高压直流输电鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流输电技术(HVDC)具有适合于远距离、大容量输送电力等优点,近些年在我国得到了迅速的发展。HVDC系统是高度可控的非线性系统,其运行工况随时都会发生改变,扰动发生的地点、类型及严重程度具有随机性,此外,系统模型还含有未建模动态部分,这些因素使得基于直流输电系统准静态模型的常规控制器常常不能很好地满足系统的实际要求。因此,如何设计出鲁棒性更好的控制系统以改善HVDC系统的运行特性,同时提高与之相连的交流系统的运行稳定性这一课题无论在国内还是国外都是具有实际意义的,
     首先,论文介绍了HVDC系统的结构、数学模型,并在此基础上,详细分析了直流输电系的主要控制和调节方式的原理及控制特性,并给出了直流输电系统基本控制和附加控制的控制原理。
     其次,采用状态反馈精确线性化对高压直流输电系统进行线性化,将复杂的非线性系统综合问题转化为线性系统的综合问题,这个经过精确线性化的线性系统能够真实地反映原非线性系统。随后,将该线性系统变为一类具有含未建模动态和有界扰动的不确定性系统,并转化为Hoo标准问题,以此设计Hoo鲁棒控制器,此控制器对系统自身摄动和外部扰动具有很强的鲁棒性。在前人的工作基础上,本文结合精确线性化方法和鲁棒Hoo控制理论来设计HVDC系统基本控制器和附加控制器。
     最后,以新的CIGRE HVDC标准模型为基础,利用MATLAB软件对本文所设计的基本控制器和附加控制器进行仿真验证,仿真结果表明:与非线性最优控制仿真结果相比较,这种新颖的HVDC控制器更加符合实际,可以抑制系统未建模动态和有界扰动,有效地改善系统的暂态性能,具有良好的鲁棒性。
High voltage direct current transmission technology (HVDC) is suitable for power transmissions of large capacity and with long distance, in recently years, it gets a rapid development in our country. HVDC power transmission system is a highly controllable nonlinear control system. It's operating conditions change at any time, and the location, type and severity of disturbance is stochastic, besides, the converters have unmodeled dynamics. These factors make the traditional controller for HVDC based on the classical control theory cannot meet the requirements in practice. So, It is of practical significance both at home and abroad how to design a better stability robust controller to improve its performance and enhance the operating stability o f AC system connected as well.
     Firstly, This paper introduces the structure and mathematical model of HVDC system, on this basis, the paper analyzes both the principle and performance of main control accommodation mode for HVDC system, and then gives the HVDC system the control theory of based control and additional control.
     Secondly, state-feedback and accurate linearization is adopted for the linearization of the nonlinear mathematic model of HVDC system. This way turns the synthesis problem of the complicated nonlinear system into the synthesis problem of simple linear system. For the nonlinear system, linear system after accurate linearization can reflect the primary nonlinear system truly. Then, this linear system will be transformed to a uncertainty system with unmodeled dynamics and bounded disturbances, and transformed into the standard Hoo problems to design the robust controller. However the Hoo controller has the strong robustness on the perturbation and the disturbance of system. This thesis is based on the work of anterior researchers and combines accurate linearization with H∞robust control to design the basic controller and additional controller.
     Finally, the new CIGRE HVDC standard model is chose as the simulation model of the basic controller. This thesis Simulates the designed basic controller and additional controller in MATLAB. Comparing to the nonlinear optimization controller, the results of the simulations show that the proposed controller is effective. It has a robust dynamic performance with a strong capability of restraining unmodeled dynamics and bounded disturbances. The transient and static characteristic of HVDC system has been effectively improved with good robustness.
引文
[1]赵国梁,吴涛.HVDC技术的发展应用情况综述[J].华北电力技术.2009,8:28-31.
    [2]郭毅军.高压直流输电系统的现状及发展概述[J].中国西部科技.2008,15(7):12-14.
    [3]吕伟业.中国电力工业发展及产业调整[J].中国电力.2002,35(1):1-7.
    [4]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术.2004,30(11):11-12.
    [5]白继彬.我国直流输电的发展[J].电工技术.2003,12(10):1-3..
    [6]赵畹君.高压直流输电工程[M].中国电力出版社.2004:5-6.
    [7]李兴源,刘红超,邱晓燕等.改善暂态稳定性的HVDC非线性控制策略[J].电力系统自动化.2002,26(14):15-19.
    [8]Li X Y. A Nonlinear Emergency Control Strategy for HVDC Transmission Systems[J]. Electric Power Systems Research.2007,67:153-159.
    [9]汤建华,高压直流输电系统换流站的鲁棒自适应输出反馈控制[D],四川大学硕士论文,2003.5.
    [10]李兴源.高压直流输电运行与控制[M].科学出版社.1998.
    [11]杨卫东.多馈入直流输电系统的控制策略研究[D].浙江大学博士论文.2001.
    [12]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器[J].电力系统自动化,2002,26(3):23-27.
    [13]Chung T S, FANG Da-zhong. Fuzzy logic Controller for Enhancing Oscillatory Stability of AC/DC Interconnected Power System[J]. Electric Power Systems Research.2002:221-226.
    [14]韦巍,何衍.智能控制基础[M].清华大学出版社.2008:103-115.
    [15]NarendraK G, Sood V K, Khorasani K. Investigation into an Artificial Neural Network Based On-line Current Controller for an HVDC Transmission Link[J]. IEEE Trans on Power Systems. 2007,12(4):1425-1431.
    [16]Reformat M, Kuffel E, Woodford D. Application of Genetic Algorithms for Control Design in Power Systems[J]. IEE Proc-Gener, Transm, and Distrib.1998,145(4):345-354.
    [17]Wang Y, Watson NR, ChongHH, Modified Genetic. Algorithm Approach to Design an Optimal PID Controller for AC/DC Transmission Systems[J]. Electric Power and Energy Systems.2002, 24:59-69
    [18]黄北军.高压直流输电次同步振荡的分析和控制[D].西南交通大学硕士论文.2008.4.
    [19]余军,何富,周波.利用直流输电抑制交直流系统次同步振荡的研究[J].中国电机工程学报.2003,17(6).
    [20]Ishiguro F, Matsumoto T, Nobayashi M. HVDC Rectifier Control Coordinated with Generator Station in Radial Operation[J]. IEEE Trans on Power Systems.1997,12(2)::851-857.
    [21]杨卫东,薛禹胜,荆勇等.南方电网中多个直流系统间的协调功率恢复策略[J].电力系统自动化.2003,27(15).
    [22]刘红超,李兴源,王路等.多馈入直流输电系统中直流调制的协调优化[J].电网技术.2004, 28(1).
    [23]Reeve J, Sultan M..Robust Adaptive Control of HVDC Systems[J]. IEEE Trans on Power Delivery.1994,9(3):1487-1493.
    [24]Venkataraman S, Khammash M H, Vittal V. Analysis and Synthesis of HVDC Controls for Robust Stability[J]. IEEE Trans on Power Systems.1995,10(4):1933-1938.
    [25]李文磊,王明顺,刘晓平等.交直流并联输电系统的非线性鲁棒控制[J].控制与决策.2002,17(S1):785-787.
    [26]朱明,刘玉生,李兴源等.高压直流换流站分散鲁棒自适应控制器的设计[J].电力系统自动化.2003,27(2).
    [27]Hauer J F. Robust Damping Controls for Large Power Systems [J]. IEEE Control System Magazine.1999.
    [28]卢强,孙元章.电力系统非线性控制[M].科学出版社.1993.
    [29]熊信银,朱永利等.发电厂电气部分[M].第三版.中国电力出版社.2004:45-47.
    [30]浙江大学发电教研组直流输电科研组.直流输电[M].电力工业出版社.1982:12-14.
    [31]赵畹君.高压直流输电工程技术[M].中国电力出版社.2004:23-24.
    [32]Zames G. Feedback and optimal sensitivity:Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses[J]. IEEE Trans AC.1981,26(4).
    [33]Doyle J C, K Glover, P P Khargonekar. State-space Solutions to Standard H2 and Hoo Control Problems. ACC'88, Atlanta,1988.
    [34]Zames G, Francis B A. Feedback, Mini-max Sensitivity and Optimal Robustness [J]. IEEE Trans. AC,1983,28(4).
    [35]Chang B C, Pearson J B. Optimal Disturbance Reduction in Linear Multivariable Systems[J]. IEEE Trans. AC.1984,29(6).
    [36]Glover K. All Optimal Hankelnorm Approximations of Linear Multivariable Systems and Their Hoo Error Bounds[J]. Int. J.Contr..1984,43.
    [37]Doyle J C. Lecture Notes in Advances in Multivariables Control[M]. ONR Honeywell Workshop. 1984.
    [38]Fransis B A, Doyle J C. Linear Control Theory with Hoo Optimality Criterion[J]. SIAM J.Contr. Optimiz.1987,25.
    [39]Limebeer D J N, Halikias G D. A Controller Degree Bound for Hoo Optimal Problems of the Second Kind[J]. SIAMJ. Contr. Optimiz.1987,32.
    [40]Ball J A, Cohen N. The Sensitivity Minimization in an Hoo Norm:Parameterization of all Optimal Solutions[J]. Int. J.Contr.1987,46.
    [41]Kimura H. (J,J')-Lossness Factorization Based on Conjugation[J]. System&Control Letters. 1992,19:95-109.
    [42]M G Safonov, E A Jonckheere, M Verma, D JN Limbeer. Synthesis of Positive Real Multivariable Feedback Systems[J]. Int. J Contr.1987,45(3):817-842
    [43]Kimura H, Lu Y, Kawatani R J. On the Structure of Hoo. Control Systems and Related Extensions[J]. IEEE Trans. AC.1991,36:653-667.
    [44]Green M., Glover K. et al. A J-spectral factorization approach to Hoo control[J]. SIAM J. Contr. Optimiz.1990,28:1350-1371.
    [45]Glover K, Limebeer D J N. et al. A Characterization of all Solutions to the Four Block General Distance Problem[J]. SIAM J. Contr. Optimiz.1991,29:283-324.
    [46]KhargonekarPP, Petersen I R, RoteaMA. Hoo Optimal Control with State Feedback[J]. IEEE Trans.AC.1988,33:786-788.
    [47]Glover K, Mustafa. Hoo Control With Minimal Entropy Lecture Notes in Control and Information Science[M]. New York, Springer_Verlag.1991.
    [48]俞立.鲁棒控制:线性矩阵不等式处理[M].清华大学出版社.2002.
    [49]Doyle J C K, Lenz A, Packard. Design Examples Using μ_Synthesis:Spaces Shuttle Lateral Axis FCS During Reentry[J]. Proc IEEE CDC'86.1986:2218-2223.
    [50]Safonov M G, R Y Chiang, H Flashner. Hoo Robust Control Synthesis for a Large Space Structure[J]. ProcACC'88.1988:417-419.
    [51]Limebeer D J N, E Kasenallg. Hoo Optimal Control of a Synchronous Turbo Generator[J]. Proc IEEE CDC.1986:62-65.
    [52]Dale F Enns. Structured Singular Value Synthesis Design Example:Rocket Stabilization[J]. ACC '90. San Diego,1990:2514-2520
    [53]ChengshanWang, Yanbo Che, HaoWang. Multi-Objective H Design of Excitation Controller[J]. Powercon 2002. Kunming, China.2002.10.
    [54]张俊波.H∞控制理论在有源电力滤波器中的应用[D].西南交通大学硕士论文.2007.4.
    [55]申铁龙.H∞控制理论及应用[M].清华大学出版社.1996.
    [56]郑大钟.线性系统理论[M].清华大学出版社.2002.10.
    [57]吉明,姚绪梁.鲁棒控制系统[M].哈尔滨工程大学出版社.2002.6.
    [58]黄琳.稳定性与鲁棒性的理论基础[M].科学出版社.2003.3.
    [59]B.A.Francis, J.C Doyle. Linear Control Theory with an H∞ Optimality Criterion[J]. SIAM J. Contr. and Optim.1987,25.
    [60]N.E.Barabanov, R.Ortega. Robust Stability and Stabilization of Discrete Singular Systems:An Equivalent characterization[J]. IEEE Trans. Automatic Control.2002,49(4).
    [61]黄文梅等.信号分析与处理:MATLAB语言及应用[M].国防科技大学出版社.2002,2.
    [62]薛定宇.控制系统计算机辅助设计——MATLAB语言与应用[M].第二版.清华大学出版社,2006,3.
    [63]薛定宇,陈阳泉.控制数学问题的MATLAB求解[M].清华大学出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700