,周俊虎等.电站锅炉选择性非催化还原脱硝实验研究[J].浙江大学学报(工学版),43(9):1655-1660
    [63]梁秀进,仲兆平,金宝升等.CH4作为添加剂对SNCR脱硝工艺的影响[J].东南大学学报(自然科学版),39(3):629-634
    [64]曹庆喜,吴少华等.采用选择性非催化还原脱硝技术的600MW超超临界锅炉炉内过程的数值模拟[J].动力工程,2008,28(3):349-354
    [65]高攀,路春美等.添加剂协同选择性非催化还原NO的过程研究[J].燃料科学与技术,2008,14(4):333-337
    [66]董建勋,李永华等.选抒性催化还原烟气脱硝反应器的变工况运行分析[J].动力工程,2008,28(2):142-146
    [67]王松龄,董建勋.选择性催化还原烟气脱硝技术中间试验[J].动力工程,2008,25(6):896-902
    [68]李可夫,吴少华等.选抒性非催化脱硝不同还原剂的比较试验研究[J].热能动力工程,2008,23(4):417-420
    [69]孙锐,赵敏.装置SCR脱硝装置对锅炉岛设计的影响及对预留方案的建议[J].中国电力,2005,(3):85-88
    [70]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M],北京:化学工业出版社,2002
    [71]Birks N and Meier G H. Introduction to the High Temperature Oxidation of Metal [M]. Edward Arnold, London:Cambridge University Press,1983.
    [72]周浩生,陆继东等.一氧化碳作用下铁对一氧化氮的催化还原实验与动力学过程分析[J].热能动力工程,2002,17(97):86-89
    [73]A.N.Hayhurst, A.D.Lawrence. The reduction of the nitrogen oxides NO and N2O to Molecular Nitrogen in the presence of Iron, ITS oxides, and carbon monoxide in a hot fluidized bed[J]. Combustion and Flame,1997,3(110):351-365
    [74]P.S.Fennell, A.N.Hayhurst. The kinetics of the reduction of NO to N2 by reaction with particles of Fe[J]. Proceedings of the Combustion Institute,2002, (29):2179-2185
    [75]A.N.Hayhurst, Y.Ninomiya. Kinetics of the conversion of NO to N2 during the oxidation of iron particles by NO in a hot fluidized bed[J]. Chemical Engineering Science,1998, 8(53):1481-1489
    [76]B.Gradon, J.Lasek. Investigations of the reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, (89):3505-3509
    [77]张春林,刘德昌.石油焦流化床燃烧过程铁金属脱硝的实验研究[J].中国电机工程学报,2006,26(1):87-90
    [78]张春林,张娜,刘德吕.流化床温度下石油焦焦炭与NO反应动力学研究[J].中国电机工程学报,2007,27:14-17
    [79]张春林,袁贵成等.石油焦流化床燃烧过程中氮氧化物的排放研究[J].电站系统工程,2003,19(1):16-18
    [80]周浩生,陆继东等.程序升温条件下铁及其氧化物在CO存在时对N20的还原机理[J].环境科学学报,2001,21(2):167-171
    [81]赵宗彬,李文等.半焦负载Na-Fe催化还原NO的研究[J].环境化学,2002,21(1):19-25
    [82]黄德中.锅炉烟气脱碳技术的最新发展[J].电站系统工程,2003,19(2):45-47
    [83]Zongbin Zhao, Wen Li, et al. Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres[J]. Fuel,2002,81:1559-1564
    [84]Chan L K,Sarofim A F and Beer J M. Kinetics of the NO carbon reaction at fluidized bed combustor conditions Original Research Article [J] Combust.Flame,1983,52:37-45
    [85]Furusara T, Tsunoda M and Kunii D. Nitric Oxide Reduction by Hydrogen and Carbon Monoxide over Char Surface [J]. Chemical reaction engineering,1982,29:347-357
    [86]Tsujimura M, Furusawa T and Kunii D. Catalytic reduction of nitric oxide by hydrogen over calcined limestone[M]. Journal of chemical engineering of Japan,1983,16(6):524-526
    [87]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog. Energy Combust. Sci.,1989,15:287-337
    [88]Allen D and Hayhurst A N. The kinetics of the reaction between calcium oxide and hydrogen sulphide at the temperatures of fluidized bed combustors [C].Twenty-Third Symposium (International) on Combustion,1991,23(1):935-941
    [89]杜学礼,潘子昂.扫描电子显微镜分析技术[M].北京:化学工业出版社,1986
    [90]姜传海,杨传铮.X射线衍射技术及其应用[M].上海:华东理工大学出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700