牙齿发育的信号调控机制及淫羊藿苷的干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.进一步明确将斑马鱼作为牙齿发生发育分子生物学研究模型的可行性和先进性。
     2.研究牙齿发育的重要信号因子(Pax9基因、Pitx2基因)在斑马鱼牙齿萌出与替换过程中的表达部位和时间,以探讨Pax9基因、Pitx2基因在牙发生发育过程中的作用机制及作用途径。
     3.研究淫羊藿苷对牙齿生长发育的影响。这将加快实现牙齿再生目标,并将为选取中药进行牙齿再生的体内实验提供一定的理论依据。
     研究方法:
     1.斑马鱼的饲养及其受精卵的获得:将饲养野生型斑马鱼的水温控制在28.5℃,设定其昼夜规律分别为14小时和10小时。将通过自然交配获得的受精卵饲养于28.5℃水中。斑马鱼的发育阶段按下述方法来划分:孵化期(0—6天龄);幼虫期(1—4周龄,即7—49天龄);幼体期(1—3月龄,即30—89天龄);成熟期(3月龄以上)。
     2.成年斑马鱼牙齿形态和组织学观察:在体视显微镜下,解剖成年斑马鱼鳃弓,观察其牙齿,并做石蜡切片和HE染色观察。取单个牙齿进行组织学标本处理,扫描电镜下观察其显微结构。
     3.针对Pax9基因原位杂交探针的制备:根据斑马鱼Pax9基因mRNA序列(GenBank: NM_131298)设计和合成针对Pax9的引物(F:5'-gcaagcttatggaaatctgcagaggcct; R: 5'-gctggatcccgctcgtcctcctggaa gtagaa)。抽提斑马鱼基因组总RNA,反转录成cDNA,并以此为模板,扩增Pax9基因序列。1%琼脂糖凝胶电泳检测扩增产物。将纯化的PCR扩增产物连接到pGEMT (Promage, Cat.#A3600)载体中,然后转化到DH5α感受态菌株中克隆扩增质粒。将大量扩增抽提得到的连接载体质粒经内切酶消化,在含有地高辛标记的UTP的体外转录系统中,以T7聚合酶催化合成地高辛标记的RNA探针,用于整胚原位杂交。
     4.Pax9基因在受精72h以内斑马鱼胚胎中的分布和表达:参考Westerfield M. The Zebrafish Book. Eugene:University of Oregon Press,1995.中的整胚原位杂交和胚胎切片方法,取不同发育阶段的胚胎(以4h为观察间隔),用4%多聚甲醛溶液固定过夜(至少固定12h),保存于甲醇溶液中,置-20℃备用。用1×PBST溶液洗去多余的甲醇溶液,将胚胎置于65℃水浴箱进行预杂交3h,然后加入所合成的反义RNA探针,65℃水浴杂交过夜。用0.2×SSC溶液洗去多余的探针,加入anti-Dig-AP与反义RNA探针结合过夜。将未结合的抗体用1×PBST溶液洗去,再加入(BCIP/NBT/NTMT)显色30min,迅速用1×PBST溶液洗去多余的显色液,将此胚胎直接在显微镜下观察并记录结果。
     5.通过制备针对Pitx2基因的探针(同研究方法3),利用整胚原位杂交技术(同研究方法4)观察Pitx2基因在斑马鱼牙齿早期发育中的表达情况。
     6.研究淫羊藿苷对牙齿生长发育的影响:在饲养野生型斑马鱼的水中加入淫羊藿苷,观察45天后斑马鱼牙齿生长发育的变化。在扫描电镜下观察其牙齿的显微结构,并对Ca、P等微量元素做能谱分析。
     7.研究淫羊藿苷对人牙龈成纤维细胞的中药干预作用:对体外培养的人牙龈成纤维细胞(human gingival fibroblasts,HGF),用MTT法检测不同浓度的淫羊藿苷(0.001、0.01、0.1μg/mL)、不同时间(24、48、72、96h)作用下HGF的增殖水平。
     研究结果:
     1、扫描电镜下,斑马鱼牙齿硬组织也具有类似人类牙釉质和牙本质样的结构。人类牙齿的釉质表面有平行排列的与牙长轴垂直的浅凹线纹和不规则的圆形小凹。斑马鱼牙齿表面未见浅凹线纹,但是有一些与牙长轴垂直的颜色较深的条带,在外形变化大的牙尖处尤为明显,这可能同人类牙釉质表面的线纹一样和釉质沉积有关。人类牙齿的牙本质具有牙本质小管,为多孔性组织结构,牙本质构成髓腔,髓腔内充满牙髓等软组织。斑马鱼的釉质内侧组织也呈多孔性疏松组织结构,具有很多贯穿其内的孔隙,与人类牙齿的牙本质结构相似。斑马鱼牙齿的牙本质也围成一髓腔,其内也可见软组织。HE染色进一步观察到红染的牙本质内部为一髓腔,髓腔内具有丰富的牙髓细胞。
     2、得到了Pax9基因在0到7天各时期斑马鱼胚胎中的表达资料,其中Pax9基因在受精16h的斑马鱼胚胎中开始有特异性信号出现,还可以明显地看到鳃弓(鳃弓,包括牙齿是由神经嵴细胞迁徙分化而来)上的特异性信号从24h-72h的迁徙和发育的过程。
     3.得到了Pitx2基因在0到7天各时期斑马鱼胚胎中的表达资料,明显地看到鳃弓上的特异性信号从16h-72h的迁徙和发育的过程。
     4.与对照组相比,实验组(加淫羊藿苷组)中斑马鱼牙齿冠1/3和中1/3的Ca含量显著升高,P含量显著降低,Ca/P比值显著升高。淫羊藿苷对斑马鱼牙齿生长发育中的钙化沉积有明显的促进作用。
     5.淫羊藿苷(0.001~0.1μg/mL)对人牙龈成纤维细胞(human gingival fibroblasts, HGF)的增殖具有促进作用(P<0.01),而且呈时间依赖性,促进HGF增殖的最佳浓度为001μg/mL。
     结论:
     1.进一步明确了斑马鱼作为牙发生发育分子生物学研究模型的可行性和先进性。从组织结构和超微结构上分析,斑马鱼牙齿和人类牙齿具有相似性,能够作为研究牙齿发生发育的新型模式动物。
     2.掌握了Pax9基因、Pitx2基因在斑马鱼牙齿发育和替换过程中的的早期表达情况。为揭示Pax9基因、Pitx2基因功能及信号通路等后续研究奠定了基础。
     3.淫羊藿苷对牙齿生长发育中的钙化沉积有明显的促进作用。淫羊藿苷对人牙龈成纤维细胞有中药干预作用,可以促进牙龈再生。这将为选取中药进行促牙周组织再生的体内实验提供一定的依据。利用中西医结合共同研究牙齿生长发育的机制,加快实现牙齿再生
Objective:
     1. Further to confirm the feasibility and advantages of zebrafish being used as a model animal to study the molecular biological mechanisms during tooth generation and development.
     2. To identify the expression sites and time-points of important signal factors of genes Pax9 and Pitx2, to discuss their mechanisms and pathways of action during tooth generation and development.
     3. To study the effects of Icariin on tooth development in order to provide some evidence for in vivo experiments on tooth regeneration with Chinese traditional medicine, and to expedite the achievement of tooth regeneration.
     Methods:
     1. Zebrafish breed and fertilized eggs obtained from it:
     The rearing water temperature for the wild-type zebrafish was set at 28.5℃, and the length of day and night were set at 14 h and 10 h, respectively. Then, the eggs fertilized through natural mating were bred in 28.5℃water. The developmental stages of zebrafish are divided as:embryo stage (0-6 days old), larval stage (1-4 weeks old), pupal stage (1-3 months old) and imago stage (more than 3 months old).
     2. Mature zebrafish tooth observation with morphological and histological methods:
     Under stereomicroscope, gill-arch of mature zebrafish was dissectedand the teeth were observed in vivo, paraffin sections were made and HE stain was observed. Then a single specimen of teeth was taken for histological processing and observed its microstructure with scanning electron microscope (SEM).
     3. DNA probes of gene Pax9 preparation for the in situ hybridization:
     Based on the mRNA sequence of Pax9 in zebrafish (GenBank:NM_131298), primers for Pax9 (F:5'-gcaagcttatggaaatctgcagaggcct; R:5'-gctggatcccgctcgtcctcctggaa gtagaa) Were designed and synthesized. The total RNA of zebrafish genome was extracted, and reverse-transcripted them into cDNA as the template for amplifying sequence of Pax9. The products were tested by electrophoresis with 1% agarose gel. Purified PCR products with vector pGEMT (Promage, Cat.# A3600) were combined and, then transformed into feeling-state strain DH5a to expanse the plasmids. The connecting-vector plasmids were digested, which were abundantly amplified and extracted, using incision enzyme. Under in vitro transcription system containing digoxin-labeled UTP, the digoxigenin-labeled RNA probes, synthesized under catalysis of T7 polymerase, were used in whole mount in situ hybridization.
     4. Pax9 distribution and expression in zebrafish embryos fertilized within 72h:
     According to the methods of whole embryo in situ hybridization and embryo biopsy in The Zebrafish Book (Westerfield M. The Zebrafish Book. Eugene:University of Oregon Press, 1995.), took embryos at different developmental stages (set the observing interval at 4h), fixed the samples with 4% paraformaldehyde solution overnight (at least for 12h), and conserved the samples in methanol at -20℃. Scoured off the excess methanol with 1×PBST solution, put the embryos into water-bath at 65℃to pre-hybridize for 3h. Then added antisense RNA probes, and hybridized in 65℃water bath overnight. Washed away excess probes with 0.2×SSC solution, then added anti-Dig-AP to combine with the antisense RNA probes overnight. We flushed away the unconjugated antibodies with 1×PBST solution, colorated for 30min with colorating liquid (BCIP/NBT/NTMT), washed out the excess colorating liquid with 1×PBST immediately and directly observed the embryos under microscope.
     5. DNA probes preparation for Pitx2, and identified its expressions in zebrafish teeth in early developmental stages by whole embryo in situ hybridization. (The methods were similar as for gene Pax9.)
     6. Study the effect of Icariin during tooth generation:
     Icariin was added into the rearing water for wild-type zebrefish to detect the changes of tooth generation in 45 days. Micro structure of the teeth, and operated spectrum analysis on Ca, P and other trace elements were observed under SEM.
     7. Study the effect of Icariin on human gingival fibroblasts (HGF):
     Using MTT assay to detect the proliferation level of human gingival fibroblasts, which were cultured in vitro, with different Icariin densities (0.001,0.01,0.1μg/mL) at 24,48,72, and 96 h, respectively.
     Results:
     1. Under SEM, zebrafish teeth have similar enamel and dentin structure as human teeth. The enamel surface of human teeth have parallel dimples, with are vertical to the tooth prolate axis, and irregular round concaves. Although no dimples were found on the surface of zebrafish teeth, several dark straps were detected, which were vertical to the prolate axis, especially at the apex cuspids where the shape changes notably. The straps might also be related to enamel deposition as the strikes on the surface of human enamel. Dentin of human teeth has dentinal tubules, so the structure is porous. Tooth cavity, surrounded by dentin, is filled with soft tissues as pulp. The inner structure of zebrafish enamel is also porous as human enamel, with lots of penetrating ventages. Dentin of zebrafish teeth also forms a cavity, containing soft tissue. Tissues in the cavity, by HE staining, contain plenty of pulp cells were found.
     2. The expression of Pax9 at different stages in zebrafish embryos in days 0-7 were obtained. Specific signals of Pax9 appeared in the embryos at 16 h. Also, the specific signals in the procedure of migration and differentiation in gill-arch (Gill-arch, including tooth, migrates and differentiate from neural crest cells.) during 24-72 h were found.
     3. The expressions of Pitx2 in zebrafish embryos during days 0-7 was obtained. It's obvious that specific signals in the procedure of migration and differentiation in gill-arch at 16-72h.
     4. Comparing with the control group, teeth in the experimental group contained notably larger amount of Ca and less P in the crown third and the middle third. As a result, the ratio of Ca/P obviously high. We believed Icariin could strongly promote calcium deposition during tooth generation.
     5. Icariin at 0.001~0.1μg/mL could promote the proliferation of HGF (P<0.01), with a time-dependent property. The optimum density for promoting HGF proliferation is 0.01μg/mL.
     Conclusion:
     1. It is further confirmed the feasibility and advantages of zebrafish being used as a model animal to study molecular biological mechanisms during tooth generation and development. In the aspects of organizational structure and ultramicrostructure, zebrafish teeth have much similarity with human teeth, and zebrafish can be used as novel model animal to study tooth generation.
     2. It is clarified the expressing situation of Pax9 and Pitx2 in the early stages of zebrafish tooth generation and replacement, and have laid foundation for subsequent researches about functions and signal pathways of gene Pax9 and Pitx2
     3. Icariin could greatly promote the procedure of calcium deposition during tooth generation and could improve gingival regeneration's effect on human gingival fibroblasts. This study would provide some support for in vivo experiments on periodontal tissue regeneration with Chinese traditional medicine. By combining Chinese traditional medicine and Western Medicine to study the tooth regeneration mechanisms at the molecular biology level, could expedite the achievement of tooth regeneration.
引文
1.王松灵,王学玖.牙齿再生-梦想与实现[J].华西口腔医学杂志,2008,26(2):115-117
    2.赵征,徐军明.牙齿发育调控机制的研究进展[J].实用医药杂志,2009,26(3):64-66
    3.于世凤.口腔组织病理学.北京:人民卫生出版社,2000.88.
    4.杨薇,李曦光.牙组织工程的研究现状和展望[J].中国组织工程研究与临床康复,2007,11,(10):1915-1917
    5.包柳郁,金岩,史俊南,等.人牙源性间充质细胞与陶瓷化骨支架材料相容性的实验研究[J].中国临床康复杂志,2004,8(7):1458-1459
    6.Lijima M, Moriwaki Y, Wen HB, et al.Elongated growth of octacalcium phosphate crystals in recombinant amelogenin gels under controlled ionic flow. J Dent Res 2002;81(1):69-73
    7.Mooney DJ, Powell C. Piana J. et al. Engineering dental pulp-like tissue in vitro Biotechnol Prog 1996;12(6):865-868
    8.Miller MJ.Patrick CW Jr.Tissue engineering.Clin Plast Surg 2003;30(1):91-103
    9.Fisher JP, Lalani Z, Bossano CM, et al. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J Biomed Mater Res 2004;68(3):428-438
    lO.Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cell (DPSCs) in vitro and in vivo[J].Proc Natl Acad Sci U S A,2000,97 (25):13625-13630.
    11.Miura M, Gronthos S, Zhao M, et al. SHED:Stem cells from human exfoliated deciduous teeth[J].Proc Natl Acad Sci U S A,2003,100 (10):5807-5812.
    12.Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J].Lancet,2004,364 (9429):149-155.
    13.谢家敏,田卫东,汤炜,等.人类牙乳头细胞的体外培养及细胞生物学形状研究[J].华西口腔医学杂志,2005,23(3):187-190.
    14.Ohazama A, Modino SA, Miletich I, et al. Stem-cell-based tissue engineering of murine teeth[J].J Dent Res,2004,83 (7):518-522.
    15.Dobie K, Smith G, Sloan AJ, et al. Effects of alginate hydrogelsand TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res,2002,43(2-3):387.
    16.Arias AM. Epithelial mesenchymal interactions in cancer and development.Cell,2001,105(4):425.
    17.Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res,2001,80(11):1974.
    18.Lidral AC, Reising BC. The role of MSX1 in human tooth agenesis. J Dent Res,2002,81(4):274.
    19.Cobourne MT, Sharpe PT. Tooth and jaw:molecular mechanisms of patterning in the first branchial arch. Arch Oral Biol,2003,48(1):1.
    20.Lezot F, Descroix V, Mesbah M, et al. Cross-talk between Msx/Dlx homeobox genes and vitamin D during tooth mineralization Connect Tissue Res,2002,43(2-3):509.
    21.郑莉琴,戴银清,张彦定.牙齿发育与再生[J].组织工程与重建外科杂志,2007,3(1):1-6
    22.Chai Y, Ho Y, Han J.TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells[J]. Crit Rev Oral Biol Med,2003,14(2):78-88.
    23.Nie X, Jin Y, Zhang CY. Induction of transforming growth factor- beta 1 and dentin non-collagen proteins on tissue engineering pulp[J]. Zhongguo Xiufu Chonglian Waike Zazhi,2004,18(2):115-118.
    24.Kohama K, Nonaka K, Hosokawa R, et al.TGF-beta-3 promotes scarless repair of cleft lip in mouse fetuses[J].Dent Res,2002,81(10):688-694
    25.Chen YP, Zhang YD, Jiang T-X, et al. Conservation of early odontogenic signaling pathways[J].Aves Proc Natl Acad Sci USA,2000,97:10044-10049.
    26.Ferguson CA, Tucker AS, Heikinheimo K, et al.The role of effectors of the activin receptors Ⅱ A,B and Smad2 in patterning of tooth development[J]. Development,2001,128(22):4605-4613.
    27.Dassule HR, Mcmahon AP. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth [J].Dev Biol,1998,202:215-227.
    28.Ohazama A. The possibility of tooth regenerative therapy [J]. Clin Calcium,2005,15(7):81-85.
    29.Cobourne MT, Hardcastle Z, Sharpe PT. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing toothgerm[J]. Dent Res,2001,80:1974-1979.
    30.唐志英.Wnt信号通道的分子学机制及在牙胚发育中的调控作用[J].国外医学:口腔医学分册,2002,29(5):265金岩.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005.218-227.
    31.金岩.小鼠发育生物学与胚胎实验方法.北京:人民卫生出版社,2005.218-227
    32.Yoneya T, Tahara T, Nagao K, et al. Molecular cloning of Delta-4,a new mouse and human notch ligand. J Biochem,2001,129(1):27.
    33.何飞.Notch信号与牙齿发生.现代口腔医学杂志,2002,16(5):450.
    34.陆群.Notch信号途径及在牙齿发育中的作用.牙体牙髓牙周病学杂志,2002,12(8):452.
    35.李玉成,金岩,史俊南.组织工程化牙齿研究展望[J].牙体牙髓牙周病学杂志,2006,16(4):236-239
    36.Ohazama A, Modino SAC, Miletich I, et al. Stem-cell-based tissue engineering of murine teeth[J].Dent Res,2004,83(7):518-522.
    37.Masaki J, et al. Histological and immunohistochemical studies of tissue engineered odontogenesis [J].Arch Histol Cytol,2005,68(2):89-101.
    1. Streisinger G,Walker C H,Dover W,Knauber D,Singer F.Production of clones of homozygous diploid zebrafish(B rachy daniorerio).N ature,1981,291:293-296.
    2.Akimenko MA,Ekker M.Anterior duplication of the Sonic hedgehog expression pattern in the pectoral fin buds of zebrafish treated with retinoic acid.Dev Biol,1995,170:243-7
    3. Driever W,Stemple d,Schier A,et al.Zebrafish:genetic tools for studying vertebrate development.TIG,1994,10:152-159
    4.C.Van der heyden,K.Wautier,A.Huysseune,et al. Tooth succession in the zebrafish(Danio rerio).Archives of Oral Biology 46(2001)1051-1058
    5.孙智慧,贾顺姬,孟安明.斑马鱼——在生命科学中畅游.生命科学[J],2006,18(5):431-436.
    6.于学慧,张世栋,张承梅.发育生物学的理想动物模型——斑马鱼.中国实验动物学杂志[J],2001,11(3):172-175
    7.吴玉萍,熊茜,张广献,等.斑马鱼基因工程的研究进展[J].遗传学报,2004,31(10):1167-1174.
    8.Cowley JA:The emergence of physiological genomics.J Vasc Res 1999,36:83-90.
    9.I.G.Woods,P.D.Kelly,F.Chu,P.Ngo-Hazelett,Y.L.Yan,H.Huang,J.H.Postlethwait,W.S.Talbot,A comparative map of the zebrafish genome,Genome Res.10(2000) 1903-1914.
    10.王娟,李谨,孙卫斌.成年斑马鱼牙齿发育的形态学观察[J].南京医科大学学报,2008,28(7):861-863
    11.王娟,徐艳,李谨,等.斑马鱼牙齿的组织结构和超微结构特征[J].口腔医学研究,2009,25(6):703-705.
    12. Arnold WH, Naumova KI, Naumova EA, et al. Comparative qualitative and quantitative assessment of biomineralization of tooth development in man and zebrafish (Danio rerio)[J]. Aat Rec (Hoboken),2008, 291(5): 571-576
    13.Bartlett JD, Dwyer SE, Beniash E, et al. Fluorosis:a new model and new insights [J]. J Dent Res,2005, 84(9):832-836
    14.包柳郁,王捍国,金岩,等.牙齿发育的调控机制[J].牙体牙髓牙周病学杂志,2005,15(1):51-54.
    15.杨雪艳,姚纪花,卢大儒,等.斑马鱼整胚原位杂交和显微注射转基因技术的建立(简报)[J].实验生物学报,2003,36:243-245.
    16. Udvadia,Ava J,Linney E.Windows into development:historic,current, and future perspectives on transgenic zebrafish.Development Biology,2003,256:1-17.
    17. Lee K Y,Huang H,J u B,Yang Z,Lin S.Cloned zebrafish by nuclear transfer from longterm cultured cells.Nat Biotechnol,2002,20(8):795-799.
    18.郑洪军,吕振华,胡有谷,等.淫羊藿对体外培养破骨细胞的影响[J].中华实验外科,2000,17(5):460-462
    19.王俊勤,胡有谷,郑洪军,等.淫羊藿苷对体外培养成骨细胞增殖和分化的影响[J].中国临床康复,2002,6(9):1037-1038
    20.李晶晶,于世凤,李铁军,等.淫羊藿对口腔矿化组织破骨细胞性骨吸收的体外实验研究[J].中华口腔医学杂志,2002,37(5):291-294
    1.Ton C, Lin Y, Willett C.Zebrafish as a model for developmental neurotoxicity testing [J].Birth Defects Res A Clin Mol Teratol,2006,76(7):553-556.
    2.Bartlett JD, Dwyer SE, Beniash E, et al. Fluorosis:a new model and new insights [J].J Dent Res,2005. 84(9):832-836.
    3.王娟,李谨,孙卫斌.成年斑马鱼牙齿发育的形态学观察[J].南京医科大学学报,2008,28(7):861-863.
    4.Westerfield M.The Zebrafish Book [M].Eugene:University of Oregon Press,1995,137-148.
    5.袁广明,胡黎平,李燕等.成年斑马鱼石蜡连续切片的制作和苏木精-伊红染色[J].解剖学研究,2006,28(1):73-75.
    6.李祥伟,苗雷英,程敏等.小鼠牙齿发育中Pax-9的表达及意义[J].现代口腔医学杂志,200721(2):180-182.
    7.Albertson RC, Yelick PC.Fgf8 haploinsufficiency results in distinct craniofacial defects in adult zebrafish [J] Dev Biol,2007,306(2):505-15.
    8.Lomberk G. Animal models [J].Pancreatology,2006,6(5):427-428.
    9.Wei-Yi Liu,Yan Wang,Yong-Hua Sun,et al.Efficient RNA interference in zebrafish embryos using siRN(?) synthesized with SP6 RNA polymerase[J].Dev Growth Differ,2005,47(5):323-331.
    10.Van der Heyden C, Allizard F, Sire JY, et al.Tooth development in vitro in two teleost fish, the cichli Hemichromis bimaculatus and the cyprinid Danio rerio[J]. Cell Tissue Res,2005,321(3):375-389.
    11.Huysseune, A. Formation of a successional dental lamina in the zebrafish (Danio rerio):support for a local control of replacement tooth initiation[J]. Int J Dev Biol,2006,50(7):637-643
    12. Dodd A, Chambers SP, Love DR.Short interfering RNA-mediated gene targeting in the zebrafish[J]. FEBS Lett,2004,561(1-3):89-93.
    13 Allizard F, Sire JY, Huysseune A. Tooth development in vitro in two teleost fish, the cichlid Hemichromis bimaculatus and the cyprinid Danio rerio [J].Cell Tissue Res,2005,321(3):375-389.
    14.Perrino, M.A., and Yelick, P.C. Immunolocalization of Alk8 during Replacement Tooth Development in Zebrafish[J]. Cells Tissues Organs,2004,176(1-3):17-27.
    15.Arnold WH, Naumova KI, Naumova EA, et al. Comparative qualitative and quantitative assessment of biomineralization of tooth development in man and zebrafish (Danio rerio) [J].Aat Rec (Hoboken), 2008,291(5):571-6.
    16.于世凤,主编.口腔组织病理学[M].第6版.北京:人民卫生出版社,2007.46-73.
    1. Bartlett JD, Dwyer SE, Beniash E, et al. Fluorosis:a new model and new insights [J]. J Dent Res,2005, 84(9):832-836.
    2.V.borday-birraux. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications[J]. Evo & Devo,2006,8(2):130-141.
    3.王娟,李谨,孙卫斌.成年斑马鱼牙齿发育的形态学观察[J].南京医科大学学报,2008,28(7):861-863.
    4.Westerfield. The zebrafish book:A guide for the laboratory use of zebrafish (Danio rerio) [M]. Eugene: University of Oregon Press,2000:26-53.
    5.Van der Heyden C, Allizard F, Sire JY, Huysseune A. Tooth development in vitro in two teleost fish, the cichlid Hemichromis bimaculatus and the cyprinid Danio rerio[J]. Cell Tissue Res,2005,321(3):375-389.
    6.Huysseune A. Formation of a successional dental lamina in the zebrafish (Danio rerio):support for a local control of replacement tooth initiation[J]. Int J Dev Biol,2006,50(7):637-643.
    7. Van der Heyden C, Huysseune A. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae) [J]. Dev Dyn,2000,219(4):486-496.
    8.李谨,王娟,詹臻.成年斑马鱼牙齿的扫描电镜观察[J].口腔医学,2009,29(8):409-412.
    9.于学慧,张世栋,张承梅.发育生物学的理想动物模型——斑马鱼[J].中国实验动物学杂志,2001,11(3):172-175.
    10.华芳,孙卫斌,葛久禹.斑马鱼Shh、Wnt5b和Catnb特异性基因片段的克隆[J].口腔医学研究,2009,25(2):129-131.
    11. William R. Jackman, Bruce W. Draper, David W. Stock. Fgf signaling is required for zebrafish tooth development[J]. Development biology,2004,274(3):139-157.
    12.Peters H,Neubuser A,Balling R. Pax gene and organogenesis:Pax9 meets tooth development[J]. Eur J Oral Sci,1998,106 (1):38-43.
    13.Yan Ding ZHANG, Zhi CHEN. Making a tooth:growth factors, transcription factors, and stem cells[J]. Cell Research,2005,15(5):301-316.
    14.Tiago V.Pereira, Francisco M.Salzano, Adrianna Mostowska, et al. Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development[J]. PNAS,2006,10(3):5676-5681.
    15. Keren SVE, Kettunen P, Erg T, et al. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions[J]. Evo & Devo,1999,209 (8):495-506.
    1. Bartlett JD, Dwyer SE, Beniash E, et al. Fluorosis:a new model and new insights [J]. J Dent Res,2005, 84(9):832-836.
    2. V.borday-birraux. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications[J]. Evo & Devo,2006,8(2):130-141.
    3. Westerfield. The zebrafish book:A guide for the laboratory use of zebrafish (Danio rerio) [M]. Eugene: University of Oregon Press,2000:26-53.
    4. Van der Heyden C, Allizard F, Sire JY, Huysseune A. Tooth development in vitro in two teleost fish, the cichlid Hemichromis bimaculatus and the cyprinid Danio rerio[J]. Cell Tissue Res,2005,321(3):375-389.
    5. Huysseune A. Formation of a successional dental lamina in the zebrafish (Danio rerio):support for a local control of replacement tooth initiation[J]. Int J Dev Biol,2006,50(7):637-643.
    6. Van der Heyden C, Huysseune A. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae) [J]. Dev Dyn,2000,219(4):486-496.
    7.王娟,李谨,孙卫斌.成年斑马鱼牙齿发育的形态学观察[J].南京医科大学学报,2008,28(7):861-863.
    8.于学慧,张世栋,张承梅.发育生物学的理想动物模型——斑马鱼[J].中国实验动物学杂志,2001,11(3):172-175.
    9.华芳,孙卫斌,葛久禹.斑马鱼Shh、Wnt5b和Catnb特异性基因片段的克隆[J].口腔医学研究,2009,25(2):129-131.
    10. William R. Jackman, Bruce W. Draper, David W. Stock. Fgf signaling is required for zebrafish tooth development[J]. Development biology,2004,274(3):139-157.
    11. Liu W, Selever J, Lu MF, et al. Genetic dissection of Pitx2 incraniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration[J]. Development,2003,130(10):6375-85.
    12. Dahe L, Yide H, Fenglei H, et al. Expression survey of genes critical for tooth. Development in the human embryonic tooth germ[J]. Dev Dyn,2007,236(8):1307-1312.
    13. St Amand TR, Zhang YD, Semina EV, et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitxl and Pitx2 in mouse tooth forming anlage[J]. Dev Biol,2000,217(10):323-332.
    1.Streisinger G,Walker C H,Dover W,Knauber D,Singer F.Production of clones of homozygous diploid zebrafish(B rachy daniorerio).N ature,1981,291:293-296.
    2. Akimenko MA,Ekker M.Anterior duplication of the Sonic hedgehog expression pattern in the pectoral fin buds of zebrafish treated with retinoic acid.Dev Biol,1995,170:243-7.
    3.Driever W,Stemple d,Schier A,et al.Zebrafish:genetic tools for studying vertebrate development.TIG,1994,10:152-159.
    4.Arnold WH, Naumova KI, Naumova EA, et al. Comparative qualitative and quantitative assessment of biomineralization of tooth development in man and zebrafish (Danio rerio)[J]. Aat Rec (Hoboken),2008,291 (5):571-576.
    5.王俊勤,胡有谷,郑洪军,等.淫羊藿苷对体外培养成骨细胞增殖和分化的影响[J].中国临床康复,2002,6(9):1037-1038.
    6.郑洪军,吕振华,胡有谷,等.淫羊藿对体外培养破骨细胞的影响[J].中华实验外科,2000,17(5):460-462.
    7.李晶晶,于世凤,李铁军,等.淫羊藿对口腔矿化组织破骨细胞性骨吸收的体外实验研究[J].中华口腔医学杂志,2002,37(5):291-294.
    8.柯勇,张功礼,禹志宏,等.淫羊藿苷对体外培养的成骨细胞骨形态发生蛋白-2表达的影响[J].郧阳医学院学报,2008,27(3):202-204.
    9.王娟,李谨,孙卫斌.成年斑马鱼牙齿发育的形态学观察[J].南京医科大学学报,2008,28(7):861-863.
    10.王娟,徐艳,李谨,等.斑马鱼牙齿的组织结构和超微结构特征[J].口腔医学研究,2009,25(6):703-705.
    11.梁爱华.斑马鱼—一种可用于中药药效和毒性筛选的鱼类模型[J].中国中医杂志,2009,34(22):2839-2842.
    12.陈析华,石四箴,梁勤.电子探针研究乳牙牙本质磷元素及其与患龋的关系[J].现代口腔医学杂志,2005,19(4):435-436.
    13.刘正主编.口腔生物学[M].第4版.北京:人民卫生出版社,2000,81-87.
    14.于世凤.口腔组织病理学[M].第5版.北京:人民卫生出版社,2006,29-40.
    1.程远,曾照芳,朱俊人牙龈成纤维细胞与牙周膜细胞的生物活性[J].生物信息学2009,7(1):32-36.
    2.王俊勤,胡有谷,郑洪军,等.淫羊藿苷对体外培养成骨细胞增殖和分化的影响[J].中国临床康复,2002,6(9):1037-1038
    3.李晶晶,于世凤,李铁军,等.淫羊藿对口腔矿化组织破骨细胞性骨吸收的体外实验研究[J].中华口腔医学杂志,2002,37(5):291-294
    4.郑洪军,吕振华,胡有谷,等.淫羊藿对体外培养破骨细胞的影响[J].中华实验外科,2000,17(5):460-462
    5.刘素彩,孔德娟,赵京山,等.淫羊藿苷对大鼠成骨细胞增殖与分化的影响[J].中国中医基础医学杂志,2001,7(8):28-30
    6. Wada N, Maeda H, Tanabe K, et al. Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function:the factor is osteop rotegerin/osteoclastogenesis inhibitory factor[J]. J Periodontal Res,2001,36 (1):56-63
    7.李纾,汪说之,樊明文,等.人牙龈和牙周韧带成纤维细胞体外矿化能力的比较研究[J].临床口腔医学杂志,2002,18(5):340-342.
    8. CarnesDL, Maeder CL, Graves DT. Cells with osteoblastic phenotypes can be exp lanted from human gingival and periodontal ligament [J]. J Periodontol,1997,68 (7):701-706.
    9. Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differetiation pathway of C2C12 myoblasts into osteoblast lineage [J]. J Cell Biol,1994,127 (6):1755-1766.
    10. Murphy MG, Mailhot J, Borke J, et al. The effects of rhBMP -2 on human osteosarcoma cells and human gingival fibroblasts in vitro[J]. J Oral Im plantol,2001,27 (1):16-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700